Skip to main content
Erschienen in: Der Diabetologe 3/2015

01.05.2015 | CME Zertifizierte Fortbildung

Mitochondrien als Kraftwerk der β-Zelle

Einfluss von Glucosemetabolismus und mitochondrialer Dynamik

verfasst von: Prof. S. Baltrusch, F. Reinhardt, M. Tiedge

Erschienen in: Die Diabetologie | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Zusammenfassung

Störungen im glucotropen Regelkreis führen zu einem Typ-2-Diabetes mellitus (T2DM). Neben der peripheren Insulinresistenz trägt zur Manifestation eine gestörte Insulinsekretion durch Dysfunktion der β-Zellen des Pankreas bei. β-Zellen messen durch Expression des Sensorproteins Glucokinase die Glucosekonzentration im Blut und passen dadurch die Insulinsekretion an den Ernährungszustand an. Eine regulierte Insulinfreisetzung in Abhängigkeit vom wechselnden Substratangebot an Kohlenhydraten, Fetten und Proteinen ist für die Glucosehomöostase des Blutes sowie den Energiemetabolismus der Zellen essenziell und gerät durch Überalimentation aus dem Gleichgewicht. Mitochondrien sind die zentrale Schaltstelle für die bedarfsgerechte Bereitstellung der zellulären Energie. Für ihre Funktion ist ihre morphologische Struktur essenziell. Diese ist mitnichten starr, sondern hochdynamisch. Mitochondrien bilden in β-Zellen ein tubuläres Netzwerk, das durch ständige Fusions- und Teilungsprozesse aufrechterhalten wird. Geraten diese Prozesse unter Bedingungen eines Überangebots an Glucose und Fetten aus dem Gleichgewicht, begünstigt diese mitochondriale Dysfunktion einen T2DM.
Literatur
1.
Zurück zum Zitat Kahn SE, Cooper ME, Del Prato S (2014) Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383:1068–1083CrossRefPubMedCentralPubMed Kahn SE, Cooper ME, Del Prato S (2014) Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383:1068–1083CrossRefPubMedCentralPubMed
3.
Zurück zum Zitat Florez JC, Hirschhorn J, Altshuler D (2003) The inherited basis of diabetes mellitus: implications for the genetic analysis of complex traits. Annu Rev Genomics Hum Genet 4:257–291CrossRefPubMed Florez JC, Hirschhorn J, Altshuler D (2003) The inherited basis of diabetes mellitus: implications for the genetic analysis of complex traits. Annu Rev Genomics Hum Genet 4:257–291CrossRefPubMed
4.
Zurück zum Zitat Drong AW, Lindgren CM, McCarthy MI (2012) The genetic and epigenetic basis of type 2 diabetes and obesity. Clin Pharmacol Ther 92:707–715CrossRefPubMed Drong AW, Lindgren CM, McCarthy MI (2012) The genetic and epigenetic basis of type 2 diabetes and obesity. Clin Pharmacol Ther 92:707–715CrossRefPubMed
5.
Zurück zum Zitat Meigs JB, Cupples LA, Wilson PW (2000) Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes 49:2201–2207CrossRefPubMed Meigs JB, Cupples LA, Wilson PW (2000) Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes 49:2201–2207CrossRefPubMed
6.
Zurück zum Zitat Pal A, McCarthy MI (2013) The genetics of type 2 diabetes and its clinical relevance. Clin Genet 83:297–306CrossRefPubMed Pal A, McCarthy MI (2013) The genetics of type 2 diabetes and its clinical relevance. Clin Genet 83:297–306CrossRefPubMed
7.
Zurück zum Zitat Donath MY, Schumann DM, Faulenbach M et al (2008) Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care 31(Suppl 2):161–164CrossRef Donath MY, Schumann DM, Faulenbach M et al (2008) Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care 31(Suppl 2):161–164CrossRef
8.
Zurück zum Zitat Tiedge M, Lortz S, Drinkgern J et al (1997) Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46:1733–1742CrossRefPubMed Tiedge M, Lortz S, Drinkgern J et al (1997) Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46:1733–1742CrossRefPubMed
9.
Zurück zum Zitat Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29:42–61CrossRefPubMed Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29:42–61CrossRefPubMed
10.
Zurück zum Zitat Jin W, Patti ME (2009) Genetic determinants and molecular pathways in the pathogenesis of type 2 diabetes. Clin Sci 116:99–111CrossRefPubMed Jin W, Patti ME (2009) Genetic determinants and molecular pathways in the pathogenesis of type 2 diabetes. Clin Sci 116:99–111CrossRefPubMed
11.
Zurück zum Zitat Gallagher EJ, Leroith D, Karnieli E (2010) Insulin resistance in obesity as the underlying cause for the metabolic syndrome. Mt Sinai J Med 77:511–523CrossRefPubMed Gallagher EJ, Leroith D, Karnieli E (2010) Insulin resistance in obesity as the underlying cause for the metabolic syndrome. Mt Sinai J Med 77:511–523CrossRefPubMed
12.
Zurück zum Zitat Jung HS, Lee MS (2010) Role of autophagy in diabetes and mitochondria. Ann N Y Acad Sci 1201:79–83CrossRefPubMed Jung HS, Lee MS (2010) Role of autophagy in diabetes and mitochondria. Ann N Y Acad Sci 1201:79–83CrossRefPubMed
13.
Zurück zum Zitat Nolan CJ, Madiraju MS, Delghingaro-Augusto V et al (2006) Fatty acid signaling in the beta-cell and insulin secretion. Diabetes 55(Suppl 2):16–23CrossRef Nolan CJ, Madiraju MS, Delghingaro-Augusto V et al (2006) Fatty acid signaling in the beta-cell and insulin secretion. Diabetes 55(Suppl 2):16–23CrossRef
15.
Zurück zum Zitat Newsholme P, Haber EP, Hirabara SM et al (2007) Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583:9–24CrossRefPubMedCentralPubMed Newsholme P, Haber EP, Hirabara SM et al (2007) Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583:9–24CrossRefPubMedCentralPubMed
16.
Zurück zum Zitat Takahashi HK, Santos LR, Roma LP et al (2014) Acute nutrient regulation of the mitochondrial glutathione redox state in pancreatic beta-cells. Biochem J 460:411–423CrossRefPubMed Takahashi HK, Santos LR, Roma LP et al (2014) Acute nutrient regulation of the mitochondrial glutathione redox state in pancreatic beta-cells. Biochem J 460:411–423CrossRefPubMed
17.
Zurück zum Zitat El-Assaad W, Joly E, Barbeau A et al (2010) Glucolipotoxicity alters lipid partitioning and causes mitochondrial dysfunction, cholesterol, and ceramide deposition and reactive oxygen species production in INS832/13 ss-cells. Endocrinology 151:3061–3073CrossRefPubMed El-Assaad W, Joly E, Barbeau A et al (2010) Glucolipotoxicity alters lipid partitioning and causes mitochondrial dysfunction, cholesterol, and ceramide deposition and reactive oxygen species production in INS832/13 ss-cells. Endocrinology 151:3061–3073CrossRefPubMed
18.
Zurück zum Zitat Lupi R, Dotta F, Marselli L et al (2002) Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes 51:1437–1442CrossRefPubMed Lupi R, Dotta F, Marselli L et al (2002) Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes 51:1437–1442CrossRefPubMed
19.
Zurück zum Zitat Baltrusch S, Tiedge M (2006) Glucokinase regulatory network in pancreatic beta-cells and liver. Diabetes 55(Suppl 2):55–64CrossRef Baltrusch S, Tiedge M (2006) Glucokinase regulatory network in pancreatic beta-cells and liver. Diabetes 55(Suppl 2):55–64CrossRef
20.
Zurück zum Zitat Schuit F, De Vos A, Farfari S et al (1997) Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. J Biol Chem 272:18572–18579CrossRefPubMed Schuit F, De Vos A, Farfari S et al (1997) Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. J Biol Chem 272:18572–18579CrossRefPubMed
21.
Zurück zum Zitat Prentki M, Tornheim K, Corkey BE (1997) Signal transduction mechanisms in nutrient-induced insulin secretion. Diabetologia 40(Suppl 2):32–41CrossRef Prentki M, Tornheim K, Corkey BE (1997) Signal transduction mechanisms in nutrient-induced insulin secretion. Diabetologia 40(Suppl 2):32–41CrossRef
22.
Zurück zum Zitat Maechler P (2002) Mitochondria as the conductor of metabolic signals for insulin exocytosis in pancreatic beta-cells. Cell Mol Life Sci 59:1803–1818CrossRefPubMed Maechler P (2002) Mitochondria as the conductor of metabolic signals for insulin exocytosis in pancreatic beta-cells. Cell Mol Life Sci 59:1803–1818CrossRefPubMed
23.
Zurück zum Zitat Wiederkehr A, Wollheim CB (2012) Mitochondrial signals drive insulin secretion in the pancreatic β-cell. Mol Cell Endocrinol 353:128–137CrossRefPubMed Wiederkehr A, Wollheim CB (2012) Mitochondrial signals drive insulin secretion in the pancreatic β-cell. Mol Cell Endocrinol 353:128–137CrossRefPubMed
24.
Zurück zum Zitat Henquin JC (2009) Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 52:739–751CrossRefPubMed Henquin JC (2009) Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 52:739–751CrossRefPubMed
28.
Zurück zum Zitat Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445CrossRefPubMed Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445CrossRefPubMed
29.
Zurück zum Zitat Johnson DC, Dean DR, Smith AD et al (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–281CrossRefPubMed Johnson DC, Dean DR, Smith AD et al (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–281CrossRefPubMed
31.
Zurück zum Zitat Liu X, Kim CN, Yang J et al (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157CrossRefPubMed Liu X, Kim CN, Yang J et al (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157CrossRefPubMed
32.
33.
Zurück zum Zitat Chen XJ, Butow RA (2005) The organization and inheritance of the mitochondrial genome. Nat Rev Genet 6:815–825CrossRefPubMed Chen XJ, Butow RA (2005) The organization and inheritance of the mitochondrial genome. Nat Rev Genet 6:815–825CrossRefPubMed
34.
Zurück zum Zitat Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465CrossRefPubMed Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465CrossRefPubMed
35.
Zurück zum Zitat Croteau DL, Bohr VA (1997) Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem 272:25409–25412CrossRefPubMed Croteau DL, Bohr VA (1997) Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem 272:25409–25412CrossRefPubMed
36.
Zurück zum Zitat Maassen JA, Janssen GM, ‚t Hart LM (2005) Molecular mechanisms of mitochondrial diabetes (MIDD). Ann Med 37:213–221CrossRefPubMed Maassen JA, Janssen GM, ‚t Hart LM (2005) Molecular mechanisms of mitochondrial diabetes (MIDD). Ann Med 37:213–221CrossRefPubMed
38.
Zurück zum Zitat Beckman KB, Ames BN (1998) Mitochondrial aging: open questions. Ann N Y Acad Sci 854:118–127CrossRefPubMed Beckman KB, Ames BN (1998) Mitochondrial aging: open questions. Ann N Y Acad Sci 854:118–127CrossRefPubMed
39.
Zurück zum Zitat Bensch KG, Mott JL, Chang SW et al (2009) Selective mtDNA mutation accumulation results in beta-cell apoptosis and diabetes development. Am J Physiol Endocrinol Metab 296:E672–E680CrossRefPubMedCentralPubMed Bensch KG, Mott JL, Chang SW et al (2009) Selective mtDNA mutation accumulation results in beta-cell apoptosis and diabetes development. Am J Physiol Endocrinol Metab 296:E672–E680CrossRefPubMedCentralPubMed
40.
Zurück zum Zitat Maassen JA, ‚t Hart LM, Van Essen E et al (2004) Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes 53(Suppl 1):103–109CrossRef Maassen JA, ‚t Hart LM, Van Essen E et al (2004) Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes 53(Suppl 1):103–109CrossRef
41.
Zurück zum Zitat Weiss H, Wester-Rosenloef L, Koch C et al (2012) The mitochondrial Atp8 mutation induces mitochondrial ROS generation, secretory dysfunction, and beta-cell mass adaptation in conplastic B6-mtFVB mice. Endocrinology 153:4666–4676CrossRefPubMed Weiss H, Wester-Rosenloef L, Koch C et al (2012) The mitochondrial Atp8 mutation induces mitochondrial ROS generation, secretory dysfunction, and beta-cell mass adaptation in conplastic B6-mtFVB mice. Endocrinology 153:4666–4676CrossRefPubMed
42.
Zurück zum Zitat Bereiter-Hahn J, Vöth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27:198–219CrossRefPubMed Bereiter-Hahn J, Vöth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27:198–219CrossRefPubMed
43.
Zurück zum Zitat Rizzuto R, Brini M, De Giorgi F et al (1996) Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo. Curr Biol 6:183–188CrossRefPubMed Rizzuto R, Brini M, De Giorgi F et al (1996) Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo. Curr Biol 6:183–188CrossRefPubMed
44.
Zurück zum Zitat Chen H, Chan DC (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14:R283–R289CrossRefPubMed Chen H, Chan DC (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14:R283–R289CrossRefPubMed
45.
Zurück zum Zitat Liesa M, Palacín M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89:799–845CrossRefPubMed Liesa M, Palacín M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89:799–845CrossRefPubMed
46.
Zurück zum Zitat Smirnova E, Griparic L, Shurland DL et al (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256CrossRefPubMedCentralPubMed Smirnova E, Griparic L, Shurland DL et al (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256CrossRefPubMedCentralPubMed
47.
Zurück zum Zitat Chen H, Detmer SA, Ewald AJ et al (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200CrossRefPubMedCentralPubMed Chen H, Detmer SA, Ewald AJ et al (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200CrossRefPubMedCentralPubMed
48.
Zurück zum Zitat Wikstrom JD, Twig G, Shirihai OS (2009) What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? Int J Biochem Cell Biol 41:1914–1927CrossRefPubMed Wikstrom JD, Twig G, Shirihai OS (2009) What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? Int J Biochem Cell Biol 41:1914–1927CrossRefPubMed
49.
Zurück zum Zitat Ono T, Isobe K, Nakada K et al (2001) Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet 28:272–275CrossRefPubMed Ono T, Isobe K, Nakada K et al (2001) Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet 28:272–275CrossRefPubMed
50.
Zurück zum Zitat Busch KB, Bereiter-Hahn J, Wittig I et al (2006) Mitochondrial dynamics generate equal distribution but patchwork localization of respiratory Complex I. Mol Membr Biol 23:509–520CrossRefPubMed Busch KB, Bereiter-Hahn J, Wittig I et al (2006) Mitochondrial dynamics generate equal distribution but patchwork localization of respiratory Complex I. Mol Membr Biol 23:509–520CrossRefPubMed
51.
Zurück zum Zitat Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777:1092–1097CrossRefPubMed Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777:1092–1097CrossRefPubMed
52.
Zurück zum Zitat Twig G, Elorza A, Molina AJ et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446CrossRefPubMedCentralPubMed Twig G, Elorza A, Molina AJ et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446CrossRefPubMedCentralPubMed
53.
Zurück zum Zitat Catlett NL, Weisman LS (2000) Divide and multiply: organelle partitioning in yeast. Curr Opin Cell Biol 12:509–516CrossRefPubMed Catlett NL, Weisman LS (2000) Divide and multiply: organelle partitioning in yeast. Curr Opin Cell Biol 12:509–516CrossRefPubMed
54.
Zurück zum Zitat Bach D, Pich S, Soriano FX et al (2003) Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 278:17190–17197CrossRefPubMed Bach D, Pich S, Soriano FX et al (2003) Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 278:17190–17197CrossRefPubMed
55.
Zurück zum Zitat Tanaka A, Cleland MM, Xu S et al (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191:1367–1380CrossRefPubMedCentralPubMed Tanaka A, Cleland MM, Xu S et al (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191:1367–1380CrossRefPubMedCentralPubMed
56.
Zurück zum Zitat Zorzano A, Liesa M, Sebastián D et al (2010) Mitochondrial fusion proteins: dual regulators of morphology and metabolism. Semin Cell Dev Biol 21:566–574CrossRefPubMed Zorzano A, Liesa M, Sebastián D et al (2010) Mitochondrial fusion proteins: dual regulators of morphology and metabolism. Semin Cell Dev Biol 21:566–574CrossRefPubMed
57.
Zurück zum Zitat Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280:26185–26192CrossRefPubMed Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280:26185–26192CrossRefPubMed
58.
Zurück zum Zitat Santel A, Frank S, Gaume B et al (2003) Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci 116:2763–2774CrossRefPubMed Santel A, Frank S, Gaume B et al (2003) Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci 116:2763–2774CrossRefPubMed
60.
61.
Zurück zum Zitat Head B, Griparic L, Amiri M et al (2009) Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol 187:959–966CrossRefPubMedCentralPubMed Head B, Griparic L, Amiri M et al (2009) Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol 187:959–966CrossRefPubMedCentralPubMed
62.
Zurück zum Zitat Cipolat S, Martins de Brito O, Dal Zilio B et al (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A 101:15927–15932CrossRefPubMedCentralPubMed Cipolat S, Martins de Brito O, Dal Zilio B et al (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A 101:15927–15932CrossRefPubMedCentralPubMed
63.
Zurück zum Zitat Frezza C, Cipolat S, Martins de Brito O et al (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189CrossRefPubMed Frezza C, Cipolat S, Martins de Brito O et al (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189CrossRefPubMed
64.
Zurück zum Zitat Griparic L, Wel NN van der, Orozco IJ et al (2004) Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem 279:18792–18798CrossRefPubMed Griparic L, Wel NN van der, Orozco IJ et al (2004) Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem 279:18792–18798CrossRefPubMed
65.
Zurück zum Zitat Olichon A, Baricault L, Gas N et al (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278:7743–7746CrossRefPubMed Olichon A, Baricault L, Gas N et al (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278:7743–7746CrossRefPubMed
66.
Zurück zum Zitat Yoon Y, Krueger EW, Oswald BJ et al (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23:5409–5420CrossRefPubMedCentralPubMed Yoon Y, Krueger EW, Oswald BJ et al (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23:5409–5420CrossRefPubMedCentralPubMed
67.
Zurück zum Zitat Lee S, Jeong SY, Lim WC et al (2007) Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J Biol Chem 282:22977–22983CrossRefPubMed Lee S, Jeong SY, Lim WC et al (2007) Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J Biol Chem 282:22977–22983CrossRefPubMed
68.
Zurück zum Zitat Stojanovski D, Koutsopoulos OS, Okamoto K et al (2004) Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J Cell Sci 117:1201–1210CrossRefPubMed Stojanovski D, Koutsopoulos OS, Okamoto K et al (2004) Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J Cell Sci 117:1201–1210CrossRefPubMed
69.
Zurück zum Zitat James DI, Parone PA, Mattenberger Y et al (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278:36373–36379CrossRefPubMed James DI, Parone PA, Mattenberger Y et al (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278:36373–36379CrossRefPubMed
70.
Zurück zum Zitat Pitts KR, McNiven MA, Yoon Y (2004) Mitochondria-specific function of the dynamin family protein DLP1 is mediated by its C-terminal domains. J Biol Chem 279:50286–50294CrossRefPubMed Pitts KR, McNiven MA, Yoon Y (2004) Mitochondria-specific function of the dynamin family protein DLP1 is mediated by its C-terminal domains. J Biol Chem 279:50286–50294CrossRefPubMed
71.
Zurück zum Zitat Zhu PP, Patterson A, Stadler J et al (2004) Intra- and intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamin-like GTPase Drp1. J Biol Chem 279:35967–35974CrossRefPubMed Zhu PP, Patterson A, Stadler J et al (2004) Intra- and intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamin-like GTPase Drp1. J Biol Chem 279:35967–35974CrossRefPubMed
72.
Zurück zum Zitat Mears JA, Lackner LL, Fang S et al (2011) Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct Mol Biol 18:20–26CrossRefPubMedCentralPubMed Mears JA, Lackner LL, Fang S et al (2011) Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct Mol Biol 18:20–26CrossRefPubMedCentralPubMed
73.
Zurück zum Zitat Elgass K, Pakay J, Ryan MT et al (2013) Recent advances into the understanding of mitochondrial fission. Biochim Biophys Acta 1833:150–161CrossRefPubMed Elgass K, Pakay J, Ryan MT et al (2013) Recent advances into the understanding of mitochondrial fission. Biochim Biophys Acta 1833:150–161CrossRefPubMed
74.
Zurück zum Zitat Chang CR, Manlandro CM, Arnoult D et al (2010) A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. J Biol Chem 285:32494–32503CrossRefPubMedCentralPubMed Chang CR, Manlandro CM, Arnoult D et al (2010) A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. J Biol Chem 285:32494–32503CrossRefPubMedCentralPubMed
75.
Zurück zum Zitat Karbowski M, Neutzner A, Youle RJ (2007) The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J Cell Biol 178:71–84CrossRefPubMedCentralPubMed Karbowski M, Neutzner A, Youle RJ (2007) The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J Cell Biol 178:71–84CrossRefPubMedCentralPubMed
76.
Zurück zum Zitat Nakamura N, Kimura Y, Tokuda M et al (2006) MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep 7:1019–1022CrossRefPubMedCentralPubMed Nakamura N, Kimura Y, Tokuda M et al (2006) MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep 7:1019–1022CrossRefPubMedCentralPubMed
77.
Zurück zum Zitat Wang H, Song P, Du L et al (2011) Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Biol Chem 286:11649–11658CrossRefPubMedCentralPubMed Wang H, Song P, Du L et al (2011) Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Biol Chem 286:11649–11658CrossRefPubMedCentralPubMed
78.
Zurück zum Zitat Yonashiro R, Ishido S, Kyo S et al (2006) A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J 25:3618–3626CrossRefPubMedCentralPubMed Yonashiro R, Ishido S, Kyo S et al (2006) A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J 25:3618–3626CrossRefPubMedCentralPubMed
79.
Zurück zum Zitat Wasiak S, Zunino R, McBride HM (2007) Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 177:439–450CrossRefPubMedCentralPubMed Wasiak S, Zunino R, McBride HM (2007) Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 177:439–450CrossRefPubMedCentralPubMed
80.
81.
Zurück zum Zitat Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8:939–944CrossRefPubMedCentralPubMed Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8:939–944CrossRefPubMedCentralPubMed
82.
Zurück zum Zitat Wang W, Wang Y, Long J et al (2012) Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab 15:186–200CrossRefPubMedCentralPubMed Wang W, Wang Y, Long J et al (2012) Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab 15:186–200CrossRefPubMedCentralPubMed
83.
Zurück zum Zitat Taguchi N, Ishihara N, Jofuku A et al (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282:11521–11529CrossRefPubMed Taguchi N, Ishihara N, Jofuku A et al (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282:11521–11529CrossRefPubMed
84.
Zurück zum Zitat Han XJ, Lu YF, Li SA et al (2008) CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 182:573–585CrossRefPubMedCentralPubMed Han XJ, Lu YF, Li SA et al (2008) CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 182:573–585CrossRefPubMedCentralPubMed
85.
Zurück zum Zitat Cereghetti GM, Stangherlin A, Martins de Brito O et al (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A 105:15803–15808CrossRefPubMedCentralPubMed Cereghetti GM, Stangherlin A, Martins de Brito O et al (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A 105:15803–15808CrossRefPubMedCentralPubMed
86.
Zurück zum Zitat Frank S, Gaume B, Bergmann-Leitner ES et al (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525CrossRefPubMed Frank S, Gaume B, Bergmann-Leitner ES et al (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525CrossRefPubMed
87.
Zurück zum Zitat Alirol E, James D, Huber D et al (2006) The mitochondrial fission protein hFis1 requires the endoplasmic reticulum gateway to induce apoptosis. Mol Biol Cell 17:4593–4605CrossRefPubMedCentralPubMed Alirol E, James D, Huber D et al (2006) The mitochondrial fission protein hFis1 requires the endoplasmic reticulum gateway to induce apoptosis. Mol Biol Cell 17:4593–4605CrossRefPubMedCentralPubMed
88.
Zurück zum Zitat Lee YJ, Jeong SY, Karbowski M et al (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15:5001–5011CrossRefPubMedCentralPubMed Lee YJ, Jeong SY, Karbowski M et al (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15:5001–5011CrossRefPubMedCentralPubMed
89.
Zurück zum Zitat Lamb JR, Tugendreich S, Hieter P (1995) Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem Sci 20:257–259CrossRefPubMed Lamb JR, Tugendreich S, Hieter P (1995) Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem Sci 20:257–259CrossRefPubMed
90.
Zurück zum Zitat Molina AJ, Wikstrom JD, Stiles L et al (2009) Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes 58:2303–2315CrossRefPubMedCentralPubMed Molina AJ, Wikstrom JD, Stiles L et al (2009) Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes 58:2303–2315CrossRefPubMedCentralPubMed
91.
Zurück zum Zitat Stiles L, Shirihai OS (2012) Mitochondrial dynamics and morphology in beta-cells. Best Pract Res Clin Endocrinol Metab 26:725–738CrossRefPubMed Stiles L, Shirihai OS (2012) Mitochondrial dynamics and morphology in beta-cells. Best Pract Res Clin Endocrinol Metab 26:725–738CrossRefPubMed
92.
Zurück zum Zitat Koch A, Yoon Y, Bonekamp NA et al (2005) A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 16:5077–5086CrossRefPubMedCentralPubMed Koch A, Yoon Y, Bonekamp NA et al (2005) A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 16:5077–5086CrossRefPubMedCentralPubMed
94.
Zurück zum Zitat Peng L, Men X, Zhang W et al (2012) Involvement of dynamin-related protein 1 in free fatty acid-induced INS-1-derived cell apoptosis. PLoS One 7:e49258CrossRefPubMedCentralPubMed Peng L, Men X, Zhang W et al (2012) Involvement of dynamin-related protein 1 in free fatty acid-induced INS-1-derived cell apoptosis. PLoS One 7:e49258CrossRefPubMedCentralPubMed
95.
Zurück zum Zitat Peng L, Men X, Zhang W et al (2011) Dynamin-related protein 1 is implicated in endoplasmic reticulum stress-induced pancreatic β-cell apoptosis. Int J Mol Med 28:161–169PubMed Peng L, Men X, Zhang W et al (2011) Dynamin-related protein 1 is implicated in endoplasmic reticulum stress-induced pancreatic β-cell apoptosis. Int J Mol Med 28:161–169PubMed
96.
Zurück zum Zitat Men X, Wang H, Li M et al (2009) Dynamin-related protein 1 mediates high glucose induced pancreatic beta cell apoptosis. Int J Biochem Cell Biol 41:879–890CrossRefPubMed Men X, Wang H, Li M et al (2009) Dynamin-related protein 1 mediates high glucose induced pancreatic beta cell apoptosis. Int J Biochem Cell Biol 41:879–890CrossRefPubMed
Metadaten
Titel
Mitochondrien als Kraftwerk der β-Zelle
Einfluss von Glucosemetabolismus und mitochondrialer Dynamik
verfasst von
Prof. S. Baltrusch
F. Reinhardt
M. Tiedge
Publikationsdatum
01.05.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Die Diabetologie / Ausgabe 3/2015
Print ISSN: 2731-7447
Elektronische ISSN: 2731-7455
DOI
https://doi.org/10.1007/s11428-014-1278-5

Weitere Artikel der Ausgabe 3/2015

Der Diabetologe 3/2015 Zur Ausgabe

Mitteilungen des BDE

Mitteilungen BDE

Erfolg in Klinik und Praxis

Arztbewertungsportale im Internet

Magazin

Magazin

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.