Skip to main content
Erschienen in: World Journal of Pediatrics 3/2024

27.06.2022 | Review Article

Modeling tuberous sclerosis complex with human induced pluripotent stem cells

verfasst von: Weibo Niu, Benjamin Siciliano, Zhexing Wen

Erschienen in: World Journal of Pediatrics | Ausgabe 3/2024

Einloggen, um Zugang zu erhalten

Abstract

Background

Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder with a birth incidence of 1:6000 in the United States that is characterized by the growth of non-cancerous tumors in multiple organ systems including the brain, kidneys, lungs, and skin. Importantly, TSC is also associated with significant neurological manifestations including epilepsy, TSC-associated neuropsychiatric disorders, intellectual disabilities, and autism spectrum disorder. Mutations in the TSC1 or TSC2 genes are well-established causes of TSC, which lead to TSC1/TSC2 deficiency in organs and hyper-activation of the mammalian target of rapamycin signaling pathway. Animal models have been widely used to study the effect of TSC1/2 genes on the development and function of the brain. Despite considerable progress in understanding the molecular mechanisms underlying TSC in animal models, a human-specific model is urgently needed to investigate the effects of TSC1/2 mutations that are unique to human neurodevelopment.

Data sources

Literature reviews and research articles were published in PubMed-indexed journals.

Results

Human-induced pluripotent stem cells (iPSCs), which capture risk alleles that are identical to their donors and have the capacity to differentiate into virtually any cell type in the human body, pave the way for the empirical study of previously inaccessible biological systems such as the developing human brain.

Conclusions

In this review, we present an overview of the recent progress in modeling TSC with human iPSC models, the existing limitations, and potential directions for future research.
Literatur
1.
Zurück zum Zitat Henske EP, Jozwiak S, Kingswood JC, Sampson JR, Thiele EA. Tuberous sclerosis complex. Nat Rev Dis Primers. 2016;2:16035.PubMedCrossRef Henske EP, Jozwiak S, Kingswood JC, Sampson JR, Thiele EA. Tuberous sclerosis complex. Nat Rev Dis Primers. 2016;2:16035.PubMedCrossRef
2.
Zurück zum Zitat Northrup H, Aronow ME, Bebin EM, Bissler J, Darling TN, de Vries PJ, et al. Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations. Pediatr Neurol. 2021;123:50–66.PubMedCrossRef Northrup H, Aronow ME, Bebin EM, Bissler J, Darling TN, de Vries PJ, et al. Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations. Pediatr Neurol. 2021;123:50–66.PubMedCrossRef
3.
4.
5.
Zurück zum Zitat Brigo F, Lattanzi S, Trinka E, Nardone R, Bragazzi NL, Ruggieri M, et al. First descriptions of tuberous sclerosis by Désiré-Magloire Bourneville (1840–1909). Neuropathology. 2018;38:577–82.PubMedCrossRef Brigo F, Lattanzi S, Trinka E, Nardone R, Bragazzi NL, Ruggieri M, et al. First descriptions of tuberous sclerosis by Désiré-Magloire Bourneville (1840–1909). Neuropathology. 2018;38:577–82.PubMedCrossRef
6.
Zurück zum Zitat Gomez M, Sampson J, Whittemore V. The tuberous sclerosis complex. Oxford: Oxford University Press; 1999.CrossRef Gomez M, Sampson J, Whittemore V. The tuberous sclerosis complex. Oxford: Oxford University Press; 1999.CrossRef
7.
Zurück zum Zitat Northrup H, Krueger DA, International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49:243–54.PubMedPubMedCentralCrossRef Northrup H, Krueger DA, International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49:243–54.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Krueger DA, Northrup H, International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex surveillance and management: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49:255–65.PubMedPubMedCentralCrossRef Krueger DA, Northrup H, International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex surveillance and management: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49:255–65.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Koene LM, Niggl E, Wallaard I, Proietti-Onori M, Rotaru DC, Elgersma Y. Identifying the temporal electrophysiological and molecular changes that contribute to TSC-associated epileptogenesis. JCI Insight. 2021;6:e150120.PubMedPubMedCentralCrossRef Koene LM, Niggl E, Wallaard I, Proietti-Onori M, Rotaru DC, Elgersma Y. Identifying the temporal electrophysiological and molecular changes that contribute to TSC-associated epileptogenesis. JCI Insight. 2021;6:e150120.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Dalal JS, Winden KD, Salussolia CL, Sundberg M, Singh A, Pham TT, et al. Loss of Tsc1 in cerebellar Purkinje cells induces transcriptional and translation changes in FMRP target transcripts. Elife. 2021;10:e67399.PubMedPubMedCentralCrossRef Dalal JS, Winden KD, Salussolia CL, Sundberg M, Singh A, Pham TT, et al. Loss of Tsc1 in cerebellar Purkinje cells induces transcriptional and translation changes in FMRP target transcripts. Elife. 2021;10:e67399.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Pagani M, Barsotti N, Bertero A, Trakoshis S, Ulysse L, Locarno A, et al. mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity. Nat Commun. 2021;12:6084.PubMedPubMedCentralCrossRef Pagani M, Barsotti N, Bertero A, Trakoshis S, Ulysse L, Locarno A, et al. mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity. Nat Commun. 2021;12:6084.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Bystron I, Blakemore C, Rakic P. Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci. 2008;9:110–22.PubMedCrossRef Bystron I, Blakemore C, Rakic P. Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci. 2008;9:110–22.PubMedCrossRef
14.
Zurück zum Zitat Marchetto MC, Belinson H, Tian Y, Freitas BC, Fu C, Vadodaria K, et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol Psychiatry. 2017;22:820–35.PubMedCrossRef Marchetto MC, Belinson H, Tian Y, Freitas BC, Fu C, Vadodaria K, et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol Psychiatry. 2017;22:820–35.PubMedCrossRef
15.
Zurück zum Zitat Packer A. Neocortical neurogenesis and the etiology of autism spectrum disorder. Neurosci Biobehav Rev. 2016;64:185–95.PubMedCrossRef Packer A. Neocortical neurogenesis and the etiology of autism spectrum disorder. Neurosci Biobehav Rev. 2016;64:185–95.PubMedCrossRef
16.
Zurück zum Zitat Brennand K, Savas JN, Kim Y, Tran N, Simone A, Hashimoto-Torii K, et al. Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol Psychiatry. 2015;20:361–8.PubMedCrossRef Brennand K, Savas JN, Kim Y, Tran N, Simone A, Hashimoto-Torii K, et al. Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol Psychiatry. 2015;20:361–8.PubMedCrossRef
17.
Zurück zum Zitat Martin P, Wagh V, Reis SA, Erdin S, Beauchamp RL, Shaikh G, et al. TSC patient-derived isogenic neural progenitor cells reveal altered early neurodevelopmental phenotypes and rapamycin-induced MNK-eIF4E signaling. Mol Autism. 2020;11:2.PubMedPubMedCentralCrossRef Martin P, Wagh V, Reis SA, Erdin S, Beauchamp RL, Shaikh G, et al. TSC patient-derived isogenic neural progenitor cells reveal altered early neurodevelopmental phenotypes and rapamycin-induced MNK-eIF4E signaling. Mol Autism. 2020;11:2.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Zucco AJ, Pozzo VD, Afinogenova A, Hart RP, Devinsky O, D’Arcangelo G. Neural progenitors derived from Tuberous Sclerosis Complex patients exhibit attenuated PI3K/AKT signaling and delayed neuronal differentiation. Mol Cell Neurosci. 2018;92:149–63.PubMedPubMedCentralCrossRef Zucco AJ, Pozzo VD, Afinogenova A, Hart RP, Devinsky O, D’Arcangelo G. Neural progenitors derived from Tuberous Sclerosis Complex patients exhibit attenuated PI3K/AKT signaling and delayed neuronal differentiation. Mol Cell Neurosci. 2018;92:149–63.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Li Y, Cao J, Chen M, Li J, Sun Y, Zhang Y, et al. Abnormal neural progenitor cells differentiated from induced pluripotent stem cells partially mimicked development of TSC2 neurological abnormalities. Stem Cell Reports. 2017;8:883–93.PubMedPubMedCentralCrossRef Li Y, Cao J, Chen M, Li J, Sun Y, Zhang Y, et al. Abnormal neural progenitor cells differentiated from induced pluripotent stem cells partially mimicked development of TSC2 neurological abnormalities. Stem Cell Reports. 2017;8:883–93.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Hisatsune C, Shimada T, Miyamoto A, Lee A, Yamagata K. Tuberous sclerosis complex (TSC) inactivation increases neuronal network activity by enhancing Ca2+ influx via L-type Ca2+ channels. J Neurosci. 2021;41:8134–49.PubMedPubMedCentralCrossRef Hisatsune C, Shimada T, Miyamoto A, Lee A, Yamagata K. Tuberous sclerosis complex (TSC) inactivation increases neuronal network activity by enhancing Ca2+ influx via L-type Ca2+ channels. J Neurosci. 2021;41:8134–49.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Catlett TS, Onesto MM, McCann AJ, Rempel SK, Glass J, Franz DN, et al. RHOA signaling defects result in impaired axon guidance in iPSC-derived neurons from patients with tuberous sclerosis complex. Nat Commun. 2021;12:2589.PubMedPubMedCentralCrossRef Catlett TS, Onesto MM, McCann AJ, Rempel SK, Glass J, Franz DN, et al. RHOA signaling defects result in impaired axon guidance in iPSC-derived neurons from patients with tuberous sclerosis complex. Nat Commun. 2021;12:2589.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Dooves S, van Velthoven AJH, Suciati LG, Heine VM. Neuron-glia interactions in tuberous sclerosis complex affect the synaptic balance in 2D and organoid cultures. Cells. 2021;10:134.PubMedPubMedCentralCrossRef Dooves S, van Velthoven AJH, Suciati LG, Heine VM. Neuron-glia interactions in tuberous sclerosis complex affect the synaptic balance in 2D and organoid cultures. Cells. 2021;10:134.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Alsaqati M, Heine VM, Harwood AJ. Pharmacological intervention to restore connectivity deficits of neuronal networks derived from ASD patient iPSC with a TSC2 mutation. Mol Autism. 2020;11:80.PubMedPubMedCentralCrossRef Alsaqati M, Heine VM, Harwood AJ. Pharmacological intervention to restore connectivity deficits of neuronal networks derived from ASD patient iPSC with a TSC2 mutation. Mol Autism. 2020;11:80.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Winden KD, Sundberg M, Yang C, Wafa SMA, Dwyer S, Chen PF, et al. Biallelic mutations in TSC2 lead to abnormalities associated with cortical tubers in human iPSC-derived neurons. J Neurosci. 2019;39:9294–305.PubMedPubMedCentralCrossRef Winden KD, Sundberg M, Yang C, Wafa SMA, Dwyer S, Chen PF, et al. Biallelic mutations in TSC2 lead to abnormalities associated with cortical tubers in human iPSC-derived neurons. J Neurosci. 2019;39:9294–305.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Ebrahimi-Fakhari D, Saffari A, Wahlster L, Di Nardo A, Turner D, Lewis TL Jr, et al. Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex. Cell Rep. 2016;17:1053–70.PubMedPubMedCentralCrossRef Ebrahimi-Fakhari D, Saffari A, Wahlster L, Di Nardo A, Turner D, Lewis TL Jr, et al. Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex. Cell Rep. 2016;17:1053–70.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Miller DR, Schaffer DK, Neely MD, McClain ES, Travis AR, Block FE 3rd, et al. A bistable, multiport valve enables microformulators creating microclinical analyzers that reveal aberrant glutamate metabolism in astrocytes derived from a tuberous sclerosis patient. Sens Actuators B Chem. 2021;341:129972.PubMedPubMedCentralCrossRef Miller DR, Schaffer DK, Neely MD, McClain ES, Travis AR, Block FE 3rd, et al. A bistable, multiport valve enables microformulators creating microclinical analyzers that reveal aberrant glutamate metabolism in astrocytes derived from a tuberous sclerosis patient. Sens Actuators B Chem. 2021;341:129972.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Dooves S, Nadadhur AG, Gasparotto L, Heine VM. Co-culture of human stem cell derived neurons and oligodendrocyte progenitor cells. Bio Protoc. 2019;9:e3350.PubMedPubMedCentralCrossRef Dooves S, Nadadhur AG, Gasparotto L, Heine VM. Co-culture of human stem cell derived neurons and oligodendrocyte progenitor cells. Bio Protoc. 2019;9:e3350.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Nadadhur AG, Alsaqati M, Gasparotto L, Cornelissen-Steijger P, van Hugte E, Dooves S, et al. Neuron-glia interactions increase neuronal phenotypes in tuberous sclerosis complex patient iPSC-derived models. Stem Cell Reports. 2019;12:42–56.PubMedCrossRef Nadadhur AG, Alsaqati M, Gasparotto L, Cornelissen-Steijger P, van Hugte E, Dooves S, et al. Neuron-glia interactions increase neuronal phenotypes in tuberous sclerosis complex patient iPSC-derived models. Stem Cell Reports. 2019;12:42–56.PubMedCrossRef
29.
Zurück zum Zitat Sundberg M, Tochitsky I, Buchholz DE, Winden K, Kujala V, Kapur K, et al. Purkinje cells derived from TSC patients display hypoexcitability and synaptic deficits associated with reduced FMRP levels and reversed by rapamycin. Mol Psychiatry. 2018;23:2167–83.PubMedPubMedCentralCrossRef Sundberg M, Tochitsky I, Buchholz DE, Winden K, Kujala V, Kapur K, et al. Purkinje cells derived from TSC patients display hypoexcitability and synaptic deficits associated with reduced FMRP levels and reversed by rapamycin. Mol Psychiatry. 2018;23:2167–83.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Hernandez JOR, Wang X, Vazquez-Segoviano M, Lopez-Marfil M, Sobral-Reyes MF, Moran-Horowich A, et al. A tissue-bioengineering strategy for modeling rare human kidney diseases in vivo. Nat Commun. 2021;12:6496.PubMedPubMedCentralCrossRef Hernandez JOR, Wang X, Vazquez-Segoviano M, Lopez-Marfil M, Sobral-Reyes MF, Moran-Horowich A, et al. A tissue-bioengineering strategy for modeling rare human kidney diseases in vivo. Nat Commun. 2021;12:6496.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Eichmüller OL, Corsini NS, Vértesy A, Morassut I, Scholl T, Gruber VE, et al. Amplification of human interneuron progenitors promotes brain tumors and neurological defects. Science. 2022;375:eabf5546.PubMedPubMedCentralCrossRef Eichmüller OL, Corsini NS, Vértesy A, Morassut I, Scholl T, Gruber VE, et al. Amplification of human interneuron progenitors promotes brain tumors and neurological defects. Science. 2022;375:eabf5546.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, Kornacker K, Sabatini BL. Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron. 2013;78:510–22.PubMedPubMedCentralCrossRef Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, Kornacker K, Sabatini BL. Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron. 2013;78:510–22.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Kim Y, Park J, Choi YK. The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: a review. Antioxidants (Basel). 2019;8:121.PubMedCrossRef Kim Y, Park J, Choi YK. The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: a review. Antioxidants (Basel). 2019;8:121.PubMedCrossRef
34.
Zurück zum Zitat Boer K, Troost D, Jansen F, Nellist M, van den Ouweland AM, Geurts JJ, et al. Clinicopathological and immunohistochemical findings in an autopsy case of tuberous sclerosis complex. Neuropathology. 2008;28:577–90.PubMedCrossRef Boer K, Troost D, Jansen F, Nellist M, van den Ouweland AM, Geurts JJ, et al. Clinicopathological and immunohistochemical findings in an autopsy case of tuberous sclerosis complex. Neuropathology. 2008;28:577–90.PubMedCrossRef
35.
Zurück zum Zitat Ercan E, Han JM, Di Nardo A, Winden K, Han MJ, Hoyo L, et al. Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex. J Exp Med. 2017;214:681–97.PubMedPubMedCentralCrossRef Ercan E, Han JM, Di Nardo A, Winden K, Han MJ, Hoyo L, et al. Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex. J Exp Med. 2017;214:681–97.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Jiang M, Liu L, He X, Wang H, Lin W, Wang H, et al. Regulation of PERK-eIF2α signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes. Nat Commun. 2016;7:12185.PubMedPubMedCentralCrossRef Jiang M, Liu L, He X, Wang H, Lin W, Wang H, et al. Regulation of PERK-eIF2α signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes. Nat Commun. 2016;7:12185.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Kang Y, Zhou Y, Li Y, Han Y, Xu J, Niu W, et al. A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nat Neurosci. 2021;24:1377–91.PubMedPubMedCentralCrossRef Kang Y, Zhou Y, Li Y, Han Y, Xu J, Niu W, et al. A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nat Neurosci. 2021;24:1377–91.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Raj N, McEachin ZT, Harousseau W, Zhou Y, Zhang F, Merritt-Garza ME, et al. Cell-type- specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis. Cell Rep. 2021;35:108991.PubMedPubMedCentralCrossRef Raj N, McEachin ZT, Harousseau W, Zhou Y, Zhang F, Merritt-Garza ME, et al. Cell-type- specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis. Cell Rep. 2021;35:108991.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Brighi C, Salaris F, Soloperto A, Cordella F, Ghirga S, de Turris V, et al. Novel fragile X syndrome 2D and 3D brain models based on human isogenic FMRP-KO iPSCs. Cell Death Dis. 2021;12:498.PubMedPubMedCentralCrossRef Brighi C, Salaris F, Soloperto A, Cordella F, Ghirga S, de Turris V, et al. Novel fragile X syndrome 2D and 3D brain models based on human isogenic FMRP-KO iPSCs. Cell Death Dis. 2021;12:498.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat de Jong JO, Llapashtica C, Genestine M, Strauss K, Provenzano F, Sun Y, et al. Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder. Nat Commun. 2021;12:4087.PubMedPubMedCentralCrossRef de Jong JO, Llapashtica C, Genestine M, Strauss K, Provenzano F, Sun Y, et al. Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder. Nat Commun. 2021;12:4087.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Modafferi S, Zhong XL, Kleensang A, Murata Y, Fagiani F, Pamies D, et al. Gene-environment interactions in developmental neurotoxicity: a case study of synergy between chlorpyrifos and CHD8 knockout in human BrainSpheres. Environ Health Perspect. 2021;129:77001.PubMedCrossRef Modafferi S, Zhong XL, Kleensang A, Murata Y, Fagiani F, Pamies D, et al. Gene-environment interactions in developmental neurotoxicity: a case study of synergy between chlorpyrifos and CHD8 knockout in human BrainSpheres. Environ Health Perspect. 2021;129:77001.PubMedCrossRef
42.
Zurück zum Zitat Urresti J, Zhang P, Moran-Losada P, Yu NK, Negraes PD, Trujillo CA, et al. Cortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism. Mol Psychiatry. 2021;26:7560–80.PubMedPubMedCentralCrossRef Urresti J, Zhang P, Moran-Losada P, Yu NK, Negraes PD, Trujillo CA, et al. Cortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism. Mol Psychiatry. 2021;26:7560–80.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Krenn V, Bosone C, Burkard TR, Spanier J, Kalinke U, Calistri A, et al. Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell. 2021;28:1362-79.e7.PubMedPubMedCentralCrossRef Krenn V, Bosone C, Burkard TR, Spanier J, Kalinke U, Calistri A, et al. Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell. 2021;28:1362-79.e7.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Esk C, Lindenhofer D, Haendeler S, Wester RA, Pflug F, Schroeder B, et al. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science. 2020;370:935–41.PubMedCrossRef Esk C, Lindenhofer D, Haendeler S, Wester RA, Pflug F, Schroeder B, et al. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science. 2020;370:935–41.PubMedCrossRef
45.
Zurück zum Zitat Wang L, Li Z, Sievert D, Smith DEC, Mendes MI, Chen DY, et al. Loss of NARS1 impairs progenitor proliferation in cortical brain organoids and leads to microcephaly. Nat Commun. 2020;11:4038.PubMedPubMedCentralCrossRef Wang L, Li Z, Sievert D, Smith DEC, Mendes MI, Chen DY, et al. Loss of NARS1 impairs progenitor proliferation in cortical brain organoids and leads to microcephaly. Nat Commun. 2020;11:4038.PubMedPubMedCentralCrossRef
46.
47.
Zurück zum Zitat Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 2017;94:278-93.e9.PubMedPubMedCentralCrossRef Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 2017;94:278-93.e9.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Zhang B, Zou J, Han L, Beeler B, Friedman JL, Griffin E, et al. The specificity and role of microglia in epileptogenesis in mouse models of tuberous sclerosis complex. Epilepsia. 2018;59:1796–806.PubMedPubMedCentralCrossRef Zhang B, Zou J, Han L, Beeler B, Friedman JL, Griffin E, et al. The specificity and role of microglia in epileptogenesis in mouse models of tuberous sclerosis complex. Epilepsia. 2018;59:1796–806.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Zhang B, Zou J, Han L, Rensing N, Wong M. Microglial activation during epileptogenesis in a mouse model of tuberous sclerosis complex. Epilepsia. 2016;57:1317–25.PubMedPubMedCentralCrossRef Zhang B, Zou J, Han L, Rensing N, Wong M. Microglial activation during epileptogenesis in a mouse model of tuberous sclerosis complex. Epilepsia. 2016;57:1317–25.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Chukwurah E, Osmundsen A, Davis SW, Lizarraga SB. All together now: modeling the interaction of neural with non-neural systems using organoid models. Front Neurosci. 2019;13:582.PubMedPubMedCentralCrossRef Chukwurah E, Osmundsen A, Davis SW, Lizarraga SB. All together now: modeling the interaction of neural with non-neural systems using organoid models. Front Neurosci. 2019;13:582.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Popova G, Soliman SS, Kim CN, Keefe MG, Hennick KM, Jain S, et al. Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell. 2021;28:2153-66.e6.PubMedCrossRef Popova G, Soliman SS, Kim CN, Keefe MG, Hennick KM, Jain S, et al. Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell. 2021;28:2153-66.e6.PubMedCrossRef
52.
Zurück zum Zitat Xu R, Boreland AJ, Li X, Erickson C, Jin M, Atkins C, et al. Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and pathology. Stem Cell Reports. 2021;16:1923–37.PubMedPubMedCentralCrossRef Xu R, Boreland AJ, Li X, Erickson C, Jin M, Atkins C, et al. Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and pathology. Stem Cell Reports. 2021;16:1923–37.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Bodnar B, Zhang Y, Liu J, Lin Y, Wang P, Wei Z, et al. Novel scalable and simplified system to generate microglia-containing cerebral organoids from human induced pluripotent stem cells. Front Cell Neurosci. 2021;15:682272.PubMedPubMedCentralCrossRef Bodnar B, Zhang Y, Liu J, Lin Y, Wang P, Wei Z, et al. Novel scalable and simplified system to generate microglia-containing cerebral organoids from human induced pluripotent stem cells. Front Cell Neurosci. 2021;15:682272.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Ormel PR, de Sá RV, van Bodegraven EJ, Karst H, Harschnitz O, Sneeboer MAM, et al. Microglia innately develop within cerebral organoids. Nat Commun. 2018;9:4167.PubMedPubMedCentralCrossRef Ormel PR, de Sá RV, van Bodegraven EJ, Karst H, Harschnitz O, Sneeboer MAM, et al. Microglia innately develop within cerebral organoids. Nat Commun. 2018;9:4167.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Birey F, Andersen J, Makinson CD, Islam S, Wei W, Huber N, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545:54–9.PubMedPubMedCentralCrossRef Birey F, Andersen J, Makinson CD, Islam S, Wei W, Huber N, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545:54–9.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Bagley JA, Reumann D, Bian S, Levi-Strauss J, Knoblich JA. Fused cerebral organoids model interactions between brain regions. Nat Methods. 2017;14:743–51.PubMedPubMedCentralCrossRef Bagley JA, Reumann D, Bian S, Levi-Strauss J, Knoblich JA. Fused cerebral organoids model interactions between brain regions. Nat Methods. 2017;14:743–51.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Xiang Y, Tanaka Y, Patterson B, Kang YJ, Govindaiah G, Roselaar N, et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell. 2017;21:383-98.e7.PubMedPubMedCentralCrossRef Xiang Y, Tanaka Y, Patterson B, Kang YJ, Govindaiah G, Roselaar N, et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell. 2017;21:383-98.e7.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Cho AN, Jin Y, An Y, Kim J, Choi YS, Lee JS, et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun. 2021;12:4730.PubMedPubMedCentralCrossRef Cho AN, Jin Y, An Y, Kim J, Choi YS, Lee JS, et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun. 2021;12:4730.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T. Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol. 2015;35:118–26.PubMedCrossRef van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T. Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol. 2015;35:118–26.PubMedCrossRef
61.
Zurück zum Zitat Pasteuning-Vuhman S, de Jongh R, Timmers A, Pasterkamp RJ. Towards advanced iPSC-based drug development for neurodegenerative disease. Trends Mol Med. 2021;27:263–79.PubMedCrossRef Pasteuning-Vuhman S, de Jongh R, Timmers A, Pasterkamp RJ. Towards advanced iPSC-based drug development for neurodegenerative disease. Trends Mol Med. 2021;27:263–79.PubMedCrossRef
62.
Zurück zum Zitat Zhang YS, Aleman J, Shin SR, Kilic T, Kim D, Mousavi Shaegh SA, et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci U S A. 2017;114:E2293–302.PubMedPubMedCentral Zhang YS, Aleman J, Shin SR, Kilic T, Kim D, Mousavi Shaegh SA, et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci U S A. 2017;114:E2293–302.PubMedPubMedCentral
Metadaten
Titel
Modeling tuberous sclerosis complex with human induced pluripotent stem cells
verfasst von
Weibo Niu
Benjamin Siciliano
Zhexing Wen
Publikationsdatum
27.06.2022
Verlag
Springer Nature Singapore
Erschienen in
World Journal of Pediatrics / Ausgabe 3/2024
Print ISSN: 1708-8569
Elektronische ISSN: 1867-0687
DOI
https://doi.org/10.1007/s12519-022-00576-8

Weitere Artikel der Ausgabe 3/2024

World Journal of Pediatrics 3/2024 Zur Ausgabe

Ähnliche Überlebensraten nach Reanimation während des Transports bzw. vor Ort

29.05.2024 Reanimation im Kindesalter Nachrichten

Laut einer Studie aus den USA und Kanada scheint es bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Alter der Mutter beeinflusst Risiko für kongenitale Anomalie

28.05.2024 Kinder- und Jugendgynäkologie Nachrichten

Welchen Einfluss das Alter ihrer Mutter auf das Risiko hat, dass Kinder mit nicht chromosomal bedingter Malformation zur Welt kommen, hat eine ungarische Studie untersucht. Sie zeigt: Nicht nur fortgeschrittenes Alter ist riskant.

Begünstigt Bettruhe der Mutter doch das fetale Wachstum?

Ob ungeborene Kinder, die kleiner als die meisten Gleichaltrigen sind, schneller wachsen, wenn die Mutter sich mehr ausruht, wird diskutiert. Die Ergebnisse einer US-Studie sprechen dafür.

Bei Amblyopie früher abkleben als bisher empfohlen?

22.05.2024 Fehlsichtigkeit Nachrichten

Bei Amblyopie ist das frühzeitige Abkleben des kontralateralen Auges in den meisten Fällen wohl effektiver als der Therapiestandard mit zunächst mehrmonatigem Brilletragen.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.