Skip to main content
Erschienen in: Reproductive Biology and Endocrinology 1/2009

Open Access 01.12.2009 | Research

Modulation of Apolipoprotein D levels in human pregnancy and association with gestational weight gain

verfasst von: Sonia Do Carmo, Jean-Claude Forest, Yves Giguère, André Masse, Julie Lafond, Eric Rassart

Erschienen in: Reproductive Biology and Endocrinology | Ausgabe 1/2009

Abstract

Background

Apolipoprotein D (ApoD) is a lipocalin involved in several processes including lipid transport, but its modulation during human pregnancy was never examined.

Methods

We investigated the changes in the levels of ApoD in the plasma of pregnant women at the two first trimesters of gestation and at delivery as well as in the placenta and in venous cord blood. These changes were studied in 151 women classified into 9 groups in relation to their prepregnancy body mass index (BMI) and gestational weight gain (GWG).

Results

Plasma ApoD levels decrease significantly during normal uncomplicated pregnancy. ApoD is further decreased in women with excessive GWG and their newborns. In these women, the ApoD concentration was tightly associated with the lipid parameters. However, the similar ApoD levels in low cholesterol (LC) and high cholesterol (HC) women suggest that the plasma ApoD variation is not cholesterol dependant. A tight regulation of both placental ApoD transcription and protein content is most probably at the basis of the low circulating ApoD concentrations in women with excessive GWG. After delivery, the plasma ApoD concentrations depended on whether the mother was breast-feeding or not, lactation favoring a faster return to baseline values.

Conclusion

It is speculated that the decrease in plasma ApoD concentration during pregnancy is an adaptive response aimed at maintaining fetal lipid homeostasis. The exact mechanism of this adaptation is not known.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1477-7827-7-92) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

SDC carried out the laboratory work, participated in conceiving and designing of the study, performed the statistical analysis and drafted the manuscript. J-CF, YG and AM were involved in data acquisition and analysis. ER and JL conceived and design the study, analyzed the results and edited the manuscript. All authors read and approved the final manuscript.

Background

Human pregnancy is associated with profound changes in the maternal lipid, carbohydrate and protein metabolisms. These changes are aimed at favoring the maintenance of pregnancy, sustaining fetal growth and brain development, and facilitating parturition [1]. Maternal metabolism is intimately linked with prepregnancy body mass index (BMI) and gestational weight gain (GWG), which greatly influence the outcome of pregnancy [2]. In association with an unhealthy lifestyle, suboptimal prepregnancy BMI and GWG also increase the risk of birth defects and chronic health problems in the children [3].
The maternal lipid metabolism during pregnancy is characterized by progressive increases in plasma cholesterol and triglyceride levels accompanied by increases in low density lipoprotein (LDL) and very low density lipoprotein (VLDL), leading to maternal hyperlipidemia during late pregnancy [4]. Cholesterol is essential for optimal embryonic and fetal development. It is an important component of plasma membranes, required for cell proliferation, differentiation and morphogenesis modulation [5]. It is also used by the placenta for the synthesis of steroid hormones [6]. Triglycerides are also crucial as they are used as a source of essential fatty acids for the fetus, although they do not directly cross the placental barrier [7].
Plasma lipid metabolism is regulated in part by the specific apolipoprotein constituents of the various lipoprotein classes. The pregnancy induced hyperlipidemia is accompanied by a rise in the plasma levels of some apolipoproteins, namely ApoA-1, ApoB, ApoC-II and ApoC-III. Apolipoprotein D (ApoD) is a secreted lipocalin assigned with many putative functions including lipid transport. Its macromolecular distribution extends from VLDL to very high density lipoproteins (VHDL) with a maximum concentration in high density lipoproteins 3 (HDL3) [8]. It is considered an atypical apolipoprotein as both its structure and major sites of synthesis differ from the other apolipoproteins. Indeed, in human, ApoD is poorly expressed in the liver and intestine while it is highly expressed in adrenal glands, spleen, kidneys, pancreas, placenta, nervous system, lungs, ovaries and testes [[9], Rassart et al., unpublished results]. Several hydrophobic molecules were identified as its potential ligands including cholesterol [9], bilirubin [10], pregnenolone, progesterone, estrogens [11, 12] and arachidonic acid [13].
ApoD expression is modulated in many situations (for review see [14, 15]), namely cellular growth and differentiation [1619], cancer [19, 20], nervous system pathologies [2124] inflammation [25, 26] and oxidative stress [2729]. ApoD is also involved in gestation and fetus development. In human, it is up-regulated in the endometrium during the window of uterine receptivity for embryonic implantation [30], is highly expressed in placenta [9] and is found in colustrum and milk [31]. Its levels are also increased in fallopian tubes and ovaries of gestating compared to non-gestating guinea pigs [32] but are decreased in lactating compared to virgin mouse mammary gland [33]. During mouse development, ApoD expression is selectively modulated from embryonic day 8.5 (E8.5) to birth [34] and in brain, its expression coincides with the period of active myelination and synaptogenesis [35]. The role of ApoD in embryogenesis is not limited to mammals as it is found in the yolk of the rapidly growing chicken oocyte, where it might transport lipids or regulatory molecules such as vitamin A and thyroid hormones [36, 37], and expressed during late chicken embryogenesis [38].
In spite of the important role of ApoD in lipid transport, its expression in gestation-related tissues and during fetus development, and also despite numerous studies on other apolipoproteins, there is no available information concerning ApoD modulation throughout human pregnancy.
To address this question, we measured ApoD levels in plasma at each trimester of pregnancy, in cord blood, two months after delivery and in placenta. We also examined how ApoD levels are modified by factors affecting lipid metabolism such as maternal prepregnancy BMI, gestational weight gain and hypercholesterolemia.

Methods

Population

The women participating in the study were recruited at their first prenatal visit, before their tenth week of pregnancy, at the Clinique Fidès of Montréal (Montréal, QC, Canada) and at the Saint-Luc Hospital's Perinatology Service of the Centre Hospitalier de l'Université de Montréal (CHUM, Montréal, QC, Canada), from 2002-2006. This study included 151 pregnant women of similar socio-economic situation. The study was approved by the ethical committee of CHUM and Université du Québec à Montréal (Montréal, QC, Canada). All subjects provided written informed consent. The exclusion criteria were gestational or type 2 diabetes, preeclampsia, hypertension, consumption of drugs interfering with lipid metabolism and complications during pregnancy or at delivery. A group of 5 non-pregnant women of similar age than the pregnant subjects examined, having a BMI of 20-26 kg/m2 and with plasma biochemistry within the expected normal ranges was also included.

Population classification

The study population was classified into 9 groups according to their prepregnancy BMI, confirmed at their first prenatal visit, and GWG. In accordance with Health Canada recommendations (2002), the normal values for BMI were established at 20-26 kg/m2. In order to facilitate the analysis, the normal values for GWG were established at 11-18 kg independently of the BMI [3941]. The normal control group was defined as: BMI 20-26 kg/m2, GWG 11-18 kg. Women with a BMI under 20 or above 26 kg/m2 were designated as low and high BMI, respectively, while women with a GWG under 11 or above 18 kg were designated as low and high GWG, respectively. A classification based on the median plasmatic total cholesterol level at delivery (6,85 mM) was also established. Women with a cholesterol concentration inferior to 7 mM (n = 38) were referred to as the low cholesterol group (LC) while women with a cholesterol concentration superior to 8 mM (n = 29) were considered as the non-pathologic high cholesterol group (HC) [4244].

Blood and tissue samples

Blood samples were collected at first (10-17 weeks) and second (22-28 weeks) trimesters of gestation and at delivery (36-40 weeks). Newborn blood samples were retrieved from the umbilical cord (venous cord blood). Blood samples were also collected two months after parturition (postpartum) from lactating and non-lactating women. The blood samples were centrifuged 15 min at 3,500 × g and plasma samples were kept at -20°C until analysis. The placentas, from vaginal delivery, were obtained from the Saint-Luc Hospital of CHUM (Montréal, QC, Canada) and were immediately immersed in Dulbecco's Modified Eagle Medium (DMEM) (Sigma, Oakville, ON, Canada) supplemented with antibiotics (penicillin, streptomycin and neomycin, Invitrogen, Burlington, ON, Canada) and NaHCO3. After the removal of the amnion, the chorion and the decidual layer, the placental tissue was randomly cut in 5 cm2 sections, immediately frozen in liquid nitrogen and kept at -80°C until analysis.

Plasma biochemistry

The plasma levels of total cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides were individually measured using the UniCel 36 DX600 Synchron Clinical System (Beckman-Coulter, Mississauga, ON, Canada) at the Clinical Biochemistry Service of Saint-François d'Assise Hospital (Québec, QC, Canada). Total plasma fatty acids were measured by gas phase chromatography. ApoA-1 and ApoB-100 levels were measured by RIA or ELISA methods at the Centre Hospitalier Universitaire de Québec (Québec, QC, Canada). ApoD levels were measured by competitive ELISA using the human ApoD monoclonal antibody 2B9 as previously described [22]. Briefly, microtiter plates were coated with antigen (1 μg ApoD/ml) overnight at 4°C in 5 mM glycin buffer (pH 9.2). Unreacted sites were blocked with PBS-BSA 1% for 1 h. A mixture containing diluted plasma and 2B9 antibody in PBS-BSA 1% then replaced the saturation solution. Bound 2B9 antibody was detected by peroxidase labeled anti-mouse IgG (KPL, Gaithersburg, MD) and revealed with ABTS substrate (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid; KPL). Optical density was measured at 410 nm. All quantifications were performed in triplicate.

RNA isolation and quantitative Real-Time PCR (qRT-PCR)

Total RNA was prepared from 25 mg of placental tissue using the High Pure RNA Tissue Kit (Roche Diagnostics, Laval, QC, Canada) according to the manufacturer's instructions. Subsequently, cDNA was obtained by reverse transcription of total RNA using the Omniscript RT kit (Qiagen, Mississauga, ON, Canada). The quantification of ApoD and 18S transcripts were assessed by qRT-PCR using the LightCycler 480 SYBR Green I Master and the LightCycler 480 instrument and software (Roche Diagnostics). For each gene, diluted amounts of known templates provided quantitative standard curves from which cDNA copy number in clinical samples could be determined. ApoD transcript expression was then normalized versus the housekeeping gene 18S. The following primers were used in qRT-PCR: ApoD forward, 5'-CAT CTT GGG AAG TGC CCC AA-3'; ApoD reverse, 5'-CCA TCA GCT CTC AAC TCC TGG TTT-3'; 18S forward, 5'-CGC CGC TAG AGG TGA AAT TC-3'; 18S reverse, 5'-TTG GCA AAT GCT TTC GCT C-3'.

Placental ApoD quantification

Placental tissues were rinsed 3-4 times in cold 0,9% NaCl solution containing a mixture of anti-proteases (Complete protease inhibitors-EDTA free, Roche Diagnostics) to remove blood from tissue. Placental tissues (1 g) were then homogenized in 1 ml cold lysis buffer (125 mM Tris-HCl, pH 8,0, 2 mM CaCl2, 1,4% (v/v) Triton X-100, 2% Complete protease inhibitors-EDTA free, 1 mM phenylmethylsulphonylfluoride) using a Polytron tissue homogenizer 3000 (Brinkman, Westbury, NY, USA). The homogenates were centrifuged at 10,000 × g for 25 min at 4°C. The protein concentration of the supernatant was determined using the BCA (bicinchoninic acid) assay (Pierce, Brockville, ON, Canada). Supernatants were kept at -80°C until analysis. The ApoD levels were measured by competitive ELISA as described above.

Statistical analyses

Data were expressed as means ± SEM and analyzed with unpaired Student's t-test or Mann-Whitney U test. Results were considered significant at p < 0.05. The association between two variables of the same population was assessed using Pearson's correlation coefficient. All statistical analyses were performed using Prism 4.0 (GraphPad Software, San Diego, CA, USA).

Results

Population characteristics

As shown in Additional file 1, the 151 pregnant women participating to this study were classified into 9 groups according to their prepregnancy BMI and GWG. It was first observed that GWG had a greater influence on group characteristics at delivery than BMI. For example, in the high BMI group, suboptimal GWG, i.e. inferior or superior to the normal range of 11-18 kg, significantly reduced the pregnancy duration (Additional file 1). Nevertheless, only the normal BMI, low GWG group had smaller newborns (Additional file 2). Suboptimal GWG had an even larger impact on lipid parameters, mainly in the high BMI but also in the normal BMI group. Unexpectedly, however, both low and high GWG resulted in decreased lipid levels (Additional file 1). These changes however had a low incidence on the newborn lipid parameters (Additional file 2).

Plasma ApoD levels decrease during pregnancy

Plasma ApoD levels were measured in women at each trimester of pregnancy. In the control group (BMI 20-26 kg/m2, GWG 11-18 kg), plasma ApoD concentration declined early in pregnancy as its levels were already reduced by 40% at the first trimester of pregnancy compared to non-pregnant women (Figure 1). ApoD levels continued to progressively decrease at the second trimester and until delivery where they reached 30% of the levels in non-pregnant women (Figure 1). A similar significant decrease of ApoD during gestation was also observed in our 8 other groups (data not shown). Interestingly, ApoD levels in the venous cord blood were similar to the levels in the mother plasma at delivery in all groups, except for the normal BMI (20-26 kg/m2), low GWG (< 11 kg) group where cord blood had inferior ApoD levels than the mother's blood (Figure 1 and Table 1). In spite of this, by using the Pearson's correlation coefficient, no correlation was found between ApoD plasma levels in the mother and the venous cord blood (Table 2 and Additional file 3).
Table 1
Plasma ApoD (mg/L) in the mother at delivery and in the cord blood.
MOTHER
   
 
BMI (kg/m2)
GWG (kg)
< 20
20-26
> 26
< 11
76.08 ± 31.36 (n = 9)
87.84 ± 21.94 (n = 28)
64.86 ± 21.54 (n = 20)
11-18
59.30 ± 16.65 (n = 14)
61.69 ± 10.93 (n = 48)
54.44 ± 11.30 (n = 18)
> 18
25.99 ± 14.02 (n = 4) *
27.45 ± 9.10 (n = 6) *
46.44 ± 20.96 (n = 4)
CORD BLOOD
   
 
BMI (kg/m2)
GWG (kg)
< 20
20-26
> 26
< 11
60.35 ± 21.12 (n = 9)
43.48 ± 8.73 (n = 28) #
67.28 ± 17.20 (n = 20)
11-18
64.61 ± 22.20 (n = 14)
56.63 ± 8.96 (n = 48)
85.06 ± 70.11 (n = 18)
> 18
20.26 ± 8.56 (n = 4) *
36.98 ± 13.00 (n = 6) *
17.25 ± 6.51 (n = 4)
Data are organized according to maternal weight gain during pregnancy (GWG) and body mass index (BMI) at first trimester. Data are expressed as mean ± SEM. * Groups statistically different (p < 0.01) from the normal GWG group (11-18 kg) of the same BMI. Groups statistically different (p < 0.01) from the low GWG group (< 11 kg) of the same BMI. A difference between mother and cord blood of the corresponding group (p < 0.001) is indicated by #. All groups presenting differences are in bold characters.
Table 2
Association of maternal plasma ApoD levels with clinical and biochemical characteristics at delivery in relation to GWG.
 
GWG < 11 kg
n = 57
GWG 11-18 kg
n = 80
GWG > 18 kg
n = 14
 
Mean ± SEM
r
Mean ± SEM
r
Mean ± SEM
r
Mother age (years)
31.70 ± 0.62 †††
0.098
30.37 ± 0.45
0.085
29.63 ± 1.07
0.241 ***
Gestational age (weeks)
38.96 ± 0.17 †††
-0.065
39.40 ± 0.14
0.137
39.32 ± 0.37
-0.414 ***
BMI (kg/m2)
25.39 ± 0.61 †††
-0.077
23.65 ± 0.37
-0.044
24.37± 1.59
0.232 ***
GWG (kg)
8.08 ± 0.30 †††
0.303 ***
14.16 ± 0.21
-0.172
22.75 ± 2.56 †††
-0.365 ***
Newborn weight (g)
3256.96 ± 53.01 †††
-0.300 **
3411.22 ± 48.54
0.126
3407.16 ± 114.40
-0.552
Newborn height (cm)
51.02 ± 0.28
-0.166
51.55 ± 0.22
0.107
52.00 ± 0.54
-0.559 ***
Cord blood ApoD (mg/L)
54.43 ± 8.01
0.169
65.65 ± 9.35
0.135
28.04 ± 7.14 †††
-0.080
Total cholesterol (mM)
6.75 ± 0.21
0.039
7.04 ± 0.15
-0.153
6.25 ± 0.25 †††
-0.563 **
LDL-cholesterol (mM)
3.67 ± 0.17
0.035
3.90 ± 0.14
-0.094
3.28 ± 0.20 †††
-0.724 **
HDL-cholesterol (mM)
1.76 ± 0.06
0.171
1.81 ± 0.05
-0.145
1.61 ± 0.14 ††
-0.598 **
Triglycerides (mM)
2.88 ± 0.14
-0.124
2.94 ± 0.10
-0.085
2.95 ± 0.34
0.631 **
Free fatty acids (mmol/L)
0.66 ± 0.05
-0.107
0.65 ± 0.04
-0.175
0.60 ± 0.06
-0.358 **
ApoA-I (g/L)
2.12 ± 0.05
-0.003
2.14 ± 0.04
-0.215 ***
2.04 ± 0.09
-0.554 **
ApoB-100 (mg/L)
1.31 ± 0.05
0.027
1.40 ± 0.04
-0.165
1.27 ± 0.05 †††
-0.243 **
ApoD (mg/L)
77.63 ± 13.32
 
59.44 ± 7.52
 
31.75 ± 7.59 †††
 
† p < 0.05, †† p < 0.01, ††† p < 0.001 compared to the GWG 11-18 kg group. Pearson correlations (r) are significant at * p < 0.05, ** p < 0.01, ***p < 0.001. Significant Pearson correlations are indicated in bold.

Influence of prepregnancy BMI and GWG on plasma ApoD levels

Maternal prepregnancy BMI did not present an impact on plasma ApoD levels at delivery (Table 1). However, a GWG superior to 18 kg caused a decrease in maternal ApoD levels in the normal and low BMI groups but not in the high BMI group (Table 1). Similarly, GWG but not BMI also affected venous cord blood ApoD concentration. Newborns from mothers having a GWG superior to 18 kg had lower cord blood ApoD levels than newborns from the other groups (Table 1).

Association between plasma ApoD levels and pregnancy parameters

The correlation between ApoD concentration at delivery and the other pregnancy-related parameters was explored using Pearson's correlation coefficient. In the control group, ApoD levels correlated only with total-cholesterol, in a positive manner (Additional file 3). In the other groups, ApoD correlations were different and specific to each group (Additional file 3). Then, since only GWG had an impact on ApoD values (Table 1), we created 3 new groups containing all women with similar GWG, regardless of their BMI (Table 2). In women with low GWG, ApoD values were directly correlated with GWG and inversely correlated with the newborn weight. Moreover, in women with normal GWG, ApoD was inversely correlated with ApoA-I. In contrast, in women with high GWG, which present lower ApoD levels, ApoD was correlated with most of the parameters. ApoD was strongly negatively correlated with most of the lipid parameters except triglycerides with which ApoD was directly correlated. ApoD was also negatively correlated with gestational age, GWG and newborn height and directly correlated with mother's age and BMI (Table 2). However, although many of the lipid parameters in women with high GWG are significantly different from the normal GWG group, all newborns displayed similar lipid parameters independently of maternal GWG (data not shown).

ApoD and cholesterol

To verify if the low ApoD level in women with excessive GWG was attributable to their lower cholesterol levels (Additional file 1), and because of the correlation between plasma ApoD and cholesterol levels in the control group (Additional file 3), we compared the ApoD levels between low cholesterol (LC) and high cholesterol (HC) women (Table 3). The HC group had higher total and LDL-cholesterol, triglycerides, ApoA-I and ApoB-100 levels but lower GWG (Table 3). However, both groups displayed similar ApoD levels. The 2 groups were also different from the control group described in Additional file 1. As expected, the LC group had lower while the HC group had higher levels of total cholesterol, LDL-cholesterol and ApoB-100. In this aspect, the LC group was similar to the high GWG groups (Additional files 1 and 3). The HC group also showed lower GWG and higher triglycerides levels than the control group (Additional files 1 and 3). In spite of this, all newborns displayed similar lipid parameters independently of maternal cholesterol levels (data not shown).
Table 3
Population characteristics according to maternal plasma cholesterol levels at delivery and association with plasma ApoD levels.
 
LC
n = 38
HC
n = 29
 
Mean ± SEM
r
Mean ± SEM
r
Mother age (years)
30.40± 0.78
0.282 ***
31.70± 0.91
-0.055
Gestational age (weeks)
39.30± 0.25
0.100
39.50± 0.23
-0.066
BMI (kg/m2)
22.68± 0.33
0.086
23.26± 0.68
0.175
GWG (kg)
14.26± 0.43
-0.321 ***
12.16± 0.47 † ***
-0.054
Newborn weight (g)
3452.43± 83.90
-0.329
3389.27± 67.13
0.398 *
Newborn height (cm)
51.86± 0.39
0.114
51.77± 0.40
0.009
Cord blood ApoD (mg/L)
59.17± 13.31
-0.005
59.33± 11.57
0.490
Total cholesterol (mM)
5.95± 0.13 †
-0.533 ***
9.08± 0.17 † ***
0.023
LDL-cholesterol (mM)
2.94± 0.12 †
0.314 ***
5.65± 0.18 † ***
-0.040
HDL-cholesterol (mM)
1.75± 0.09
-0.215 ***
1.79± 0.10
0.063
Triglycerides (mM)
2.76± 0.18
-0.178
3.59± 0.18 † ***
-0.033
Free fatty acids (mmol/L)
0.51± 0.06
-0.268 ***
0.63± 0.08
-0.310 ***
ApoA-I (g/L)
2.09± 0.06
-0.422 ***
2.24± 0.08 *
0.028
ApoB-100 (mg/L)
1.18± 0.04 †
-0.413 ***
1.82± 0.04 † ***
0.071
ApoD (mg/L)
57.69± 14.16
 
63.05± 11.54
 
LC: low cholesterol; HC: high cholesterol. * p < 0.05, ** p < 0.01, *** p < 0.001 compared to the LC group. † p < 0.001 compared to the control group (BMI 20-26 kg/m2, GWG 11-18 kg). Pearson correlations (r) are significant at * p < 0.05, ** p < 0.01, *** p < 0.001. Significant Pearson correlations are indicated in bold.
The cholesterol level greatly affected the association of ApoD with maternal and newborn characteristics, ApoD being more associated with pregnancy-related characteristics in LC than in HC women (Table 3). These associations differed from the ones described for the control group (Additional file 3) but showed similarities to those in high GWG groups (Table 2).

ApoD in placenta

Because of the high levels of ApoD mRNA in human placenta and the importance of this tissue in fetal development, we examined placental ApoD transcript and protein content in relation to maternal BMI and GWG. Besides its influence on plasma ApoD levels (Table 1), maternal GWG also affected placental ApoD transcription (Figure 2A). However, in contrast to plasma, ApoD transcript levels were decreased in both low and high GWG compared with normal GWG groups. This pattern was mostly noticed in women with normal or low BMI but, although not significant, this tendency was also observed in women with high BMI (Figure 2A). Interestingly, the placental ApoD protein content diverged from the mRNA levels and was affected both by GWG and by BMI (Figure 2B). High BMI with suboptimal GWG groups contained the lower levels of ApoD whereas the higher levels of ApoD were observed in low BMI groups having suboptimal GWG. Low levels of ApoD were also detected in the normal BMI, low GWG group. Nevertheless, ApoD levels were similar in normal GWG groups, independently of BMI.

Postpartum plasma ApoD levels

Given that plasma ApoD levels were decreased by 70% at the end of pregnancy, we examined if, in control women, ApoD levels returned to baseline values two months after delivery and whether these levels were affected by lactation (Figure 3). Breast-feeding (lactating) women had plasma ApoD levels similar to non-pregnant women. However, in bottle-feeding (non-lactating) women, ApoD concentration remained comparable to the levels at delivery.

Discussion

To our knowledge, this study is the first to demonstrate that plasma ApoD levels decrease during pregnancy. Plasma ApoD levels were already significantly lower during first trimester of pregnancy than values detected in non-pregnant women and continued to decrease until the end of pregnancy. The mechanisms governing this decrease are currently unknown, but many potential reasons could explain it.
As for albumin, which concentration is lowered by 30% during pregnancy [45], the decrease in plasma ApoD levels could be explained in part by hemodilution. Maternal blood volume increases until term and although dependant on many factors, the average increase in volume at term is 45-50% [46]. Still, although it could explain the decrease in plasma ApoD levels at the first and second trimesters of pregnancy, hemodilution alone cannot explain the observed 70% decrease of plasma ApoD at delivery.
Low levels of plasma ApoD could also result from decreased ApoD synthesis or secretion. Plasma ApoD can originate from many sources, one of which being the placenta. Since ApoD mRNA levels are almost as high in placenta as in adrenal glands and spleen, major sources of ApoD in non-pregnant humans [9], decreased ApoD transcription is unlikely the origin of low plasma ApoD concentration. Another argument against ApoD transcriptional downregulation is the presence of oxidative and inflammatory markers mostly in complicated but also in normal pregnancies [47]. Oxidative stress [2629] and inflammation [25, 26] were both reported as intensifying ApoD mRNA production. ApoD decrease could also be caused by the inhibition of its translation or the increase of its degradation rate. More likely, the decline in ApoD levels could be imputable to its reduced secretion by placenta and other tissues during pregnancy. In addition, as prolonged exposure to physiological concentrations of 17 beta-estradiol inhibited markedly (70-90%) ApoD secretion in human breast cells [19], high estrogen concentrations, as seen during gestation [48, 49], could be the root of plasma ApoD decrease.
Assuming that ApoD synthesis and degradation rates remain unchanged, a reduced secretion will result in ApoD accumulation inside tissues. In the placenta, in collaboration with other molecules, ApoD could play a key role in the transport of essential nutrients, regulation factors and toxic metabolites between the mother and the fetus. Those could include cholesterol [9], arachidonic acid [13, 50], steroids [11, 12], vitamin A and thyroid hormones [37] as well as the removal of bilirubin [10].
It was already reported that ApoD levels in newborns represent about 37% of the levels found in adults [51, 52]. Accordingly, we observed that the concentration of circulating ApoD in the venous cord blood was very similar to that of the mother at delivery, which is about 30% of the levels in non-pregnant women, although the levels found in the cord blood and in the mother were not statistically correlated. This lack of correlation suggests that ApoD does not pass through the placental barrier. Since ApoD mRNA expression occurs as early as E8.5 during mouse embryogenesis [34], the fetus might not be dependent on a maternal ApoD supply. Furthermore, the similarity in mother and venous cord blood ApoD concentrations suggests that even if maternal plasma ApoD does not directly cross the placental barrier, both might be subjected to the same regulatory mechanisms.
We also observed that, while prepregnancy maternal BMI had no incidence on plasma ApoD concentrations on both mother and cord blood, high GWG (> 18 kg) significantly decreased ApoD values. This decrease is very likely multifactorial. In this particular case, it could, among others, be related to defects in lipid metabolism. Indeed, high GWG groups displayed lower levels of total cholesterol, LDL-cholesterol, and ApoB-100. This was present in normal and high BMI groups but the tendency, although not significant, was also observed in the low BMI group. This was also observed in the group composed of all women with high GWG regardless of their BMI. In addition, in this group, ApoD and lipid markers were strongly correlated. An involvement of ApoD in lipid metabolism was already suggested. Because of its capacity to bind cholesterol and its presence on lipoprotein fractions [8], ApoD, in collaboration with ApoA-I, lecithin-cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) [53], may participate in the cholesterol transport pathway. Furthermore, genetic variation in ApoD affects the serum lipid levels [54].
Nevertheless, lipid levels are probably not the major factors responsible for low ApoD levels in these groups. Indeed, high GWG groups are not the only ones presenting levels of total cholesterol, LDL-cholesterol, and ApoB-100 different from the control group as well as correlations between ApoD and lipid levels. In addition, the low BMI group does not show a significant decrease of these lipid parameters. Finally, the ApoD concentration is similar in the control, HC and LC groups, the latter showing similarities with the high GWG groups.
Our results also suggest that a tight regulation of placental ApoD transcription and secretion is probably involved in the lower circulating ApoD concentrations in women with excessive GWG. In the view that ApoD may play a key role in the control of fetal homeostasis, the regulation of ApoD levels becomes vital for the pregnancy outcome and the health of the newborn. Thus, in women with high GWG, a decrease in circulating ApoD is desirable in order to reduce lipid transfer to fetus. This could be achieved both by reducing the ApoD transcription and by preventing ApoD from leaving the placenta. Consistently, high GWG have low ApoD mRNA levels and normal or high placental ApoD content. According to this hypothesis, the lower production of ApoD in low GWG women is disadvantageous. It would then be compensated by an increased secretion or lower degradation by the placenta and possibly other tissues resulting in adequate ApoD protein concentration in the circulation. In overweight women (high BMI), this control is probably altered, as evidenced by the high ApoD mRNA and low ApoD protein levels in the placenta independently of the GWG. This may explain why the plasma ApoD levels are similar in high GWG and in the control group. Still, plasma ApoD levels are not solely dependent on placental regulation as high BMI groups, in spite of high ApoD mRNA and low ApoD protein levels in the placenta, did not show higher plasma ApoD concentration than the control group. Similarly, despite low ApoD transcript levels and high protein content in the placenta, the low BMI, low GWG group had plasma ApoD levels similar to the control group. This suggests that other tissues have the ability to secrete or trap ApoD and that they may not be subjected to the same regulatory pathways than the placenta.
After delivery, the return to basal, non-pregnant, plasma ApoD levels, such as observed in breast-feeding women was expected. However, the fact that bottle-feeding women still have the same plasma ApoD levels than at delivery is intriguing and suggests again that the regulation of ApoD levels is complex. A possible explanation of this discrepancy is that breast-feeding mothers have high levels of prolactin. Prolactin was reported to exert an antagonistic action on estrogen production in order to maintain lactation [48, 55] and could thus favor ApoD production. In addition, breast-feeding induces the production of cytokines [56, 57], which may contribute to the higher levels of circulating ApoD.

Conclusion

Plasma ApoD levels decrease during normal uncomplicated human pregnancy. ApoD is further decreased in women with excessive GWG and their newborns. The cause of this decrease, controlled in part at the transcriptional level in the placenta, is probably multi-factorial and may be related to pregnancy-induced changes in lipids and hormone levels. Still, the connection between lipids, estrogen and apoD levels is speculative and requires further studies.

Acknowledgements

We are thankful to Dr. Catherine Mounier for helpful discussions and to Maude Éthier-Chiasson and Fée-Ann McNabb for technical assistance. This work was supported by Canadian Institutes for Health Research grants (MOP-15677 and NET-54002). SDC was supported by FRSQ, NSERC and UQAM studentships.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

SDC carried out the laboratory work, participated in conceiving and designing of the study, performed the statistical analysis and drafted the manuscript. J-CF, YG and AM were involved in data acquisition and analysis. ER and JL conceived and design the study, analyzed the results and edited the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat DeCherney A, Pernoll ML: Current Obstetric & Gynecologic Diagnosis & Treatment. 1994, East Norwalk: McGraw-Hill Companies, 8 DeCherney A, Pernoll ML: Current Obstetric & Gynecologic Diagnosis & Treatment. 1994, East Norwalk: McGraw-Hill Companies, 8
2.
Zurück zum Zitat Nohr EA, Vaeth M, Baker JL, Sørensen TIa, Olsen J, Rasmussen KM: Combined associations of prepregnancy body mass index and gestational weight gain with the outcome of pregnancy. Am J Clin Nutr. 2008, 87: 1750-1759.PubMed Nohr EA, Vaeth M, Baker JL, Sørensen TIa, Olsen J, Rasmussen KM: Combined associations of prepregnancy body mass index and gestational weight gain with the outcome of pregnancy. Am J Clin Nutr. 2008, 87: 1750-1759.PubMed
3.
Zurück zum Zitat Kaiser L, Allen LH: American Dietetic Association. Position of the American Dietetic Association: nutrition and lifestyle for a healthy pregnancy outcome. J Am Diet Assoc. 2008, 108: 553-561. 10.1016/j.jada.2008.01.030.CrossRefPubMed Kaiser L, Allen LH: American Dietetic Association. Position of the American Dietetic Association: nutrition and lifestyle for a healthy pregnancy outcome. J Am Diet Assoc. 2008, 108: 553-561. 10.1016/j.jada.2008.01.030.CrossRefPubMed
4.
Zurück zum Zitat Potter JM, Nestel PJ: The hyperlipidemia of pregnancy in normal and complicated pregnancies. Am J Obstet Gynecol. 1979, 133: 165-170.CrossRefPubMed Potter JM, Nestel PJ: The hyperlipidemia of pregnancy in normal and complicated pregnancies. Am J Obstet Gynecol. 1979, 133: 165-170.CrossRefPubMed
5.
Zurück zum Zitat Porter JA, Young KE, Beachy PA: Cholesterol modification of hedgehog signaling proteins in animal development. Science. 1996, 274: 255-259. 10.1126/science.274.5285.255.CrossRefPubMed Porter JA, Young KE, Beachy PA: Cholesterol modification of hedgehog signaling proteins in animal development. Science. 1996, 274: 255-259. 10.1126/science.274.5285.255.CrossRefPubMed
6.
Zurück zum Zitat Kallen CB: Steroid hormone synthesis in pregnancy. Obstet Gynecol Clin North Am. 2004, 31: 795-816. 10.1016/j.ogc.2004.08.009.CrossRefPubMed Kallen CB: Steroid hormone synthesis in pregnancy. Obstet Gynecol Clin North Am. 2004, 31: 795-816. 10.1016/j.ogc.2004.08.009.CrossRefPubMed
7.
Zurück zum Zitat Herrera E: Metabolic adaptations in pregnancy and their implications for the availability of substrates to the fetus. Eur J Clin Nutr. 2000, 54: S47-S51.CrossRefPubMed Herrera E: Metabolic adaptations in pregnancy and their implications for the availability of substrates to the fetus. Eur J Clin Nutr. 2000, 54: S47-S51.CrossRefPubMed
8.
Zurück zum Zitat McConathy WJ, Alaupovic P: Studies on the isolation and partial characterization of apolipoprotein D and lipoprotein D of human plasma. Biochemistry. 1976, 15: 515-520. 10.1021/bi00648a010.CrossRefPubMed McConathy WJ, Alaupovic P: Studies on the isolation and partial characterization of apolipoprotein D and lipoprotein D of human plasma. Biochemistry. 1976, 15: 515-520. 10.1021/bi00648a010.CrossRefPubMed
9.
Zurück zum Zitat Drayna D, Fielding C, McLean J, Baer B, Castro G, Chen E, Comstock L, Henzel W, Kohr W, Rhee L, Wion K, Lawn R: Cloning and expression of human apolipoprotein D cDNA. J Biol Chem. 1986, 261: 16535-16539.PubMed Drayna D, Fielding C, McLean J, Baer B, Castro G, Chen E, Comstock L, Henzel W, Kohr W, Rhee L, Wion K, Lawn R: Cloning and expression of human apolipoprotein D cDNA. J Biol Chem. 1986, 261: 16535-16539.PubMed
10.
Zurück zum Zitat Peitsch MC, Boguski MS: Is apolipoprotein D a mammalian bilin-binding protein?. New Biol. 1990, 2: 197-206.PubMed Peitsch MC, Boguski MS: Is apolipoprotein D a mammalian bilin-binding protein?. New Biol. 1990, 2: 197-206.PubMed
11.
Zurück zum Zitat Dilley WG, Haagensen DE, Cox CE, Wells SA: Immunologic and steroid binding properties of the GCDFP-24 protein isolated from human breast gross cystic disease fluid. Breast Cancer Res Treat. 1990, 16: 253-260. 10.1007/BF01806333.CrossRefPubMed Dilley WG, Haagensen DE, Cox CE, Wells SA: Immunologic and steroid binding properties of the GCDFP-24 protein isolated from human breast gross cystic disease fluid. Breast Cancer Res Treat. 1990, 16: 253-260. 10.1007/BF01806333.CrossRefPubMed
12.
Zurück zum Zitat Simard J, Veilleux R, de Launoit Y, Haagensen DE, Labrie F: Stimulation of apolipoprotein D secretion by steroids coincides with inhibition of cell proliferation in human LNCaP prostate cancer cells. Cancer Res. 1991, 51: 4336-4341.PubMed Simard J, Veilleux R, de Launoit Y, Haagensen DE, Labrie F: Stimulation of apolipoprotein D secretion by steroids coincides with inhibition of cell proliferation in human LNCaP prostate cancer cells. Cancer Res. 1991, 51: 4336-4341.PubMed
13.
Zurück zum Zitat Morais Cabral JH, Atkins GL, Sánchez LM, López-Boado YS, López-Otin C, Sawyer L: Arachidonic acid binds to apolipoprotein D: implications for the protein's function. FEBS Lett. 1995, 366: 53-56. 10.1016/0014-5793(95)00484-Q.CrossRefPubMed Morais Cabral JH, Atkins GL, Sánchez LM, López-Boado YS, López-Otin C, Sawyer L: Arachidonic acid binds to apolipoprotein D: implications for the protein's function. FEBS Lett. 1995, 366: 53-56. 10.1016/0014-5793(95)00484-Q.CrossRefPubMed
14.
Zurück zum Zitat Rassart E, Bedirian A, Do Carmo S, Guinard O, Sirois J, Terrisse L, Milne R: Apolipoprotein D. Biochim Biophys Acta. 2000, 1482: 185-198.CrossRefPubMed Rassart E, Bedirian A, Do Carmo S, Guinard O, Sirois J, Terrisse L, Milne R: Apolipoprotein D. Biochim Biophys Acta. 2000, 1482: 185-198.CrossRefPubMed
15.
Zurück zum Zitat Van Dijk W, Do Carmo S, Rassart E, Dahlbäck B, Sodetz JM: The plasma lipocalins α1-acid glycoprotein, apolipoprotein D, apolipoprotein M and complement protein C8γ. Lipocalins. Edited by: Akerström B, Borregaard N, Flower DR, Salier J-P. 2006, Georgetown: Landes Bioscience, 140-166. Van Dijk W, Do Carmo S, Rassart E, Dahlbäck B, Sodetz JM: The plasma lipocalins α1-acid glycoprotein, apolipoprotein D, apolipoprotein M and complement protein C8γ. Lipocalins. Edited by: Akerström B, Borregaard N, Flower DR, Salier J-P. 2006, Georgetown: Landes Bioscience, 140-166.
16.
Zurück zum Zitat Do Carmo S, Séguin D, Milne R, Rassart E: Modulation of apolipoprotein D and apolipoprotein E mRNA expression by growth arrest and identification of key elements in the promoter. J Biol Chem. 2002, 277: 5514-5523. 10.1074/jbc.M105057200.CrossRefPubMed Do Carmo S, Séguin D, Milne R, Rassart E: Modulation of apolipoprotein D and apolipoprotein E mRNA expression by growth arrest and identification of key elements in the promoter. J Biol Chem. 2002, 277: 5514-5523. 10.1074/jbc.M105057200.CrossRefPubMed
17.
Zurück zum Zitat López-Boado YS, Tolivia J, López-Otín C: Apolipoprotein D gene induction by retinoic acid is concomitant with growth arrest and cell differentiation in human breast cancer cells. J Biol Chem. 1994, 269: 26871-26878.PubMed López-Boado YS, Tolivia J, López-Otín C: Apolipoprotein D gene induction by retinoic acid is concomitant with growth arrest and cell differentiation in human breast cancer cells. J Biol Chem. 1994, 269: 26871-26878.PubMed
18.
Zurück zum Zitat Provost PR, Marcel YL, Milne RW, Weech PK, Rassart E: Apolipoprotein D transcription occurs specifically in nonproliferating quiescent and senescent fibroblast cultures. FEBS Lett. 1991, 290: 139-141. 10.1016/0014-5793(91)81244-3.CrossRefPubMed Provost PR, Marcel YL, Milne RW, Weech PK, Rassart E: Apolipoprotein D transcription occurs specifically in nonproliferating quiescent and senescent fibroblast cultures. FEBS Lett. 1991, 290: 139-141. 10.1016/0014-5793(91)81244-3.CrossRefPubMed
19.
Zurück zum Zitat Simard J, Dauvois S, Haagensen DE, Lévesque C, Mérand Y, Labrie F: Regulation of progesterone-binding breast cyst protein GCDFP-24 secretion by estrogens and androgens in human breast cancer cells: a new marker of steroid action in breast cancer. Endocrinology. 1990, 126: 3223-3231. 10.1210/endo-126-6-3223.CrossRefPubMed Simard J, Dauvois S, Haagensen DE, Lévesque C, Mérand Y, Labrie F: Regulation of progesterone-binding breast cyst protein GCDFP-24 secretion by estrogens and androgens in human breast cancer cells: a new marker of steroid action in breast cancer. Endocrinology. 1990, 126: 3223-3231. 10.1210/endo-126-6-3223.CrossRefPubMed
20.
Zurück zum Zitat Hunter S, Young A, Olson J, Brat DJ, Bowers G, Wilcox JN, Jaye D, Mendrinos S, Neish A: Differential expression between pilocytic and anaplastic astrocytomas: identification of apolipoprotein D as a marker for low-grade, non-infiltrating primary CNS neoplasms. J Neuropathol Exp Neurol. 2002, 61: 275-281.PubMed Hunter S, Young A, Olson J, Brat DJ, Bowers G, Wilcox JN, Jaye D, Mendrinos S, Neish A: Differential expression between pilocytic and anaplastic astrocytomas: identification of apolipoprotein D as a marker for low-grade, non-infiltrating primary CNS neoplasms. J Neuropathol Exp Neurol. 2002, 61: 275-281.PubMed
21.
Zurück zum Zitat Boyles JK, Notterpek LM, Anderson LJ: Accumulation of apolipoproteins in the regenerating and remyelinating mammalian peripheral nerve. Identification of apolipoprotein D, apolipoprotein A-IV, apolipoprotein E, and apolipoprotein A-I. J Biol Chem. 1990, 265: 17805-17815.PubMed Boyles JK, Notterpek LM, Anderson LJ: Accumulation of apolipoproteins in the regenerating and remyelinating mammalian peripheral nerve. Identification of apolipoprotein D, apolipoprotein A-IV, apolipoprotein E, and apolipoprotein A-I. J Biol Chem. 1990, 265: 17805-17815.PubMed
22.
Zurück zum Zitat Terrisse L, Poirier J, Bertrand P, Merched A, Visvikis S, Siest G, Milne R, Rassart E: Increased levels of apolipoprotein D in cerebrospinal fluid and hippocampus of Alzheimer's patients. J Neurochem. 1998, 71: 1643-1650.CrossRefPubMed Terrisse L, Poirier J, Bertrand P, Merched A, Visvikis S, Siest G, Milne R, Rassart E: Increased levels of apolipoprotein D in cerebrospinal fluid and hippocampus of Alzheimer's patients. J Neurochem. 1998, 71: 1643-1650.CrossRefPubMed
23.
Zurück zum Zitat Terrisse L, Séguin D, Bertrand P, Poirier J, Milne R, Rassart E: Modulation of apolipoprotein D and apolipoprotein E expression in rat hippocampus after entorhinal cortex lesion. Brain Res Mol Brain Res. 1999, 70: 26-35. 10.1016/S0169-328X(99)00123-0.CrossRefPubMed Terrisse L, Séguin D, Bertrand P, Poirier J, Milne R, Rassart E: Modulation of apolipoprotein D and apolipoprotein E expression in rat hippocampus after entorhinal cortex lesion. Brain Res Mol Brain Res. 1999, 70: 26-35. 10.1016/S0169-328X(99)00123-0.CrossRefPubMed
24.
Zurück zum Zitat Thomas EA, Dean B, Pavey G, Sutcliffe JG: Increased CNS levels of apolipoprotein D in schizophrenic and bipolar subjects: implications for the pathophysiology of psychiatric disorders. Proc Natl Acad Sci USA. 2001, 98: 4066-4071. 10.1073/pnas.071056198.PubMedCentralCrossRefPubMed Thomas EA, Dean B, Pavey G, Sutcliffe JG: Increased CNS levels of apolipoprotein D in schizophrenic and bipolar subjects: implications for the pathophysiology of psychiatric disorders. Proc Natl Acad Sci USA. 2001, 98: 4066-4071. 10.1073/pnas.071056198.PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Maher JE, Goldenberg RL, Tamura T, Cliver SP, Hoffman HJ, Davis RO, Boots L: Albumin levels in pregnancy: a hypothesis-decreased levels of albumin are related to increased levels of alpha-fetoprotein. Early Hum Dev. 1993, 34: 209-215. 10.1523/JNEUROSCI.2644-08.2008.CrossRefPubMed Maher JE, Goldenberg RL, Tamura T, Cliver SP, Hoffman HJ, Davis RO, Boots L: Albumin levels in pregnancy: a hypothesis-decreased levels of albumin are related to increased levels of alpha-fetoprotein. Early Hum Dev. 1993, 34: 209-215. 10.1523/JNEUROSCI.2644-08.2008.CrossRefPubMed
26.
Zurück zum Zitat Do Carmo S, Levros LC, Rassart E: Modulation of apolipoprotein D expression and translocation under specific stress conditions. Biochim Biophys Acta. 2007, 1773: 954-969. 10.1016/j.bbamcr.2007.03.007.CrossRefPubMed Do Carmo S, Levros LC, Rassart E: Modulation of apolipoprotein D expression and translocation under specific stress conditions. Biochim Biophys Acta. 2007, 1773: 954-969. 10.1016/j.bbamcr.2007.03.007.CrossRefPubMed
27.
Zurück zum Zitat Charron JB, Ouellet F, Houde M, Sarhan F: The plant Apolipoprotein D ortholog protects Arabidopsis against oxidative stress. BMC Plant Biol. 2008, 8: 86-10.1186/1471-2229-8-86.PubMedCentralCrossRefPubMed Charron JB, Ouellet F, Houde M, Sarhan F: The plant Apolipoprotein D ortholog protects Arabidopsis against oxidative stress. BMC Plant Biol. 2008, 8: 86-10.1186/1471-2229-8-86.PubMedCentralCrossRefPubMed
28.
Zurück zum Zitat Ganfornina MD, Do Carmo S, Lora JM, Torres-Schumann S, Vogel M, Allhorn M, González C, Bastiani MJ, Rassart E, Sanchez D: Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell. 2008, 7: 506-515. 10.1111/j.1474-9726.2008.00395.x.PubMedCentralCrossRefPubMed Ganfornina MD, Do Carmo S, Lora JM, Torres-Schumann S, Vogel M, Allhorn M, González C, Bastiani MJ, Rassart E, Sanchez D: Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell. 2008, 7: 506-515. 10.1111/j.1474-9726.2008.00395.x.PubMedCentralCrossRefPubMed
29.
Zurück zum Zitat Muffat J, Walker DW, Benzer S: Human ApoD, an apolipoprotein up-regulated in neurodegenerative diseases, extends lifespan and increases stress resistance in Drosophila. Proc Natl Acad Sci USA. 2008, 105: 7088-7093. 10.1073/pnas.0800896105.PubMedCentralCrossRefPubMed Muffat J, Walker DW, Benzer S: Human ApoD, an apolipoprotein up-regulated in neurodegenerative diseases, extends lifespan and increases stress resistance in Drosophila. Proc Natl Acad Sci USA. 2008, 105: 7088-7093. 10.1073/pnas.0800896105.PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Kao LC, Tulac S, Lobo S, Imani B, Yang JP, Germeyer A, Osteen K, Taylor RN, Lessey BA, Giudice LC: Global gene profiling in human endometrium during the window of implantation. Endocrinology. 2002, 143: 2119-2138. 10.1210/en.143.6.2119.CrossRefPubMed Kao LC, Tulac S, Lobo S, Imani B, Yang JP, Germeyer A, Osteen K, Taylor RN, Lessey BA, Giudice LC: Global gene profiling in human endometrium during the window of implantation. Endocrinology. 2002, 143: 2119-2138. 10.1210/en.143.6.2119.CrossRefPubMed
31.
Zurück zum Zitat Palmer DJ, Kelly VC, Smit AM, Kuy S, Knight CG, Cooper GJ: Human colostrum: identification of minor proteins in the aqueous phase by proteomics. Proteomics. 2006, 6: 2208-2216. 10.1002/pmic.200500558.CrossRefPubMed Palmer DJ, Kelly VC, Smit AM, Kuy S, Knight CG, Cooper GJ: Human colostrum: identification of minor proteins in the aqueous phase by proteomics. Proteomics. 2006, 6: 2208-2216. 10.1002/pmic.200500558.CrossRefPubMed
32.
Zurück zum Zitat Provost PR, Tremblay Y, el-Amine M, Bélanger A: Guinea pig apolipoprotein D RNA diversity, and developmental and gestational modulation of mRNA levels. Mol Cell Endocrinol. 1995, 109: 225-236. 10.1016/0303-7207(95)03506-3.CrossRefPubMed Provost PR, Tremblay Y, el-Amine M, Bélanger A: Guinea pig apolipoprotein D RNA diversity, and developmental and gestational modulation of mRNA levels. Mol Cell Endocrinol. 1995, 109: 225-236. 10.1016/0303-7207(95)03506-3.CrossRefPubMed
33.
Zurück zum Zitat Cofer S, Ross SR: The murine gene encoding apolipoprotein D exhibits a unique expression pattern as compared to other species. Gene. 1996, 171: 261-263. 10.1016/0378-1119(96)00099-6.CrossRefPubMed Cofer S, Ross SR: The murine gene encoding apolipoprotein D exhibits a unique expression pattern as compared to other species. Gene. 1996, 171: 261-263. 10.1016/0378-1119(96)00099-6.CrossRefPubMed
34.
Zurück zum Zitat Sánchez D, Ganfornina MD, Martínez S: Expression pattern of the lipocalin apolipoprotein D during mouse embryogenesis. Mech Dev. 2002, 110: 225-229. 10.1016/S0925-4773(01)00578-0.CrossRefPubMed Sánchez D, Ganfornina MD, Martínez S: Expression pattern of the lipocalin apolipoprotein D during mouse embryogenesis. Mech Dev. 2002, 110: 225-229. 10.1016/S0925-4773(01)00578-0.CrossRefPubMed
35.
Zurück zum Zitat Ong WY, Lau CP, Leong SK, Kumar U, Suresh S, Patel SC: Apolipoprotein D gene expression in the rat brain and light and electron microscopic immunocytochemistry of apolipoprotein D expression in the cerebellum of neonatal, immature and adult rats. Neuroscience. 1999, 90: 913-922. 10.1016/S0306-4522(98)00507-7.CrossRefPubMed Ong WY, Lau CP, Leong SK, Kumar U, Suresh S, Patel SC: Apolipoprotein D gene expression in the rat brain and light and electron microscopic immunocytochemistry of apolipoprotein D expression in the cerebellum of neonatal, immature and adult rats. Neuroscience. 1999, 90: 913-922. 10.1016/S0306-4522(98)00507-7.CrossRefPubMed
36.
Zurück zum Zitat Vieira AV, Lindstedt K, Schneider WJ, Vieira PM: Identification of a circulatory and oocytic avian apolipoprotein D. Mol Reprod Dev. 1995, 42: 443-446. 10.1002/mrd.1080420411.CrossRefPubMed Vieira AV, Lindstedt K, Schneider WJ, Vieira PM: Identification of a circulatory and oocytic avian apolipoprotein D. Mol Reprod Dev. 1995, 42: 443-446. 10.1002/mrd.1080420411.CrossRefPubMed
37.
Zurück zum Zitat Yao Y, Vieira A: Comparative 17beta-estradiol response and lipoprotein interactions of an avian apolipoprotein. Gen Comp Endocrinol. 2002, 127: 89-93. 10.1016/S0016-6480(02)00032-1.CrossRefPubMed Yao Y, Vieira A: Comparative 17beta-estradiol response and lipoprotein interactions of an avian apolipoprotein. Gen Comp Endocrinol. 2002, 127: 89-93. 10.1016/S0016-6480(02)00032-1.CrossRefPubMed
38.
Zurück zum Zitat Ganfornina MD, Sánchez D, Pagano A, Tonachini L, Descalzi-Cancedda F, Martínez S: Molecular characterization and developmental expression pattern of the chicken apolipoprotein D gene: implications for the evolution of vertebrate lipocalins. Dev Dyn. 2005, 232: 191-199. 10.1002/dvdy.20193.CrossRefPubMed Ganfornina MD, Sánchez D, Pagano A, Tonachini L, Descalzi-Cancedda F, Martínez S: Molecular characterization and developmental expression pattern of the chicken apolipoprotein D gene: implications for the evolution of vertebrate lipocalins. Dev Dyn. 2005, 232: 191-199. 10.1002/dvdy.20193.CrossRefPubMed
39.
Zurück zum Zitat Johnson JW, Longmate JA, Frentzen B: Excessive maternal weight and pregnancy outcome. Am J Obstet Gynecol. 1992, 167: 353-370.CrossRefPubMed Johnson JW, Longmate JA, Frentzen B: Excessive maternal weight and pregnancy outcome. Am J Obstet Gynecol. 1992, 167: 353-370.CrossRefPubMed
40.
Zurück zum Zitat Ogunyemi D, Hullett S, Leeper J, Risk A: Prepregnancy body mass index, weight gain during pregnancy, and perinatal outcome in a rural black population. J Matern Fetal Med. 1998, 7: 190-193. 10.1002/(SICI)1520-6661(199807/08)7:4<190::AID-MFM5>3.0.CO;2-D.CrossRefPubMed Ogunyemi D, Hullett S, Leeper J, Risk A: Prepregnancy body mass index, weight gain during pregnancy, and perinatal outcome in a rural black population. J Matern Fetal Med. 1998, 7: 190-193. 10.1002/(SICI)1520-6661(199807/08)7:4<190::AID-MFM5>3.0.CO;2-D.CrossRefPubMed
41.
Zurück zum Zitat Zhou W, Olsen J: Gestational weight gain as a predictor of birth and placenta weight according to pre-pregnancy body mass index. Acta Obstet Gynecol Scand. 1997, 76: 300-307.CrossRefPubMed Zhou W, Olsen J: Gestational weight gain as a predictor of birth and placenta weight according to pre-pregnancy body mass index. Acta Obstet Gynecol Scand. 1997, 76: 300-307.CrossRefPubMed
42.
Zurück zum Zitat Ethier-Chiasson M, Duchesne A, Forest JC, Giguère Y, Masse A, Mounier C, Lafond J: Influence of maternal lipid profile on placental protein expression of LDLr and SR-BI. Biochem Biophys Res Commun. 2007, 359: 8-14. 10.1016/j.bbrc.2007.05.002.CrossRefPubMed Ethier-Chiasson M, Duchesne A, Forest JC, Giguère Y, Masse A, Mounier C, Lafond J: Influence of maternal lipid profile on placental protein expression of LDLr and SR-BI. Biochem Biophys Res Commun. 2007, 359: 8-14. 10.1016/j.bbrc.2007.05.002.CrossRefPubMed
43.
Zurück zum Zitat Ethier-Chiasson M, Forest JC, Giguère Y, Masse A, Marseille-Tremblay C, Lévy E, Lafond J: Modulation of placental protein expression of OLR1: implication in pregnancy-related disorders or pathologies. Reproduction. 2008, 136: 491-502. 10.1530/REP-08-0082.CrossRefPubMed Ethier-Chiasson M, Forest JC, Giguère Y, Masse A, Marseille-Tremblay C, Lévy E, Lafond J: Modulation of placental protein expression of OLR1: implication in pregnancy-related disorders or pathologies. Reproduction. 2008, 136: 491-502. 10.1530/REP-08-0082.CrossRefPubMed
44.
Zurück zum Zitat Marseille-Tremblay C, Ethier-Chiasson M, Forest JC, Giguère Y, Masse A, Mounier C, Lafond J: Impact of maternal circulating cholesterol and gestational diabetes mellitus on lipid metabolism in human term placenta. Mol Reprod Dev. 2008, 75: 1054-1062. 10.1002/mrd.20842.CrossRefPubMed Marseille-Tremblay C, Ethier-Chiasson M, Forest JC, Giguère Y, Masse A, Mounier C, Lafond J: Impact of maternal circulating cholesterol and gestational diabetes mellitus on lipid metabolism in human term placenta. Mol Reprod Dev. 2008, 75: 1054-1062. 10.1002/mrd.20842.CrossRefPubMed
45.
Zurück zum Zitat Maher JE, Goldenberg RL, Tamura T, Cliver SP, Hoffman HJ, Davis RO, Boots L: Albumin levels in pregnancy: a hypothesis-decreased levels of albumin are related to increased levels of alpha-fetoprotein. Early Hum Dev. 1993, 34: 209-215. 10.1016/0378-3782(93)90178-W.CrossRefPubMed Maher JE, Goldenberg RL, Tamura T, Cliver SP, Hoffman HJ, Davis RO, Boots L: Albumin levels in pregnancy: a hypothesis-decreased levels of albumin are related to increased levels of alpha-fetoprotein. Early Hum Dev. 1993, 34: 209-215. 10.1016/0378-3782(93)90178-W.CrossRefPubMed
46.
Zurück zum Zitat Hytten F: Blood volume changes in normal pregnancy. Clin Haematol. 1985, 14: 601-612.PubMed Hytten F: Blood volume changes in normal pregnancy. Clin Haematol. 1985, 14: 601-612.PubMed
47.
Zurück zum Zitat Fialová L, Malbohan I, Kalousová M, Soukupová J, Krofta L, Stípek S, Zima T: Oxidative stress and inflammation in pregnancy. Scand J Clin Lab Invest. 2006, 66: 121-127. 10.1080/00365510500375230.CrossRefPubMed Fialová L, Malbohan I, Kalousová M, Soukupová J, Krofta L, Stípek S, Zima T: Oxidative stress and inflammation in pregnancy. Scand J Clin Lab Invest. 2006, 66: 121-127. 10.1080/00365510500375230.CrossRefPubMed
48.
Zurück zum Zitat Alvarez JJ, Montelongo A, Iglesias A, Lasunción MA, Herrera E: Longitudinal study on lipoprotein profile, high density lipoprotein subclass, and postheparin lipases during gestation in women. J Lipid Res. 1996, 37: 299-308.PubMed Alvarez JJ, Montelongo A, Iglesias A, Lasunción MA, Herrera E: Longitudinal study on lipoprotein profile, high density lipoprotein subclass, and postheparin lipases during gestation in women. J Lipid Res. 1996, 37: 299-308.PubMed
49.
Zurück zum Zitat Soldin OP, Guo T, Weiderpass E, Tractenberg RE, Hilakivi-Clarke L, Soldin SJ: Steroid hormone levels in pregnancy and 1 year postpartum using isotope dilution tandem mass spectrometry. Fertil Steril. 2005, 84: 701-710. 10.1016/j.fertnstert.2005.02.045.PubMedCentralCrossRefPubMed Soldin OP, Guo T, Weiderpass E, Tractenberg RE, Hilakivi-Clarke L, Soldin SJ: Steroid hormone levels in pregnancy and 1 year postpartum using isotope dilution tandem mass spectrometry. Fertil Steril. 2005, 84: 701-710. 10.1016/j.fertnstert.2005.02.045.PubMedCentralCrossRefPubMed
50.
Zurück zum Zitat Lafond J, Moukdar F, Rioux A, Ech-Chadli H, Brissette L, Robidoux J, Masse A, Simoneau L: Implication of ATP and sodium in arachidonic acid incorporation by placental syncytiotrophoblast brush border and basal plasma membranes in the human. Placenta. 2000, 21: 661-669. 10.1053/plac.2000.0561.CrossRefPubMed Lafond J, Moukdar F, Rioux A, Ech-Chadli H, Brissette L, Robidoux J, Masse A, Simoneau L: Implication of ATP and sodium in arachidonic acid incorporation by placental syncytiotrophoblast brush border and basal plasma membranes in the human. Placenta. 2000, 21: 661-669. 10.1053/plac.2000.0561.CrossRefPubMed
51.
Zurück zum Zitat Lane DM, McConathy WJ: Factors affecting the lipid and apolipoprotein levels of cord sera. Pediatr Res. 1983, 17: 83-91. 10.1203/00006450-198302000-00001.CrossRefPubMed Lane DM, McConathy WJ: Factors affecting the lipid and apolipoprotein levels of cord sera. Pediatr Res. 1983, 17: 83-91. 10.1203/00006450-198302000-00001.CrossRefPubMed
52.
Zurück zum Zitat McConathy WJ, Lane DM: Studies on the apolipoproteins and lipoproteins of cord serum. Pediatr Res. 1980, 14: 757-761. 10.1203/00006450-198005000-00009.CrossRefPubMed McConathy WJ, Lane DM: Studies on the apolipoproteins and lipoproteins of cord serum. Pediatr Res. 1980, 14: 757-761. 10.1203/00006450-198005000-00009.CrossRefPubMed
53.
Zurück zum Zitat Francone OL, Gurakar A, Fielding C: Distribution and functions of lecithin:cholesterol acyltransferase and cholesteryl ester transfer protein in plasma lipoproteins. Evidence for a functional unit containing these activities together with apolipoproteins A-I and D that catalyzes the esterification and transfer of cell-derived cholesterol. J Biol Chem. 1989, 264: 7066-7072.PubMed Francone OL, Gurakar A, Fielding C: Distribution and functions of lecithin:cholesterol acyltransferase and cholesteryl ester transfer protein in plasma lipoproteins. Evidence for a functional unit containing these activities together with apolipoproteins A-I and D that catalyzes the esterification and transfer of cell-derived cholesterol. J Biol Chem. 1989, 264: 7066-7072.PubMed
54.
Zurück zum Zitat Desai PP, Bunker CH, Ukoli FA, Kamboh MI: Genetic variation in the apolipoprotein D gene among African blacks and its significance in lipid metabolism. Atherosclerosis. 2002, 163: 329-338. 10.1016/S0021-9150(02)00012-6.CrossRefPubMed Desai PP, Bunker CH, Ukoli FA, Kamboh MI: Genetic variation in the apolipoprotein D gene among African blacks and its significance in lipid metabolism. Atherosclerosis. 2002, 163: 329-338. 10.1016/S0021-9150(02)00012-6.CrossRefPubMed
55.
Zurück zum Zitat Wang C, Hsueh AJ, Erickson GF: Prolactin inhibition of estrogen production by cultured rat granulosa cells. Mol Cell Endocrinol. 1980, 20: 135-144. 10.1016/0303-7207(80)90077-5.CrossRefPubMed Wang C, Hsueh AJ, Erickson GF: Prolactin inhibition of estrogen production by cultured rat granulosa cells. Mol Cell Endocrinol. 1980, 20: 135-144. 10.1016/0303-7207(80)90077-5.CrossRefPubMed
56.
Zurück zum Zitat Shimaoka Y, Hidaka Y, Tada H, Nakamura T, Mitsuda N, Morimoto Y, Murata Y, Amino N: Changes in cytokine production during and after normal pregnancy. Am J Reprod Immunol. 2000, 44: 143-147. 10.1111/j.8755-8920.2000.440303.x.CrossRefPubMed Shimaoka Y, Hidaka Y, Tada H, Nakamura T, Mitsuda N, Morimoto Y, Murata Y, Amino N: Changes in cytokine production during and after normal pregnancy. Am J Reprod Immunol. 2000, 44: 143-147. 10.1111/j.8755-8920.2000.440303.x.CrossRefPubMed
57.
Zurück zum Zitat Shimaoka Y, Hidaka Y, Tada H, Takeoka K, Morimoto Y, Amino N: Influence of breast-feeding on the production of cytokines. Am J Reprod Immunol. 2001, 45: 100-102. 10.1111/j.8755-8920.2001.450206.x.CrossRefPubMed Shimaoka Y, Hidaka Y, Tada H, Takeoka K, Morimoto Y, Amino N: Influence of breast-feeding on the production of cytokines. Am J Reprod Immunol. 2001, 45: 100-102. 10.1111/j.8755-8920.2001.450206.x.CrossRefPubMed
Metadaten
Titel
Modulation of Apolipoprotein D levels in human pregnancy and association with gestational weight gain
verfasst von
Sonia Do Carmo
Jean-Claude Forest
Yves Giguère
André Masse
Julie Lafond
Eric Rassart
Publikationsdatum
01.12.2009
Verlag
BioMed Central
Erschienen in
Reproductive Biology and Endocrinology / Ausgabe 1/2009
Elektronische ISSN: 1477-7827
DOI
https://doi.org/10.1186/1477-7827-7-92

Weitere Artikel der Ausgabe 1/2009

Reproductive Biology and Endocrinology 1/2009 Zur Ausgabe

Alter der Mutter beeinflusst Risiko für kongenitale Anomalie

28.05.2024 Kinder- und Jugendgynäkologie Nachrichten

Welchen Einfluss das Alter ihrer Mutter auf das Risiko hat, dass Kinder mit nicht chromosomal bedingter Malformation zur Welt kommen, hat eine ungarische Studie untersucht. Sie zeigt: Nicht nur fortgeschrittenes Alter ist riskant.

Fehlerkultur in der Medizin – Offenheit zählt!

28.05.2024 Fehlerkultur Podcast

Darüber reden und aus Fehlern lernen, sollte das Motto in der Medizin lauten. Und zwar nicht nur im Sinne der Patientensicherheit. Eine negative Fehlerkultur kann auch die Behandelnden ernsthaft krank machen, warnt Prof. Dr. Reinhard Strametz. Ein Plädoyer und ein Leitfaden für den offenen Umgang mit kritischen Ereignissen in Medizin und Pflege.

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.