Skip to main content
Erschienen in: Insights into Imaging 4/2015

Open Access 01.08.2015 | Pictorial Review

Multidetector CT imaging of complications after laparoscopic nephron-sparing surgery

verfasst von: Massimo Tonolini, Anna Maria Ierardi, Virginia Varca, Giacomo Piero Incarbone, Marina Petullà, Roberto Bianco

Erschienen in: Insights into Imaging | Ausgabe 4/2015

Abstract

Purpose

Laparoscopic nephron-sparing surgery (L-NSS) is increasingly performed to treat localised renal lesions. However, the associated morbidity is non-negligible, with a rate of major complications approaching 10 %.

Methods and Results

This paper provides an overview of indications, surgical techniques and results of L-NSS; explains the incidence, risk factors and manifestations of postoperative complications; discusses the preferred multidetector computed tomography (CT) acquisition techniques; illustrates the appearance of normal postoperative images following L-NSS; and reviews, with example images, the most common and unusual iatrogenic complications. These include haematuria, haemorrhage, vascular injuries, infections and urinary leaks. Most emphasis is placed on CT, which provides rapid, reliable triage and follow-up of iatrogenic complications after L-NSS, identifying occurrences that require transarterial embolisation or repeated surgery.

Conclusions

Multidetector CT allows precise assessment of the surgical resection site; detection of pneumoperitoneum and subcutaneous emphysema; quantification of retroperitoneal blood; and identification of active bleeding, pseudoaneurysms, arterio-venous fistulas, abscess collections and extravasated urine.

Teaching Points

Laparoscopic nephron-sparing surgery (NSS) is increasingly performed to treat renal lesions.
Radiologists are increasingly requested to investigate suspected post-surgical NSS complications.
Post-NSS complications include haemorrhage, haematuria, vascular injuries, infections and urinary leaks.
Multidetector CT allows choice between conservative treatment, transarterial embolisation or surgery.

Introduction

Background

As a result of improved surgical techniques and greater focus on minimising functional impairment over the last decade, the therapeutic approach to localised renal cell carcinoma (RCC) has evolved from the classical radical nephrectomy (RN) towards nephron-sparing surgery (NSS), which was initially performed using an open surgical approach. Compared with RN, open partial nephrectomy (O-PN) achieved a lower rate of postoperative loss of renal function, after adjustment for age, hypertension and diabetes, and similar long-term oncological and quality-of-life outcomes [1, 2].
Meanwhile, the widespread use of ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI) has led to a steady increase in the detection of benign, malignant or indeterminate renal lesions requiring surgery, so that currently almost 50 % of RCCs are diagnosed incidentally, often during imaging studies requested for unrelated reasons. As a result, conservative surgery is increasingly performed to treat patients with small-sized renal masses. According to the most recent guidelines from the European Association of Urology (EAU) [1, 2], NSS represents the treatment of choice for localised RCC. It can be performed with an open, laparoscopic or robot-assisted approach, based on the surgeon’s expertise and skills. Indications for NSS include T1a-b stage RCC and selected masses up to 7 cm, unless contraindicated by unfavourable anatomical location of the tumour or general deterioration of the patient’s condition. Absolute indications include tumours in a solitary kidney, impaired renal function and hereditary disorders that predispose to recurrent RCC. Furthermore, laparoscopy is an appealing minimally invasive treatment for indeterminate renal cysts requiring surgery, and benign masses such as angiomyolipoma or oncocytoma. Relative contraindications for laparoscopy include prior surgical procedures (due to the presence of intra-abdominal adhesions), cirrhosis and portal hypertension, marked bowel distension (which increases the risk for bowel injury), ongoing sepsis and cardiopulmonary disease [13].
Both O-PN and laparoscopic partial nephrectomy (L-PN) resulted in superior long-term preservation of renal function. After NSS, patients have a much lower (20 %) 3-year probability of developing chronic kidney disease (defined by <60 mL/min per 1.73 m2 estimated glomerular filtration rate [e-GFR]) compared with RN (65 %). At 10 years, the cumulative incidence of chronic renal failure is 22.4 % and 11.6 % for the RN and NSS groups, respectively [4, 5].
Comparison between O-PN and L-PN revealed shorter operating time and warm renal ischaemia time with the open approach, and lower blood loss and shorter hospital stay in the laparoscopic group. No differences were reported in long-term impact on renal function (mean E-GFR decrease 4.1 vs 1.1 mL/min), overall postoperative morbidity and mortality, or progression-free and overall survival (91–94 % 5-year cancer-specific survival) [616].
However, L-PN is a technically demanding surgical procedure, with a steep learning curve and potentially serious complications particularly in elderly patients with comorbidities. The overall complication rate in a European multi-institutional series was reported to be 23 %, while a worldwide literature review reported a rate of major complications approaching 10 % [8, 9].
Alternatively, localised renal masses may be treated by laparoscopic or imaging-guided ablative techniques. Although no definite conclusions can be drawn from available studies, surgically treated patients show lower local recurrence rate and cancer-specific mortality; therefore the EAU recommends cryoablation and radiofrequency ablation in elderly and/or comorbid patients with limited life expectancy [1, 2, 17]. However, percutaneous cryoablation and radiofrequency ablation were recently shown to be effective in the treatment of T1 stage RCC, offering excellent preservation of kidney function and similar clinical efficacy and oncological outcome (5-year survival exceeding 90 %) compared with surgery, with a limited incidence of major (4.3–5.6 %) and minor complications and no significant differences between the two modalities [1821].

Purpose

Owing to the increasing use of laparoscopy, in hospitals with active surgical practices urologists increasingly request imaging studies to assess patients with suspected postoperative complications following L-PN. This paper provides an overview of the indications, results and technical principles of laparoscopic NSS (L-NSS), and describes the postoperative radiological outcome following L-NSS [2225].

Laparoscopic nephron-sparing surgery

Preoperative assessment

The RENAL (Radius, Exophytic, Nearness, Anterior, Location) nephrometry score (Table 1) was recently introduced as a reproducible means to describe the relevant tumour anatomy, stratify the complexity of renal masses, and objectively compare perioperative and long-term outcomes. The RENAL score includes the five most reproducible features—namely, diameter, exophytic or endophytic growth, proximity to the collecting system, anterior versus posterior location and relationship to the polar lines, which should be assessed on volumetric contrast-enhanced multidetector CT including renal vascular, parenchymal and excretory imaging (Fig. 1) [26, 27]. Tumour staging and complexity dictate the urologist’s therapeutic choice: increasing RENAL scores were found to be strongly associated with RN and O-PN rather than L-NSS [28].
Table 1
RENAL nephrometry score (adapted from Parsons et al. [26])
 
Score
Renal lesion feature
1 point
2 points
3 points
R—Radius (maximal diameter)
≤4 cm
4–7 cm
≥7 cm
E—Exophtic vs endophytic
≥50 % Exophytic (projecting outside the renal cortex)
<50 % exophytic
Completely endophytic
N—Nearness to the collecting system/renal sinus
≥7 mm
4–7 mm
≤4 mm
A—Anterior vs posterior location)
Descriptive (no numeric score)
“a”, ventral; “p”, dorsal; “x”, others
L—Location relative to polar lines
Entirely below lower or above upper polar line
Crosses polar line
50 % of mass across polar line
Entirely between polar lines
Crosses the axial midline
Additional suffix “h” if tumour reaches hilar vessels
Renal lesion complexity
RENAL nephrometry score range
Low
4–6
Intermediate
7–9
High
10–12

Laparoscopic surgical technique

In the majority of patients, L-NSS is performed via the transperitoneal (TP) route; conversely, posterior and postero-lateral renal tumours are best managed with a retroperitoneal approach [9, 11, 29, 30]. Preoperative ureteral catheterisation may be used, particularly when access to the collecting system is necessary. According to some authors, intraoperative ultrasonography for assessment of renal perfusion, tumour location and borders may prove beneficial and result in a change of procedure in a minority (2.5 %) of patients [31]. After laparoscopic access to the retroperitoneum and opening of Gerota’s fascia, en bloc or selective arterial clamping of the renal hilar vascular pedicle is performed to decrease bleeding and ensure a clear surgical field: the acceptable warm ischaemia time is limited to 30 min or less. Depending on the tumour’s size and location, NSS options include segmental polar nephrectomy, wedge resection, transverse resection and enucleation, to obtain complete tumour excision with a proper margin of normal tissue, and preservation of the maximum possible amount of functioning renal parenchyma. After removal of the resected renal portion, surgery requires suture repair of collecting system defects, filling of the parenchymal defect with peri-renal fat or bioabsorbable bolster agents, renal parenchymal reconstruction and closure with a combination of absorbable sutures, argon-beam coagulation and haemostatic agents. Finally, after reconstruction is finished, the vascular clamp is released to restore circulation. Hilar masses, multiple and/or infiltrating tumours with pelvicalyceal involvement pose specific and significant technical challenges for NSS. In selected patients, conversion to laparoscopic RN or O-PN may be necessary when L-NSS is deemed unfeasible by the surgeon after renal exploration [9, 11, 29, 30].

Postoperative complications: manifestations, incidence and risk factors

The spectrum of non-urological complications after L-NSS includes cardiovascular (deep venous thrombosis, congestive heart failure, atrial fibrillation), pulmonary (pleural effusion, atelectasis/pneumonia, thromboembolism) and gastrointestinal issues (ileus, colonic segmental ischemia, bowel injury, splenic haemorrhage); sepsis; wound infection; and incisional hernias. Specific (urological) complications include massive subcutaneous emphysema, persistent haematuria, haemorrhage, renal vascular injuries, urine leak, renal failure and infections (such as urinary infection, peri-renal abscess and sepsis) [612]. Clinically, complications are usually graded by urologists according to the validated Clavien–Dindo system, including, in ascending order of severity, grades I (any deviation from usual postoperative course limited to treatment with anti-emetics, antipyretics, analgesics, diuretics and electrolytes), II (requiring other medical therapies including blood transfusions), III (surgical, endoscopic or interventional treatment), IV (life-threatening complication necessitating intensive care support) and V (death) [32, 33].
Overall, adverse events after L-NSS occur in 23 % of patients: almost two-thirds of cases are minor occurrences (Clavien grades I–II). Despite favourable preoperative patient features and lower objective complexity of tumours, laparoscopic surgery is associated with more major (grade III or higher) overall (6.2-9 % versus 3–6.3 %) and urological (particularly urine leak) complications compared with O-PN [612].
The RENAL score is an objective assessment of the complexity of a tumour and may provide a consistent basis for comparing perioperative and long-term outcomes after L-NSS [26, 27]. According to several studies, patients with highly complex tumours are more likely to experience postoperative complications. Posterior location and proximity to the renal sinus seem to have the greatest association with overall complications and haemorrhage [3439]. Nephrometry scores have been shown to correlate with increased postoperative hospital stay, blood loss, duration of renal ischaemia risk of conversion to open surgery and postoperative renal function loss [3541].
Conversely, other studies failed to confirm the predictive value of the RENAL score for complications. Apart from tumour size and central growth, other risk factors are reported, including advanced age and comorbidities, limited surgeon’s experience, intraoperative blood loss and opening of the collecting system [4043].

Postoperative CT imaging: indications and techniques

Postoperative imaging following L-NSS is generally indicated when clinical features such as hypotension, flank or abdominal pain, gross or persistent haematuria, bleeding from the drainage tube or laboratory abnormalities (particularly blood loss, leucocytosis and increased C-reactive protein levels) suggest a possible complication. Emergency investigation is warranted when signs and symptoms of haemodynamic impairment or sepsis are present [1, 2, 2225, 29].
In most cases multidetector computed tomography (CT) represents the mainstay imaging technique to comprehensively investigate the abdomen and pelvis in search of possible iatrogenic complications. Experience with blunt body trauma has established that CT is by far the preferred, most rapid and robust technique to depict and grade renal lesions, thus providing the anatomic and functional information necessary for appropriate injury staging and therapeutic choice [2225, 44]. Intravenous contrast medium (CM) should be administered, unless contraindicated. Since patients that have recently been operated upon are often dehydrated, with limited urine output, the European Society of Urogenital Radiology (ESUR) guidelines recommend special care in ensuring adequate hydration before and after CT, in order to improve urinary tract opacification and to prevent CM nephrotoxicity [45, 46].
In most postoperative urology patients, initial investigation requires a comprehensive multiphase CT acquisition protocol, including: (1) preliminary unenhanced acquisition to demonstrate the postoperative anatomy and detect hyperattenuating blood and abnormal air collections; (2) corticomedullary phase and (3) nephrographic-phase images after CM injection to assess the operated kidney structure and perfusion of the operated kidney, and to identify CM extravasation indicating active bleeding; (4) excretory phase imaging obtained 8–10 min after CM, which demonstrates the opacified urinary cavities and may detect iodinated urine leaks and urinomas. Postoperative CT studies are reviewed interactively on dedicated workstations and complemented with multiplanar reconstructions as necessary, to better depict postoperative anatomy and relevant findings [2225].
The main drawback of classical multiphase CT protocol is the high radiation dose, which poses a serious concern, particularly considering that these patients usually require serial studies and long-term imaging follow-up. Currently, most institutions are increasingly adopting split-bolus CT-urography acquisitions, which provide combined corticomedullary, nephrographic and excretory imaging with reduced effective radiation dose. In our experience, the time- and dose-efficient triple-bolus protocol described by Kekelidze et al. [47] has proved very useful in the investigation of iatrogenic urinary tract injuries. This technique includes an initial 30-mL CM bolus injected at a flow of 2 mL/s for urinary opacification, followed by a 7-min delay, then a second (50 mL at 1.5 mL/s) CM injection, with a third one (65 mL at 3 mL/s) 20 s later, to provide parenchymal and vascular visualisation respectively, followed by a single volumetric CT acquisition. Alternatively, a combined nephrographic–excretory phase may be obtained by administration of an initial 30–45 mL CM bolus followed, after a 6– to 8-min delay, by a second 75– to 100-mL injection, which may be useful when bleeding or vascular injuries are not suspected, and during follow-up. Furthermore, we recommend repeated (ultra-delayed) excretory acquisition 45–50 min after CM administration in all patients with urinary leak suspected on the basis of surgical, clinical or laboratory data. If available, dual-energy CT may be beneficial to limit the radiation dose, by allowing reconstruction of a virtual unenhanced dataset from CM-enhanced acquisition [47, 48]. Finally, repeated CT provides consistent monitoring of injuries after conservative or interventional treatment [4749].

Normal postoperative CT imaging appearances

Following tumour resection or limited PN, the surgical site of resection (SSR) may be recognised as a wedge-shaped hypoattenuating portion of the renal cortex, sometimes demarcated by thin linear hyperattenuating sutures (Figs. 2, 3). The SSR generally does not enhance, closely resembles a traumatic laceration and may sometimes tend to shrink or form linear or stellate parenchymal scars in the long-term. After PN, the operated kidney commonly has a more posterior location, and abuts or adheres to the posterior aspect of Gerota’s fascia. Dense thickening of the peri-renal septa, corresponding to fluid or haemorrhagic stranding, is commonly observed in the ipsilateral peri-renal and para-renal spaces (Fig. 3) [2225].
Sometimes, to improve haemostasis, surgeons may pack the SSR intraoperatively with perinephric fat, which should not be mistaken for a fatty mass. Localised non-enhancing fluid collections corresponding to seroma (sometimes with fat-fluid level) may be visualised. In some patients, biologically absorbable haemostatic agents such as Gelfoam (absorbable gelatine compressed sponge; Pfizer, NY, USA) or Surgicel (oxydised cellulose polymer; Ethicon, Somerville, NJ, USA) may be used to control intraoperative bleeding. Within a few weeks, these bolster agents may show near-water attenuation with interspersed gas foci and can potentially be confused with an abscess; differentiation should rely on knowledge of surgical details, visualisation of gas bubbles arranged in linear fashion and stable appearance or regression on serial scanning. Conversely, abscess should be suspected if a localised fluid collection shows a CM-enhancing rim and contains a gas-fluid level or moving bubbles [2225].
Subcutaneous emphysema (Figs. 4, 5) is a common finding after laparoscopic surgery, and results from prolonged insufflation with the Trocar displaced into the abdominal wall. Emphysema is always non-dependent and most prominent immediately after surgery, and should not be misinterpreted as necrotising fasciitis, which usually occurs later and is associated with erythema, foul-smelling drainage from the wound, fever and pain [3].
In patients operated on through a TP laparoscopic approach, air-fluid levels of the small bowel consistent with adynamic ileus and minimal or moderate pneumoperitoneum (Figs. 4, 5) are commonly observed during the early postoperative period. If unknown, the type of laparoscopic access used may be guessed by searching for port access sites, in either the anterior ipsilateral abdomen (TP) or flank (retroperitoneal) [3]. Owing to the small incisions and the rapid absorption of CO2 from the perfusion gas, relative to that of room air, variable amounts of residual intraperitoneal free air are commonly observed following laparoscopy (in at least one-third of patients) within the first 3 days, and may sometimes last up to 9 days after surgery. However, postoperative pneumoperitoneum after laparoscopy is generally more limited than with open surgery, and decreases on serial imaging. Conversely, persistent or increasing intra-abdominal gas should raise concern for hollow viscus injury [3, 50, 51].

Haemorrhagic and vascular complications

Bleeding

Resulting from inadequate suturing or coagulation of transacted blood vessels, early postoperative haemorrhage with or without radiologically identifiable active bleeding represents the most common complication after L-NSS, with a reported incidence approaching 6–8 % of procedures. Blood transfusions are required in 5–21 % of patients and constitute a Clavien grade II complication [612].
As mentioned above, minimal or moderate degrees of peri- and para-renal blood are generally apparent after L-PN and should not be reported as abnormal. However, intra-luminal blood is closely related to gross haematuria and is identified on unenhanced CT scans as hyperattenuating content of the pelvicalyceal system (Fig. 3). In our experience, clinically significant iatrogenic haematomas after L-NSS appear as hyperattenuating collections compared to the renal parenchyma, which measure between 45 and 90 Hounsfield units (HU) depending on their stage, and mostly occupy the peri- and para-renal spaces (Figs. 4, 5, 6). Indicated by strongly hyperattenuating (85–370 HU, isodense to enhanced arterial vessels) foci corresponding to CM extravasation in the vicinity of the SSR, active bleeding at CT (Fig. 6) indicates a high risk of failure of conservative management and thus represents the strongest indication for interventional or surgical treatment. In addition, multidetector CT provides consistent follow-up of conservatively treated lesions (Figs. 5, 6) showing progressive demarcation, size reduction and decreasing attenuation of haematomas [2225, 44, 52].

Renal vascular complications

According to the EAU guidelines, iatrogenic renal vascular injuries (IRVI) rank among the rarest (less than 1 % overall), yet most feared complications after percutaneous biopsy, nephrostomy, nephroureterolithotomy, renal artery angioplasty or stenting, and NSS. The IRVI spectrum encompasses arterio-venous fistulas (AVFs), renal pseudoaneurysms (R-PA), vascular thrombosis and renal infarction. IRVIs can lead to significant morbidity, including massive haemorrhage, life-threatening haematuria, need for nephrectomy or deterioration of renal function [24, 32, 37].
Renal artery and intra-parenchymal pseudoaneurysms occur after 0.43–1.3 % of L-NSS procedures, and result from partial or complete injury to an intra-renal artery at the SSR, the main renal artery or one of its main branches. Specifically, R-PA may form when the combined effect of hypotension, coagulation and pressure from the adjacent structures leads to temporary cessation of the bleeding, followed by recanalisation from clot degradation. R-PAs may sometimes grow, become unstable from restorated blood flow, and eventually erode into the pelvicalyceal system or the surrounding perinephric tissues. Most cases are diagnosed during the first 2–3 weeks after surgery, occasionally after a few months’ delay. Diagnosing R-PA requires a high level of suspicion, since clinical manifestations are often vague or non-specific such as flank pain, gross haematuria, dizziness and fever [11, 32, 53, 54].
Ultrasound may detect R-PA as a cystic mass or liquefied haematoma, with the characteristic “to-and-fro” internal flow at colour-Doppler sonography. On unenhanced CT images, a haematoma is commonly seen near to the surgical site, often associated with hyperattenuating blood clots in the renal pelvis, but the pseudoaneurysm itself is usually not visible. Conversely, arterial-phase CT-angiography acquisition shows a roundish, well-circumscribed lesion (usually measuring 1–3 cm) with contained arterial phase enhancement that appears isodense to the adjacent arterial vessels and becomes isoattenuating relative to the blood pool during the nephrographic phases (Fig. 7). Coronal CT-angiographic maximum intensity projection (MIP) reconstructions allow visualisation of the R-PA with its relationship to the renal vasculature. A R-PA may be missed in the excretory phase, owing to CM wash-out from the cavity [2225, 44, 53, 55].
AVFs are most commonly iatrogenic rather than congenital; they are indicated by macro- or micro-haematuria from rupture within the collecting system, and may cause variable degrees of blood loss. The CT hallmark of AVF includes tortuous arteries and early or simultaneous opacification of one or more intra-parenchymal arteries and veins during the corticomedullary phase (Fig. 8) [55, 56].
Occasionally, arterial clamping may injure the vessel intima, thus leading to thrombosis, infarction and atrophy. CT-angiography depicts arterial thrombosis as abrupt vessel cut-off, and renal infarction (Fig. 8) as a peripheral wedge-shaped non-enhancing area in the renal parenchyma, with a rim of enhancement at the periphery of the cortex (rim sign) due to preserved capsular blood flow [22, 24].
Selective angiography evaluates the lesion dynamically and allows planning for trans-arterial embolisation (TAE) and super-selective catheterisation [56]

Treatment

In the past, severe bleeding and IRVIs required laparotomy. Currently, the therapeutic approach is increasingly conservative, provided that clinical and laboratory parameters remain stable and CT excludes active bleeding. Although haematomas and IRVI may heal spontaneously with conservative management, selective TAE (Figs. 7, 8, 9) is recommended as the established minimally invasive treatment of choice for life-threatening occurrences with persisting or massive bleeding, severe haematuria from communication to the pelvicalyceal system, or progressively deteriorating renal function. Notably, the need for interventional treatment such as TAE constitutes a major (Clavien grade III) complication. Arteriography confirms R-PA as an ovoid CM pool close to the SSR (Fig. 7). In patients with post-surgical IRVI, TAE using coils or other embolisation agents proved to be safe and effective treatment with a low rate of complications, rapid recovery and short hospital stay, and excellent (nearly 100 %) technical and clinical success rates, respectively corresponding to complete angiographic exclusion of bleeding and haemodynamic stabilisation without the need for blood transfusion. Super-selective embolisation, carried out as distally as possible is recommended to minimise parenchymal loss and avoid long-term impairment of renal function [32, 55, 56].

Miscellaneous complications

Postoperative infections

Occasionally, fluid collections (seroma, haematoma or urinoma) forming close to the SSR after L-PN may become infected. Differentiation of non-infected collections from an abscess requires correlation of clinical signs and laboratory data with imaging appearances, mostly represented by enlarging intra- or peri-renal hypoattenuating collections with a peripheral, thickened enhancing capsule (Fig. 10). Alternatively, the residual renal parenchyma may show the characteristic “striated nephrogram” appearance consistent with pyelonephritis [2225, 57, 58].

Urine leaks and urinomas

Surgical access to the collecting system is necessary to ensure an adequate margin of resection for tumours extending deeply into the renal parenchyma: if the subsequent pelvicalyceal repair is not watertight, urine may leak into the surgical bed leading to a peri-renal urinoma or collection of a mixture of blood and urine. Urine leakage has been estimated to occur in 1.3-3.6 % of L-PN interventions [612].
The characteristic appearance of leakage seen on CT relies on identification of CM-opacified urine (80–200 HU) extravasated from the collecting system into the peri-renal space, visualised on excretory phase acquisitions (Fig. 11). Urinomas appear as more or less homogeneous collections, with progressive opacification over repeated delayed acquisitions [2225, 49, 52].
Most urine leaks resolve spontaneously over time and are generally managed conservatively with ureteral stenting, Foley catheter or percutaneous nephrostomy. Endourological fulguration and percutaneous imaging-guided drainage may be required to treat persistent leaks and urinomas, respectively [29, 49].

Conclusions

In most patients with suspected postoperative complications after L-NSS, urgent multidetector CT imaging allows detection of intraluminal and peri-renal haemorrhage, active bleeding, vascular injuries, extravasated urine and infections. Therefore, CT findings usually provide a consistent basis for assessment of the severity of injury and a correct choice between conservative treatment, TAE, repeated surgery, nephrostomy and/or ureteral stenting [44, 49].
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Literatur
2.
Zurück zum Zitat Ljungberg B, Cowan NC, Hanbury DC et al (2010) EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol 58:398–406PubMedCrossRef Ljungberg B, Cowan NC, Hanbury DC et al (2010) EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol 58:398–406PubMedCrossRef
3.
Zurück zum Zitat Hindman NM, Kang S, Parikh MS (2014) Common postoperative findings unique to laparoscopic surgery. Radiographics 34:119–138PubMedCrossRef Hindman NM, Kang S, Parikh MS (2014) Common postoperative findings unique to laparoscopic surgery. Radiographics 34:119–138PubMedCrossRef
4.
Zurück zum Zitat Huang WC, Levey AS, Serio AM et al (2006) Chronic kidney disease after nephrectomy in patients with renal cortical tumours: a retrospective cohort study. Lancet Oncol 7:735–740PubMedCentralPubMedCrossRef Huang WC, Levey AS, Serio AM et al (2006) Chronic kidney disease after nephrectomy in patients with renal cortical tumours: a retrospective cohort study. Lancet Oncol 7:735–740PubMedCentralPubMedCrossRef
5.
Zurück zum Zitat Lau WK, Blute ML, Weaver AL et al (2000) Matched comparison of radical nephrectomy vs nephron-sparing surgery in patients with unilateral renal cell carcinoma and a normal contralateral kidney. Mayo Clin Proc 75:1236–1242PubMedCrossRef Lau WK, Blute ML, Weaver AL et al (2000) Matched comparison of radical nephrectomy vs nephron-sparing surgery in patients with unilateral renal cell carcinoma and a normal contralateral kidney. Mayo Clin Proc 75:1236–1242PubMedCrossRef
6.
Zurück zum Zitat Campero JM, Ramos CG, Valdevenito R et al (2012) Laparoscopic partial nephrectomy: a series of one hundred cases performed by the same surgeon. Urol Ann 4:162–165PubMedCentralPubMedCrossRef Campero JM, Ramos CG, Valdevenito R et al (2012) Laparoscopic partial nephrectomy: a series of one hundred cases performed by the same surgeon. Urol Ann 4:162–165PubMedCentralPubMedCrossRef
7.
Zurück zum Zitat Dominguez-Escrig JL, Vasdev N, O’Riordon A et al (2011) Laparoscopic partial nephrectomy: technical considerations and an update. J Minim Access Surg 7:205–221PubMedCentralPubMedCrossRef Dominguez-Escrig JL, Vasdev N, O’Riordon A et al (2011) Laparoscopic partial nephrectomy: technical considerations and an update. J Minim Access Surg 7:205–221PubMedCentralPubMedCrossRef
8.
Zurück zum Zitat Gill IS, Kavoussi LR, Lane BR et al (2007) Comparison of 1,800 laparoscopic and open partial nephrectomies for single renal tumors. J Urol 178:41–46PubMedCrossRef Gill IS, Kavoussi LR, Lane BR et al (2007) Comparison of 1,800 laparoscopic and open partial nephrectomies for single renal tumors. J Urol 178:41–46PubMedCrossRef
9.
Zurück zum Zitat Reifsnyder JE, Ramasamy R, Ng CK et al (2012) Laparoscopic and open partial nephrectomy: complication comparison using the Clavien system. JSLS 16:38–44PubMedCentralPubMedCrossRef Reifsnyder JE, Ramasamy R, Ng CK et al (2012) Laparoscopic and open partial nephrectomy: complication comparison using the Clavien system. JSLS 16:38–44PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Springer C, Hoda MR, Fajkovic H et al (2013) Laparoscopic vs open partial nephrectomy for T1 renal tumours: evaluation of long-term oncological and functional outcomes in 340 patients. BJU Int 111:281–288PubMedCrossRef Springer C, Hoda MR, Fajkovic H et al (2013) Laparoscopic vs open partial nephrectomy for T1 renal tumours: evaluation of long-term oncological and functional outcomes in 340 patients. BJU Int 111:281–288PubMedCrossRef
11.
12.
Zurück zum Zitat Wheat JC, Roberts WW, Hollenbeck BK et al (2013) Complications of laparoscopic partial nephrectomy. Urol Oncol 31:57–62PubMedCrossRef Wheat JC, Roberts WW, Hollenbeck BK et al (2013) Complications of laparoscopic partial nephrectomy. Urol Oncol 31:57–62PubMedCrossRef
13.
Zurück zum Zitat Liu Z, Wang P, Xia D et al (2013) Comparison between laparoscopic and open partial nephrectomy: surgical, oncologic, and functional outcomes. Kaohsiung J Med Sci 29:624–628PubMedCrossRef Liu Z, Wang P, Xia D et al (2013) Comparison between laparoscopic and open partial nephrectomy: surgical, oncologic, and functional outcomes. Kaohsiung J Med Sci 29:624–628PubMedCrossRef
14.
Zurück zum Zitat Minervini A, Siena G, Antonelli A et al (2014) Open versus laparoscopic partial nephrectomy for clinical T1a renal masses: a matched-pair comparison of 280 patients with TRIFECTA outcomes (RECORd Project). World J Urol 32:257–263PubMedCrossRef Minervini A, Siena G, Antonelli A et al (2014) Open versus laparoscopic partial nephrectomy for clinical T1a renal masses: a matched-pair comparison of 280 patients with TRIFECTA outcomes (RECORd Project). World J Urol 32:257–263PubMedCrossRef
15.
Zurück zum Zitat Xu H, Ding Q, Jiang HW (2014) Fewer complications after laparoscopic nephrectomy as compared to the open procedure with the modified Clavien classification system—a retrospective analysis from southern China. World J Surg Oncol 12:242PubMedCentralPubMedCrossRef Xu H, Ding Q, Jiang HW (2014) Fewer complications after laparoscopic nephrectomy as compared to the open procedure with the modified Clavien classification system—a retrospective analysis from southern China. World J Surg Oncol 12:242PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Becker A, Pradel L, Kluth L et al (2014) Laparoscopic versus open partial nephrectomy for clinical T1 renal masses: no impact of surgical approach on perioperative complications and long-term postoperative quality of life. World J Urol 33:421–426PubMedCrossRef Becker A, Pradel L, Kluth L et al (2014) Laparoscopic versus open partial nephrectomy for clinical T1 renal masses: no impact of surgical approach on perioperative complications and long-term postoperative quality of life. World J Urol 33:421–426PubMedCrossRef
17.
Zurück zum Zitat Klatte T, Shariat SF, Remzi M (2014) Systematic review and meta-analysis of perioperative and oncologic outcomes of laparoscopic cryoablation versus laparoscopic partial nephrectomy for the treatment of small renal tumors. J Urol 191:1209–1217PubMedCrossRef Klatte T, Shariat SF, Remzi M (2014) Systematic review and meta-analysis of perioperative and oncologic outcomes of laparoscopic cryoablation versus laparoscopic partial nephrectomy for the treatment of small renal tumors. J Urol 191:1209–1217PubMedCrossRef
18.
Zurück zum Zitat Kapoor A, Wang Y, Dishan B et al (2014) Update on cryoablation for treatment of small renal mass: oncologic control, renal function preservation, and rate of complications. Curr Urol Rep 15:396PubMedCrossRef Kapoor A, Wang Y, Dishan B et al (2014) Update on cryoablation for treatment of small renal mass: oncologic control, renal function preservation, and rate of complications. Curr Urol Rep 15:396PubMedCrossRef
19.
Zurück zum Zitat Atwell TD, Schmit GD, Boorjian SA et al (2013) Percutaneous ablation of renal masses measuring 3.0 cm and smaller: comparative local control and complications after radiofrequency ablation and cryoablation. AJR Am J Roentgenol 200:461–466PubMedCrossRef Atwell TD, Schmit GD, Boorjian SA et al (2013) Percutaneous ablation of renal masses measuring 3.0 cm and smaller: comparative local control and complications after radiofrequency ablation and cryoablation. AJR Am J Roentgenol 200:461–466PubMedCrossRef
20.
Zurück zum Zitat Schmit GD, Thompson RH, Kurup AN et al (2013) Usefulness of R.E.N.A.L. nephrometry scoring system for predicting outcomes and complications of percutaneous ablation of 751 renal tumors. J Urol 189:30–35PubMedCrossRef Schmit GD, Thompson RH, Kurup AN et al (2013) Usefulness of R.E.N.A.L. nephrometry scoring system for predicting outcomes and complications of percutaneous ablation of 751 renal tumors. J Urol 189:30–35PubMedCrossRef
21.
Zurück zum Zitat El Dib R, Touma NJ, Kapoor A (2012) Cryoablation vs radiofrequency ablation for the treatment of renal cell carcinoma: a meta-analysis of case series studies. BJU Int 110:510–516PubMedCrossRef El Dib R, Touma NJ, Kapoor A (2012) Cryoablation vs radiofrequency ablation for the treatment of renal cell carcinoma: a meta-analysis of case series studies. BJU Int 110:510–516PubMedCrossRef
22.
Zurück zum Zitat Israel GM, Hecht E, Bosniak MA (2006) CT and MR imaging of complications of partial nephrectomy. Radiographics 26:1419–1429PubMedCrossRef Israel GM, Hecht E, Bosniak MA (2006) CT and MR imaging of complications of partial nephrectomy. Radiographics 26:1419–1429PubMedCrossRef
23.
Zurück zum Zitat Lee MS, Oh YT, Han WK et al (2007) CT findings after nephron-sparing surgery of renal tumors. AJR Am J Roentgenol 189:W264–W271PubMedCrossRef Lee MS, Oh YT, Han WK et al (2007) CT findings after nephron-sparing surgery of renal tumors. AJR Am J Roentgenol 189:W264–W271PubMedCrossRef
24.
Zurück zum Zitat Saddala P, Ramanathan S, Tirumani SH et al (2015) Complications of minimally invasive procedures of the abdomen and pelvis: a comprehensive update on the clinical and imaging features. Emerg Radiol 22:283-294 Saddala P, Ramanathan S, Tirumani SH et al (2015) Complications of minimally invasive procedures of the abdomen and pelvis: a comprehensive update on the clinical and imaging features. Emerg Radiol 22:283-294
25.
Zurück zum Zitat Sarwani NI, Motta Ramirez GA, Remer EM et al (2007) Imaging findings after minimally invasive nephron-sparing renal therapies. Clin Radiol 62:333–339PubMedCrossRef Sarwani NI, Motta Ramirez GA, Remer EM et al (2007) Imaging findings after minimally invasive nephron-sparing renal therapies. Clin Radiol 62:333–339PubMedCrossRef
26.
Zurück zum Zitat Parsons RB, Canter D, Kutikov A et al (2012) RENAL nephrometry scoring system: the radiologist’s perspective. AJR Am J Roentgenol 199:W355–W359PubMedCrossRef Parsons RB, Canter D, Kutikov A et al (2012) RENAL nephrometry scoring system: the radiologist’s perspective. AJR Am J Roentgenol 199:W355–W359PubMedCrossRef
27.
Zurück zum Zitat Chapin BF, Delacroix SE Jr, Wood CG (2011) Renal cell carcinoma: what the surgeon and treating physician need to know. AJR Am J Roentgenol 196:1255–1262PubMedCrossRef Chapin BF, Delacroix SE Jr, Wood CG (2011) Renal cell carcinoma: what the surgeon and treating physician need to know. AJR Am J Roentgenol 196:1255–1262PubMedCrossRef
28.
Zurück zum Zitat Canter D, Kutikov A, Manley B et al (2011) Utility of the R.E.N.A.L. nephrometry scoring system in objectifying treatment decision-making of the enhancing renal mass. Urology 78:1089–1094PubMedCentralPubMedCrossRef Canter D, Kutikov A, Manley B et al (2011) Utility of the R.E.N.A.L. nephrometry scoring system in objectifying treatment decision-making of the enhancing renal mass. Urology 78:1089–1094PubMedCentralPubMedCrossRef
29.
Zurück zum Zitat Mucksavage P, McDougall EM, Clayman RV (2011) Laparoscopic transperitoneal nephrectomy for renal cancer: the University of California, Irvine, technique. J Endourol 25:195–200PubMedCrossRef Mucksavage P, McDougall EM, Clayman RV (2011) Laparoscopic transperitoneal nephrectomy for renal cancer: the University of California, Irvine, technique. J Endourol 25:195–200PubMedCrossRef
30.
Zurück zum Zitat Haber GP, Gill IS (2006) Laparoscopic partial nephrectomy: contemporary technique and outcomes. Eur Urol 49:660–665PubMedCrossRef Haber GP, Gill IS (2006) Laparoscopic partial nephrectomy: contemporary technique and outcomes. Eur Urol 49:660–665PubMedCrossRef
31.
Zurück zum Zitat Kang N, Niu Y, Zhang J et al (2012) Intraoperative ultrasonography: a useful tool in retrolaparoscopic nephron-sparing surgery. Urol Int 88:338–342PubMedCrossRef Kang N, Niu Y, Zhang J et al (2012) Intraoperative ultrasonography: a useful tool in retrolaparoscopic nephron-sparing surgery. Urol Int 88:338–342PubMedCrossRef
32.
Zurück zum Zitat Summerton DJ, Kitrey ND, Lumen N et al (2012) EAU guidelines on iatrogenic trauma. Eur Urol 62:628–639PubMedCrossRef Summerton DJ, Kitrey ND, Lumen N et al (2012) EAU guidelines on iatrogenic trauma. Eur Urol 62:628–639PubMedCrossRef
33.
Zurück zum Zitat Mitropoulos D, Artibani W, Biyani CS et al (2014) Quality assessment of partial nephrectomy complications reporting using EAU standardised quality criteria. Eur Urol 66:522–526PubMedCrossRef Mitropoulos D, Artibani W, Biyani CS et al (2014) Quality assessment of partial nephrectomy complications reporting using EAU standardised quality criteria. Eur Urol 66:522–526PubMedCrossRef
34.
Zurück zum Zitat Simhan J, Smaldone MC, Tsai KJ et al (2011) Objective measures of renal mass anatomic complexity predict rates of major complications following partial nephrectomy. Eur Urol 60:724–730PubMedCentralPubMedCrossRef Simhan J, Smaldone MC, Tsai KJ et al (2011) Objective measures of renal mass anatomic complexity predict rates of major complications following partial nephrectomy. Eur Urol 60:724–730PubMedCentralPubMedCrossRef
35.
Zurück zum Zitat Reddy UD, Pillai R, Parker RA et al (2014) Prediction of complications after partial nephrectomy by RENAL nephrometry score. Ann R Coll Surg Engl 96:475–479PubMedCrossRef Reddy UD, Pillai R, Parker RA et al (2014) Prediction of complications after partial nephrectomy by RENAL nephrometry score. Ann R Coll Surg Engl 96:475–479PubMedCrossRef
36.
Zurück zum Zitat Yang CM, Chung HJ, Huang YH et al (2014) Standardized analysis of laparoscopic and robotic-assisted partial nephrectomy complications with Clavien classification. J Chin Med Assoc 77:637–641PubMedCrossRef Yang CM, Chung HJ, Huang YH et al (2014) Standardized analysis of laparoscopic and robotic-assisted partial nephrectomy complications with Clavien classification. J Chin Med Assoc 77:637–641PubMedCrossRef
37.
Zurück zum Zitat Fardoun T, Chaste D, Oger E et al (2014) Predictive factors of hemorrhagic complications after partial nephrectomy. Eur J Surg Oncol 40:85–89PubMedCrossRef Fardoun T, Chaste D, Oger E et al (2014) Predictive factors of hemorrhagic complications after partial nephrectomy. Eur J Surg Oncol 40:85–89PubMedCrossRef
38.
Zurück zum Zitat Ellison JS, Montgomery JS, Hafez KS et al (2013) Association of RENAL nephrometry score with outcomes of minimally invasive partial nephrectomy. Int J Urol 20:564–570PubMedCrossRef Ellison JS, Montgomery JS, Hafez KS et al (2013) Association of RENAL nephrometry score with outcomes of minimally invasive partial nephrectomy. Int J Urol 20:564–570PubMedCrossRef
39.
Zurück zum Zitat Liu ZW, Olweny EO, Yin G et al (2013) Prediction of perioperative outcomes following minimally invasive partial nephrectomy: role of the R.E.N.A.L nephrometry score. World J Urol 31:1183–1189PubMedCrossRef Liu ZW, Olweny EO, Yin G et al (2013) Prediction of perioperative outcomes following minimally invasive partial nephrectomy: role of the R.E.N.A.L nephrometry score. World J Urol 31:1183–1189PubMedCrossRef
40.
Zurück zum Zitat Long JA, Arnoux V, Fiard G et al (2013) External validation of the RENAL nephrometry score in renal tumours treated by partial nephrectomy. BJU Int 111:233–239PubMedCrossRef Long JA, Arnoux V, Fiard G et al (2013) External validation of the RENAL nephrometry score in renal tumours treated by partial nephrectomy. BJU Int 111:233–239PubMedCrossRef
41.
Zurück zum Zitat Hayn MH, Schwaab T, Underwood W et al (2011) RENAL nephrometry score predicts surgical outcomes of laparoscopic partial nephrectomy. BJU Int 108:876–881PubMed Hayn MH, Schwaab T, Underwood W et al (2011) RENAL nephrometry score predicts surgical outcomes of laparoscopic partial nephrectomy. BJU Int 108:876–881PubMed
42.
Zurück zum Zitat Mathieu R, Verhoest G, Droupy S et al (2013) Predictive factors of complications after robot-assisted laparoscopic partial nephrectomy: a retrospective multicentre study. BJU Int 112:E283–E289PubMedCrossRef Mathieu R, Verhoest G, Droupy S et al (2013) Predictive factors of complications after robot-assisted laparoscopic partial nephrectomy: a retrospective multicentre study. BJU Int 112:E283–E289PubMedCrossRef
43.
Zurück zum Zitat Kruck S, Anastasiadis AG, Walcher U et al (2012) Laparoscopic partial nephrectomy: risk stratification according to patient and tumor characteristics. World J Urol 30:639–646PubMedCrossRef Kruck S, Anastasiadis AG, Walcher U et al (2012) Laparoscopic partial nephrectomy: risk stratification according to patient and tumor characteristics. World J Urol 30:639–646PubMedCrossRef
44.
Zurück zum Zitat Cano Alonso R, Borruel Nacenta S, Diez Martinez P et al (2009) Kidney in danger: CT findings of blunt and penetrating renal trauma. Radiographics 29:2033–2053CrossRef Cano Alonso R, Borruel Nacenta S, Diez Martinez P et al (2009) Kidney in danger: CT findings of blunt and penetrating renal trauma. Radiographics 29:2033–2053CrossRef
45.
Zurück zum Zitat Thomsen HS, Webb JAW (eds) (2009) Contrast media: safety issues and ESUR guidelines. Springer, New York Thomsen HS, Webb JAW (eds) (2009) Contrast media: safety issues and ESUR guidelines. Springer, New York
46.
Zurück zum Zitat Stacul F, van der Molen AJ, Reimer P et al (2011) Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur Radiol 21:2527–2541PubMedCrossRef Stacul F, van der Molen AJ, Reimer P et al (2011) Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur Radiol 21:2527–2541PubMedCrossRef
47.
Zurück zum Zitat Kekelidze M, Dwarkasing RS, Dijkshoorn ML et al (2010) Kidney and urinary tract imaging: triple-bolus multidetector CT urography as a one-stop shop—protocol design, opacification, and image quality analysis. Radiology 255:508–516PubMedCrossRef Kekelidze M, Dwarkasing RS, Dijkshoorn ML et al (2010) Kidney and urinary tract imaging: triple-bolus multidetector CT urography as a one-stop shop—protocol design, opacification, and image quality analysis. Radiology 255:508–516PubMedCrossRef
48.
Zurück zum Zitat Van Der Molen AJ, Cowan NC, Mueller-Lisse UG et al (2008) CT urography: definition, indications and techniques. A guideline for clinical practice. Eur Radiol 18:4–17CrossRef Van Der Molen AJ, Cowan NC, Mueller-Lisse UG et al (2008) CT urography: definition, indications and techniques. A guideline for clinical practice. Eur Radiol 18:4–17CrossRef
49.
Zurück zum Zitat Titton RL, Gervais DA, Hahn PF et al (2003) Urine leaks and urinomas: diagnosis and imaging-guided intervention. Radiographics 23:1133–1147PubMedCrossRef Titton RL, Gervais DA, Hahn PF et al (2003) Urine leaks and urinomas: diagnosis and imaging-guided intervention. Radiographics 23:1133–1147PubMedCrossRef
50.
Zurück zum Zitat Hope WW, Heniford BT, Norton HJ et al (2009) Duration and clinical significance of radiographically detected “free air” after laparoscopic nephrectomy. Surg Laparosc Endosc Percutan Tech 19:415–418PubMedCrossRef Hope WW, Heniford BT, Norton HJ et al (2009) Duration and clinical significance of radiographically detected “free air” after laparoscopic nephrectomy. Surg Laparosc Endosc Percutan Tech 19:415–418PubMedCrossRef
51.
Zurück zum Zitat Borofsky S, Taffel M, Khati N et al (2015) The emergency room diagnosis of gastrointestinal tract perforation: the role of CT. Emerg Radiol 22:315-327 Borofsky S, Taffel M, Khati N et al (2015) The emergency room diagnosis of gastrointestinal tract perforation: the role of CT. Emerg Radiol 22:315-327
52.
Zurück zum Zitat Tonolini M, Campari A, Bianco R (2012) Common and unusual diseases involving the iliopsoas muscle compartment: spectrum of cross-sectional imaging findings. Abdom Imaging 37:118–139PubMedCrossRef Tonolini M, Campari A, Bianco R (2012) Common and unusual diseases involving the iliopsoas muscle compartment: spectrum of cross-sectional imaging findings. Abdom Imaging 37:118–139PubMedCrossRef
53.
Zurück zum Zitat Cohenpour M, Strauss S, Gottlieb P et al (2007) Pseudoaneurysm of the renal artery following partial nephrectomy: imaging findings and coil embolization. Clin Radiol 62:1104–1109PubMedCrossRef Cohenpour M, Strauss S, Gottlieb P et al (2007) Pseudoaneurysm of the renal artery following partial nephrectomy: imaging findings and coil embolization. Clin Radiol 62:1104–1109PubMedCrossRef
54.
Zurück zum Zitat Albani JM, Novick AC (2003) Renal artery pseudoaneurysm after partial nephrectomy: three case reports and a literature review. Urology 62:227–231PubMedCrossRef Albani JM, Novick AC (2003) Renal artery pseudoaneurysm after partial nephrectomy: three case reports and a literature review. Urology 62:227–231PubMedCrossRef
55.
Zurück zum Zitat Ierardi AM, Floridi C, Fontana F et al (2014) Transcatheter embolisation of iatrogenic renal vascular injuries. Radiol Med 119:261–268PubMedCrossRef Ierardi AM, Floridi C, Fontana F et al (2014) Transcatheter embolisation of iatrogenic renal vascular injuries. Radiol Med 119:261–268PubMedCrossRef
56.
Zurück zum Zitat Hatzidakis A, Rossi M, Mamoulakis C et al (2014) Management of renal arteriovenous malformations: a pictorial review. Insights Imaging 5:523–530PubMedCentralPubMedCrossRef Hatzidakis A, Rossi M, Mamoulakis C et al (2014) Management of renal arteriovenous malformations: a pictorial review. Insights Imaging 5:523–530PubMedCentralPubMedCrossRef
57.
Zurück zum Zitat Stunell H, Buckley O, Feeney J et al (2007) Imaging of acute pyelonephritis in the adult. Eur Radiol 17:1820–1828PubMedCrossRef Stunell H, Buckley O, Feeney J et al (2007) Imaging of acute pyelonephritis in the adult. Eur Radiol 17:1820–1828PubMedCrossRef
58.
Zurück zum Zitat Craig WD, Wagner BJ, Travis MD (2008) Pyelonephritis: radiologic-pathologic review. Radiographics 28:255–277, quiz 327–258 PubMedCrossRef Craig WD, Wagner BJ, Travis MD (2008) Pyelonephritis: radiologic-pathologic review. Radiographics 28:255–277, quiz 327–258 PubMedCrossRef
Metadaten
Titel
Multidetector CT imaging of complications after laparoscopic nephron-sparing surgery
verfasst von
Massimo Tonolini
Anna Maria Ierardi
Virginia Varca
Giacomo Piero Incarbone
Marina Petullà
Roberto Bianco
Publikationsdatum
01.08.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Insights into Imaging / Ausgabe 4/2015
Elektronische ISSN: 1869-4101
DOI
https://doi.org/10.1007/s13244-015-0413-1

Weitere Artikel der Ausgabe 4/2015

Insights into Imaging 4/2015 Zur Ausgabe

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.