Skip to main content
Erschienen in: Orphanet Journal of Rare Diseases 1/2009

Open Access 01.12.2009 | Review

Osteopetrosis

verfasst von: Zornitza Stark, Ravi Savarirayan

Erschienen in: Orphanet Journal of Rare Diseases | Ausgabe 1/2009

Abstract

Osteopetrosis ("marble bone disease") is a descriptive term that refers to a group of rare, heritable disorders of the skeleton characterized by increased bone density on radiographs. The overall incidence of these conditions is difficult to estimate but autosomal recessive osteopetrosis (ARO) has an incidence of 1 in 250,000 births, and autosomal dominant osteopetrosis (ADO) has an incidence of 1 in 20,000 births. Osteopetrotic conditions vary greatly in their presentation and severity, ranging from neonatal onset with life-threatening complications such as bone marrow failure (e.g. classic or "malignant" ARO), to the incidental finding of osteopetrosis on radiographs (e.g. osteopoikilosis). Classic ARO is characterised by fractures, short stature, compressive neuropathies, hypocalcaemia with attendant tetanic seizures, and life-threatening pancytopaenia. The presence of primary neurodegeneration, mental retardation, skin and immune system involvement, or renal tubular acidosis may point to rarer osteopetrosis variants, whereas onset of primarily skeletal manifestations such as fractures and osteomyelitis in late childhood or adolescence is typical of ADO. Osteopetrosis is caused by failure of osteoclast development or function and mutations in at least 10 genes have been identified as causative in humans, accounting for 70% of all cases. These conditions can be inherited as autosomal recessive, dominant or X-linked traits with the most severe forms being autosomal recessive. Diagnosis is largely based on clinical and radiographic evaluation, confirmed by gene testing where applicable, and paves the way to understanding natural history, specific treatment where available, counselling regarding recurrence risks, and prenatal diagnosis in severe forms. Treatment of osteopetrotic conditions is largely symptomatic, although haematopoietic stem cell transplantation is employed for the most severe forms associated with bone marrow failure and currently offers the best chance of longer-term survival in this group. The severe infantile forms of osteopetrosis are associated with diminished life expectancy, with most untreated children dying in the first decade as a complication of bone marrow suppression. Life expectancy in the adult onset forms is normal. It is anticipated that further understanding of the molecular pathogenesis of these conditions will reveal new targets for pharmacotherapy.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1750-1172-4-5) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Both authors read and approved the final manuscript.

Disease name and synonyms

The term osteopetrosis is derived from the Greek 'osteo' meaning bone and 'petros', stone. Osteopetrosis is variably referred to as 'marble bone disease' and 'Albers-Schönberg disease', after the German radiologist credited with the first description of the condition in 1904 [1].

Definition and classification

Osteopetrosis comprises a clinically and genetically heterogeneous group of conditions that share the hallmark of increased bone density on radiographs. The increase in bone density results from abnormalities in osteoclast differentiation or function. The Nosology Group of the International Skeletal Dysplasia Society classifies increased bone density conditions into several distinct entities based on clinical features, mode of inheritance and underlying molecular and pathogenetic mechanisms (Table 1) [2].
Table 1
Classification of osteopetrotic conditions, modified from the Nosology and Classification of Genetic Skeletal disorders (2006 revision)[2]
Condition
Inheritance
OMIM No
Gene
Mutation mechanism
Protein
Rodent model
Osteopetrosis, severe neonatal or infantile forms
AR
259700
TCIRG1
Loss of function
Subunit of V-ATPase pump
Oc/oc
Tcirg1-/-
 
AR
 
CLCN7
Loss of function
Chloride channel
Clcn7-/-
 
AR
 
OSTM1
Loss of function
Osteopetrosis associated transmembrane protein
Gl/gl
 
AR
 
RANKL
Loss of function
Receptor Activator for Nuclear Factor κ B Ligand
Tnfsfl 1-/-
 
AR
 
RANK
Loss of function
Receptor Activator for Nuclear Factor κ B
Tnfrsf11a-/-
Osteopetrosis, intermediate form
AR
259710
CLCN7
 
Chloride channel
 
 
AR
 
PLEKHM1
Loss of function
Pleckstrin homology domain containing family M, member 1
ia rat
Osteopetrosis with renal tubular acidosis
AR
259730
CAII
Loss of function
Carbonic anhydrase II
 
Osteopetrosis, late-onset form ('Albers-Schönberg disease')
AD
166600
CLCN7
Dominant negative
Chloride channel
 
Osteopetrosis with ectodermal dysplasia and immune defect (OLEDAID)
XL
300301
IKBKG (NEMO)
Loss of function
Inhibitor of kappa light polypeptide gene enhancer, kinase of
Nemo-/-
Leukocyte adhesion deficiency syndrome (LAD-III) and osteopetrosis
AR
 
Kindlin-3
Loss of function
Kindlin-3
Kind3-/_
 
AR
 
CalDAG-GEF1
Loss of function
Calcium and diacylglycerol-regulated guanine nucleotide exchange factor 1
CalDAG-GEF1-/-
Pycnodysostosis
AR
265800
CTSK
Loss of function
Cathepsin K
cathK-/-
Osteopoikilosis
AD
155950
LEMD3
Loss of function
LEM domain-containing 3
 
Melorheostosis with osteopoikilosis
AD
155950
LEMD3
Loss of function
LEM domain-containing 3
 
Dysosteosclerosis
AR
224300
    
Osteomesopyknosis
AD
166450
    
Osteopathia striata congenita with cranial stenosis
XL
300373
WTX
Loss of function
Wilms tumour gene on the X chromosome
 
Osteosclerosis, Stanescu type
AD
122900
    

Epidemiology

These conditions are rare, and their overall incidence is difficult to estimate. Autosomal recessive osteopetrosis has an incidence of 1 in 250,000 births, with a particularly high incidence reported in Costa Rica (3.4:100,000) [3]. Autosomal dominant osteopetrosis has an incidence of 5:100,000 births [4].

Clinical descriptions

Osteopetrosis encompasses a group of highly heterogeneous conditions, ranging in severity from asymptomatic to fatal in infancy. The more severe forms tend to have autosomal recessive inheritance, while the mildest forms are observed in adults and are inherited in an autosomal dominant manner.
The increased bone mass can result in phenotypic features such as macrocephaly and altered craniofacial morphology, but more importantly impacts on other organs and tissues, notably the bone marrow and nervous systems. The key clinical manifestations, onset, severity, treatment, prognosis and recurrence risks for the main types of osteopetrosis are summarised in Table 2.
Table 2
Summary of the key clinical manifestations, onset, severity, treatment, prognosis and recurrence risks of the main types of osteopetrosis
Osteopetrosis subtype
Autosomal recessive osteopetrosis (ARO)
X-linked osteopetrosis, lymphedema, anhidrotic ectodermal dysplasia and immunodeficiency (OLEDAID)
Intermediate osteopetrosis (IRO)
Autosomal dominant osteopetrosis
(Albers-Schönberg
disease)
 
Classic
Neuropathic
ARO with RTA
   
Genetic basis
TCIRG
CLCN7, OSTM1
Carbonic anhydrase II
IKBKG (NEMO)
CLCN7, PLEKHM1
CLCN7
Skeletal manifestations
  
Increased bone density, diffuse and focal sclerosis of varying severity
Modelling defects at metaphyses
Pathological fractures
Osteomyelitis
Dental abnormalities: tooth eruption defects and dental caries
 
Other manifestations
Pancytopaenia.
Extramedullary haematopoiesis, hepatosplenomegaly.
Cranial nerve compression (II, VII, VIII)
Hydrocephalus
Hypocalcaemia
As for classic ARO, but primary neurodegeneration, including retinal atrophy
Renal tubular acidosis.
Developmental delay. Intracranial calcification.
Cranial nerve compression.
Bone marrow impairment rare.
Anhidrotic ectodermal dysplasia.
Lymphedema.
Immunodeficiency resulting in overwhelming infection.
Anaemia and extramedullary haematopoiesis
Occasional optic nerve compression
Moderate haematological failure
Cranial nerve compression
Onset
Perinatal
Perinatal
Infancy
Infancy
Childhood
Late childhood or adolescence
Severity
Severe
Severe
Moderate
Severe
Mild to moderate
Mild to moderate, occasionally severe
Treatment
Supportive
HSCT
Supportive
Supportive
May benefit from HSCT
Supportive
Supportive
Supportive
Prognosis
Poor
Fatal in infancy
Poor
Fatal in infancy
Variable
Poor
Fatal in early childhood
Variable
Normal life expectancy
Recurrence risk
Parents of proband: 25% risk of recurrence in future pregnancies
  
If mother of proband carrier: 50% of male pregnancies affected
Parents of proband: 25% risk of recurrence in future pregnancies
50% in future pregnancies if one parent affected
Autosomal recessive ("malignant") osteopetrosis (ARO) is a life-threatening condition, which classically manifests in the first few months of life. The increase in bone density can paradoxically weaken the bone, resulting in a predisposition to fractures and osteomyelitis. The longitudinal growth of bones is impaired, resulting in short stature of varying degrees. Macrocephaly and frontal bossing develop within the first year, resulting in a typical facial appearance. The skull changes can result in choanal stenosis and hydrocephalus [5]. The expanding bone can narrow nerve foramina, resulting in blindness, deafness, and facial palsy. Hearing loss is estimated to affect 78% of individuals with ARO [6]. Tooth eruption defects and severe dental caries are also common. Children with ARO are at risk of developing hypocalcaemia, with attendant tetanic seizures and secondary hyperparathyroidism. The most severe complication of ARO is bone marrow suppression. The abnormal expansion of bone interferes with medullary haematopoiesis, resulting in life-threatening pancytopaenia, and secondary expansion of extramedullary haematopoiesis sites such as the liver and spleen.
ARO variants. It is important to differentiate classic ARO from some of the rarer variants. Neuropathic ARO is characterised by seizures in the setting of normal calcium levels, developmental delay, hypotonia, retinal atrophy with absent evoked visual potentials and sensorineural deafness [7]. It is due to primary neurodegeneration not dissimilar to neuronal ceroid-lipofuschinosis, a lysosomal storage disorder [8]. Reported brain MRI findings include significantly delayed myelinisation, diffuse progressive cortical and subcortical atrophy, and bilateral atrial subependymal heterotopias [7]. Electron microscopy of skin biopsies reveals swollen unmyelinated axons that contain spheroids, reduced numbers of myelinated axons and the presence of secondary lipofuscin-containing lysosomes in Schwann cells [9].
ARO with renal tubular acidosis (RTA) has a milder course where RTA and cerebral calcifications are typical [10]. Other clinical manifestations comprise an increased frequency of fractures, short stature, dental abnormalities, cranial nerve compression and developmental delay [11].
The presence of severe immunodeficiency with ectodermal changes is observed in X-linked osteopetrosis, lymphedema, anhidrotic ectodermal dysplasia and immunodeficiency (OLEDAID). Common variable immune deficiency (CVID) has been described in association with a particular subtype of osteoclast-poor ARO [12], and some patients with leukocyte adhesion deficiency syndrome (LAD-III) also suffer from severe osteopetrosis [13, 14].
Autosomal dominant osteopetrosis (Albers-Schönberg disease) typically has onset in late childhood or adolescence, and classically displays the radiographic sign of "sandwich vertebrae" (dense bands of sclerosis parallel to the vertebral endplates – Figure 1). The main complications are confined to the skeleton, including fractures, scoliosis, hip osteoarthritis and osteomyelitis, particularly affecting the mandible in association with dental abscess or caries [15]. Cranial nerve compression is a rare but important complication, with hearing and visual loss affecting around 5% of individuals.
Pycnodysostosis was first described by Maroteaux and Lamy in 1962 [16], and there is evidence that the French painter Henri de Toulouse-Lautrec [17] and the ancient Greek author Aesop [18] were afflicted by this condition. Pycnodysostosis is characterised by short stature, increased bone fragility, persistent open anterior fontanelle and acro-osteolysis of the terminal phalanges (Figure 2). The typical 'open mouth outline' facial appearance is due to frontal bossing, micrognatia, loss of the mandibular angle (Figure 3), and dental anomalies including persistence of deciduous teeth resulting a double row of teeth [19, 20]. Other reported manifestations include joint hypermobility, obliteration of frontal and other sinuses [21], pituitary hypoplasia, cerebral demyelination [22], and hepatosplenomegaly [23].
Dysosteosclerosis was first described as a separate condition in 1968 [24] and is marked by the presence of skin changes (red-violet spots in a patchy distribution), developmental regression and an overall poor prognosis. It manifests in infancy and can be distinguished from other osteopetrotic conditions by platyspondyly, bowing of the long bones, and the lack of bone marrow involvement or acro-osteolysis [25]. Typically, the expanded areas of bone are relatively radiolucent, in contrast to the sclerosis of expanded areas seen in ARO [25].
Osteopoikilosis is a benign, usually asymptomatic condition diagnosed radiographically by the presence of multiple symmetrical circular/ovoid sclerotic opacities of the ischiae, pubic bones and the epimetaphysial regions of the short tubular bones. Osteopoikilosis can occur in isolation, or in association with elastic or collagen connective tissue naevi of the skin, a condition termed Buschke-Ollendorff syndrome (BOS). Both osteopoikilosis and BOS are inherited in an autosomal dominant pattern. In some families and individuals, osteopoikilosis can also occur in association with melorheostosis [2629]. Melorheostosis is usually a sporadic sclerosing bone condition manifesting in a sclerotomal distribution, frequently affecting one limb. There is cortical hyperostosis with thickening, which resembles dripping candle wax on radiographs. Melorheostosis can be asymptomatic or if severe can result in pain, stiffness, leg-length discrepancy and deformity.
Osteopathia striata (OS) occurs in isolation or with cranial sclerosis (OS-CS). The key feature is longitudinal striation of the metaphyses of the long bones [30]. OS-CS in particular is a clinically heterogeneous condition, ranging from mild skeletal manifestations to multisystem organ involvement even within the same family [31]. The typical clinical features include macrocephaly, cleft palate and hearing loss; additional features including cardiac malformations, developmental delay, cranial nerve palsies, anal malformations, cataracts and nervous system malformations have been reported.

Aetiology

Osteopetrosis is caused by failure of osteoclast differentiation or function and mutations in at least 10 genes have been identified as causative in humans (Table 1). The pathogenesis of osteopetrosis is best understood with reference to normal osteoclast development and function (Figure 4).
Osteoclasts are highly specialised cells, which degrade bone mineral and organic bone matrix. These processes are crucial for bone remodelling and the maintenance of bone biomechanical stability and mineral homeostasis. It is estimated that the adult skeleton is completely regenerated every 10 years [32]. Osteoclasts are derived from the mononuclear precursors in the myeloid lineage of haematopoietic cells that also give rise to macrophages [33]. The osteoclast precursors fuse, resulting in osteoclasts, which typically have 5–8 nuclei. By contrast, osteoblasts are derived from multipotent mesenchymal stem cells, which also give rise to chondrocytes, adipocytes and muscle cells.
In light of the common origin of osteoclasts and cells of the haematopoietic system, it is not surprising that mutations in molecules such as IKBKG(NEMO) [34] and more recently CalDAG-GEF1 [13] and kindlin-3 [14] have been implicated in the pathogenesis of ARO variants associated with immune system dysfunction. Other important signals for osteoclast differentiation include the ligand of receptor activator of nuclear factor-kappa B (RANKL) and M-CSF. Op/op mice which do not express functional M-CSF lack osteoclasts and have osteopetrosis [35], however human patients with osteopetrosis secondary to M-CSF deficiency are yet to be identified. Recently a kindred with RANKL gene mutation [36], and seven families with RANK gene mutation [12] and osteopetrosis have been described. Failure of osteoclast differentiation as a result of mutations in these genes accounts for the rare osteoclast-poor forms of ARO, in which no mature osteoclasts are present.
A fully differentiated osteoclast dissolves bone mineral and degrades bone matrix using specialised enzymes. Crucial to this function is cell polarisation, and in particular the formation of the ruffled border and sealing zone. These form the resorption lacuna where hydrochloric acid is actively secreted resulting in the dissolution of bone mineral hydroxyapatite.
Most forms of osteoclast-rich osteopetrosis are caused by defects in gene products involved in the acidification machinery. Acid secretion is dependent on two key molecules, which facilitate proton transport: the proton pump vacuolar ATPase (V-ATPase) and the chloride-specific ion channel, chloride channel 7 (CLCN-7) [37]. Homozygous mutations in the genes encoding the a3 subunit of V-ATPase (TCIRG1) and the CLCN-7 produce severe malignant osteopetrosis phenotypes in both humans and mice [3740]. TCIRG1 mutations are responsible for autosomal recessive osteopetrosis in more than 50% of affected individuals [38, 41] underscoring the crucial role of V-ATPase in osteoclast function. CLCN-7 on the other hand plays a key role in lysosomal acidification, which explains the severe neuronal storage and neurodegeneration in the CNS and retina in Clcn7-/- mice and in a subset of human ARO patients [8, 42]. Dominant-negative mutations of CLCN-7 have been shown to cause ADO [43]. CLCN-7 is closely associated with another membrane protein, OSTM1 [44]. Mutations in the OSTM1 gene are found in grey-lethal mice and a subset of ARO patients with neurological involvement [45, 46].
The protons and chloride ions that are expended in the acidification process need to be replenished intracellularly in order to avoid alkanization. This is achieved by carbonic anhydrase type II (CAII) and an anion exchanger. Given the key role of CAII in kidney function, it is not surprising that mutations in CAII result in ARO with tubular acidosis [47].
The collagen bone matrix is dissolved by two groups of enzymes, the matrix metalloproteinases (MMPs) and lysosomal cathepsins. Cathepsin K in particular has been identified as a key enzyme. It is secreted in the resorption lacuna [48, 49] where it degrades collagen I at acidic pH. Inhibition of cathepsin K prevents matrix degradation [50, 51], and deletion of the cathepsin K gene in mice leads to osteopetrosis [52, 53]. Homozygous mutations in the human cathepsin K gene lead to pycnodysostosis [54, 55].
The formation and maintenance of the osteoclast polarised membrane domains requires complex vesicular trafficking mechanisms and continuous remodelling of the osteoclast cytoskeleton. One protein, which plays a critical function in vesicle trafficking and acidification is PLEKHM1, and heterozygous mutations in this have been associated with intermediate forms of osteopetrosis [56, 57].
Other signalling pathways are likely to be important in osteoclast function, and mutations in the LEMD3 gene which codes for an integral protein of the inner nuclear membrane thought to be involved in BMP and TGFβ signalling, result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis [58, 59]. WNT-related signalling defects (of PORCN [60, 61] and WTX [62] genes) have recently been associated with hyperostotic phenotypes (osteopathia striata in Goltz syndrome and Osteopathia Striata with Cranial Stenosis, OSCS, respectively) implying a role for the WNT pathway in osteoclast function.
Mutations in genes described so far only account for approximately 70% of cases and the search continues for the genes responsible for the remainder. The field of osteopetrosis research has benefited from the many naturally occurring rodent models of the disease. Many genetic defects observed in rodents have not been observed in humans, and these form natural targets for future studies.

Diagnosis

The mainstay of diagnosis is clinical and largely depends on the radiographic appearance of the skeleton. The classic radiological features of osteopetrosis comprise:
• Diffuse sclerosis, affecting the skull, spine, pelvis and appendicular bones.
• Bone modelling defects at the metaphyses of long bones, such as funnel-like appearance ("Erlenmeyer flask" deformity) (Figure 5), and characteristic lucent bands (Figure 6).
• "Bone-in-bone" appearance particularly in the vertebrae and phalanges.
• Focal sclerosis of the skull base, pelvis and vertebral end plates – "sandwich" vertebrae (Figure 1) and "rugger-jersey" spine.
In the absence of typical radiographic findings, raised concentrations of the creatine kinase BB isoenzyme and tartrate resistant acid phosphatase (TRAP) can be helpful in making the diagnosis of ADO [6365].
Age of onset, inheritance pattern and the presence of associated features, such as neurodegeneration, mental retardation, skin and immune system involvement, or renal tubular acidosis may point to particular subtypes of osteopetrosis. Bone biopsy can distinguish between osteoclast-poor and osteoclast-rich subtypes of ARO; however this is invasive and rarely performed.
Genetic testing is available either clinically or on a research basis for many of the genes implicated in osteopetrotic conditions. Genetic testing can be used to confirm the diagnosis and differentiate between different subtypes of osteopetrosis, providing additional information regarding prognosis, likely response to treatment and recurrence risks.

Differential diagnosis

Primary sclerosing conditions of bone caused by osteoclast dysfunction need to be distinguished from the large number of conditions in which bone sclerosis can occur as a secondary phenomenon. Some alternative diagnoses to consider include fluorosis; beryllium, lead and bismuth poisoning; myelofibrosis; Paget's disease (sclerosing form); and malignancies (lymphoma, osteoblastic cancer metastases). Neonatal radiographs can be particularly difficult to interpret in the absence of additional multiorgan involvement, as the normal neonatal skeleton can appear denser than normal. However, in contrast to osteopetrosis, this appearance will improve over time.
Once the diagnosis of a primary osteopetrotic condition is made, it is important to distinguish between different subtypes as they have different response to treatment, prognosis and recurrence risks.

Genetic counselling

Osteopetrosis is a trait that can be inherited in an autosomal dominant, autosomal recessive or X-linked manner, and genetic counselling will depend on the mode of inheritance in a particular family.
Autosomal recessive: the parents of the proband have a 1 in 4 (25%) risk of having further affected children in each pregnancy. 2/3 of unaffected siblings are expected to be carriers. Given the low incidence of osteopetrosis in the general population, the risk that the proband or their siblings would have affected children is low.
Autosomal dominant: the parents of the proband should be carefully evaluated for signs of osteopetrosis, including radiographic studies of the skeleton. Each child of an affected individual has a 1 in 2 (50%) risk of being affected. If the parents are unaffected, there may still be a low risk of further affected children due to gonadal mosaicism.
X-linked recessive: if the mother of the proband is a carrier, 50% of male pregnancies will be affected, and 50% of female pregnancies will be carriers. If the mother is not a carrier, there may still be a small risk of further affected offspring due to gonadal mosaicism.

Antenatal diagnosis

Pre-implantation and prenatal diagnosis is theoretically possible in families, in whom the genetic mutation has been identified, thus allowing for reproductive decisions to be made. In families with severe ARO and unknown mutations, pre-natal diagnosis may be possible using radiographs [66]. If a family decides to continue with an affected pregnancy, haematopoietic stem cell transplantation (HSCT) before the age of 3 months can be planned with the aim of improving neurological outcomes.

Management including treatment

At present, no effective medical treatment for osteopetrosis exists. Treatment is largely supportive and is aimed at providing multidisciplinary surveillance and symptomatic management of complications. Fractures and arthritis are common and require treatment by an experienced orthopaedic surgeon due to the brittleness of the bone, and the relatively frequent occurrence of secondary complications such as delayed union or non-union of fractures and osteomyelitis [67]. Hypocalcaemic seizures are treated with calcium and vitamin D supplementation, and bone marrow failure with red blood cell and platelet transfusions. Developmental delay and seizures in the setting of normal calcium levels may be indicative of neuropathic ARO and should prompt a formal neurological evaluation (including brain MRI, and EEG). Regular ophthalmologic surveillance including visual evoked potentials (VEPs) is important in detecting optic nerve atrophy. Surgical decompression of the optic nerve has been performed to prevent vision loss [68]. Dental problems such as delayed tooth eruption, ankylosis, abscesses, cysts and fistulas are common. Therefore, routine dental surveillance and maintenance of oral hygiene form an integral part of management and play an important role in preventing more severe complications such as osteomyelitis of the mandible.
Given the high associated morbidity and mortality, HSCT is reserved for the severe forms of ARO. HSCT using HLA-identical donors results in 73% 5-year disease-free survival [69]. Complications include rejection, delayed haematopoietic reconstitution, venous occlusive disease, pulmonary hypertension and hypercalcaemic crisis [70]. Furthermore HSCT does not necessarily reverse complications: retrospective report of HSCT in osteopetrosis [69] showed that only 7% of survivors experienced improvement in vision, whereas 69% had no further deterioration and 25% experienced further deterioration. HSCT had no effect on linear growth. Outcomes were better with earlier transplantation, particularly before the age of 3 months and of note, rescue of a malignant osteopetrosis mouse model by HSCT in utero has been demonstrated [71].
HSCT does not alter outcome in subtypes of osteopetrosis associated with primary rather than compressive neuropathy, such as autosomal recessive forms caused by CLCN7 and OSTM1 gene mutations. Other types of osteopetrosis that do not benefit from HSCT include those caused by absence rather than impaired function of osteoclasts (e.g. RANKL mutations) [36].
Interferon gamma 1b (IFNγ1b) treatment has been attempted in patients with osteopetrosis variants unlikely to respond to HSCT or as a bridge to transplantation. It has been reported to result in improvement in immune function, increase in bone resorption and increase in bone marrow space [72, 73]. Stimulation of host osteoclasts with calcium restriction, calcitrol, steroids, parathyroid hormone and interferon has also been attempted [74, 75].

Prognosis

The severe infantile forms of osteopetrosis are associated with diminished life expectancy, with most untreated children dying in the first decade as a complication of bone marrow suppression. Life expectancy in the adult onset forms is normal.

Unresolved questions

Despite recent advances in the understanding of the pathogenesis of osteopetrotic conditions, the genetic basis of approximately 30% of cases remains to be elucidated. The other major challenge in this group of conditions remains effective treatment of the severe recessive disorders and of complications such as optic and other cranial nerve compression. It is hoped that ongoing research into osteoclast physiology will result in novel therapeutic targets. For example, low levels of bone resorption are observed in even severely affected patients, pointing to the presence of multiple acidification mechanisms. The activation of alternative acidification mechanisms, including the Na+/H+ antiporter [65] have been proposed as potential therapeutic targets. The recent identification of RANKL-deficient patients has raised the possibility that this subgroup of patients would benefit from the administration of recombinant RANKL or from mesenchymal stem cell transplantation (MSCT)[76]. Feasibility studies of these approaches in animal studies are eagerly awaited.

Acknowledgements

The authors would like to thank Michele Winsor, Graphic Designer, Murdoch Children's Institute for her help with figure 4[77].
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Both authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Albers-Schonberg: Rontgenbilder einer seltenen Knockenerkrankung. Munch Med Wochenschr. 1904, 5: 365-368. Albers-Schonberg: Rontgenbilder einer seltenen Knockenerkrankung. Munch Med Wochenschr. 1904, 5: 365-368.
2.
Zurück zum Zitat Superti-Furga A US, and the Nosology Group of the International Skeletal Dysplasia Society: Nosology and Classification of Genetic Skeletal Disorders: 2006 Revision. American Journal of Medical Genetics Part A. 2007, 143A: 1-18. 10.1002/ajmg.a.31483.CrossRef Superti-Furga A US, and the Nosology Group of the International Skeletal Dysplasia Society: Nosology and Classification of Genetic Skeletal Disorders: 2006 Revision. American Journal of Medical Genetics Part A. 2007, 143A: 1-18. 10.1002/ajmg.a.31483.CrossRef
3.
Zurück zum Zitat Loria-Cortes R, Quesada-Calvo E, Cordero-Chaverri C: Osteopetrosis in children: a report of 26 cases. J Pediatr. 1977, 91: 43-47. 10.1016/S0022-3476(77)80441-1.CrossRefPubMed Loria-Cortes R, Quesada-Calvo E, Cordero-Chaverri C: Osteopetrosis in children: a report of 26 cases. J Pediatr. 1977, 91: 43-47. 10.1016/S0022-3476(77)80441-1.CrossRefPubMed
4.
Zurück zum Zitat Bollerslev J, Andersen PE: Radiological, biochemical and hereditary evidence of two types of autosomal dominant osteopetrosis. Bone. 1988, 9: 7-13. 10.1016/8756-3282(88)90021-X.CrossRefPubMed Bollerslev J, Andersen PE: Radiological, biochemical and hereditary evidence of two types of autosomal dominant osteopetrosis. Bone. 1988, 9: 7-13. 10.1016/8756-3282(88)90021-X.CrossRefPubMed
5.
Zurück zum Zitat Al-Tamimi YZ, Tyagi AK, Chumas PD, Crimmins DW: Patients with autosomal-recessive osteopetrosis presenting with hydrocephalus and hindbrain posterior fossa crowding. J Neurosurg Pediatrics. 2008, 1: 103-106. 10.3171/PED-08/01/103.CrossRef Al-Tamimi YZ, Tyagi AK, Chumas PD, Crimmins DW: Patients with autosomal-recessive osteopetrosis presenting with hydrocephalus and hindbrain posterior fossa crowding. J Neurosurg Pediatrics. 2008, 1: 103-106. 10.3171/PED-08/01/103.CrossRef
6.
Zurück zum Zitat Dozier TS, Duncan IM, Klein AJ, Lambert PR, Key LL: Otologic manifestations of malignant osteopetrosis. Otol Neurotol. 2005, 26: 762-766. 10.1097/01.mao.0000178139.27472.8d.CrossRefPubMed Dozier TS, Duncan IM, Klein AJ, Lambert PR, Key LL: Otologic manifestations of malignant osteopetrosis. Otol Neurotol. 2005, 26: 762-766. 10.1097/01.mao.0000178139.27472.8d.CrossRefPubMed
7.
Zurück zum Zitat Maranda B, Chabot G, Decarie JC, Pata M, Azeddine B, Moreau A, Vacher J: Clinical and cellular manifestations of OSTM1-related infantile osteopetrosis. J Bone Miner Res. 2008, 23: 296-300. 10.1359/jbmr.071015.CrossRefPubMed Maranda B, Chabot G, Decarie JC, Pata M, Azeddine B, Moreau A, Vacher J: Clinical and cellular manifestations of OSTM1-related infantile osteopetrosis. J Bone Miner Res. 2008, 23: 296-300. 10.1359/jbmr.071015.CrossRefPubMed
8.
Zurück zum Zitat Steward CG: Neurological aspects of osteopetrosis. Neuropathol Appl Neurobiol. 2003, 29: 87-97. 10.1046/j.1365-2990.2003.00474.x.CrossRefPubMed Steward CG: Neurological aspects of osteopetrosis. Neuropathol Appl Neurobiol. 2003, 29: 87-97. 10.1046/j.1365-2990.2003.00474.x.CrossRefPubMed
9.
Zurück zum Zitat Alroy J, Pfannl R, Ucci A, Lefranc G, Frattini A, Megarbane A: Electron microscopic findings in skin biopsies from patients with infantile osteopetrosis and neuronal storage disease. Ultrastruct Pathol. 2007, 31: 333-338. 10.1080/01913120701578098.CrossRefPubMed Alroy J, Pfannl R, Ucci A, Lefranc G, Frattini A, Megarbane A: Electron microscopic findings in skin biopsies from patients with infantile osteopetrosis and neuronal storage disease. Ultrastruct Pathol. 2007, 31: 333-338. 10.1080/01913120701578098.CrossRefPubMed
10.
Zurück zum Zitat Jacquemin C, Mullaney P, Svedberg E: Marble brain syndrome: osteopetrosis, renal acidosis and calcification of the brain. Neuroradiology. 1998, 40: 662-663. 10.1007/s002340050660.CrossRefPubMed Jacquemin C, Mullaney P, Svedberg E: Marble brain syndrome: osteopetrosis, renal acidosis and calcification of the brain. Neuroradiology. 1998, 40: 662-663. 10.1007/s002340050660.CrossRefPubMed
11.
Zurück zum Zitat Whyte MP: Carbonic anhydrase II deficiency. Clin Orthop Relat Res. 1993, 52-63. Whyte MP: Carbonic anhydrase II deficiency. Clin Orthop Relat Res. 1993, 52-63.
12.
Zurück zum Zitat Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, Moratto D, Mazzolari E, Clayton-Smith J, Orchard P: Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet. 2008, 83: 64-76. 10.1016/j.ajhg.2008.06.015.PubMedCentralCrossRefPubMed Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, Moratto D, Mazzolari E, Clayton-Smith J, Orchard P: Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet. 2008, 83: 64-76. 10.1016/j.ajhg.2008.06.015.PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Kilic SS, Etzioni A: The Clinical Spectrum of Leukocyte Adhesion Deficiency (LAD) III due to Defective CalDAG-GEF1. J Clin Immunol. 2008 Kilic SS, Etzioni A: The Clinical Spectrum of Leukocyte Adhesion Deficiency (LAD) III due to Defective CalDAG-GEF1. J Clin Immunol. 2008
14.
Zurück zum Zitat Mory A, Feigelson SW, Yarali N, Kilic SS, Bayhan GI, Gershoni-Baruch R, Etzioni A, Alon R: Kindlin-3: a new gene involved in the pathogenesis of LAD-III. Blood. 2008, 112: 2591-10.1182/blood-2008-06-163162.CrossRefPubMed Mory A, Feigelson SW, Yarali N, Kilic SS, Bayhan GI, Gershoni-Baruch R, Etzioni A, Alon R: Kindlin-3: a new gene involved in the pathogenesis of LAD-III. Blood. 2008, 112: 2591-10.1182/blood-2008-06-163162.CrossRefPubMed
15.
Zurück zum Zitat Benichou OD, Laredo JD, de Vernejoul MC: Type II autosomal dominant osteopetrosis (Albers-Schonberg disease): clinical and radiological manifestations in 42 patients. Bone. 2000, 26: 87-93. 10.1016/S8756-3282(99)00244-6.CrossRefPubMed Benichou OD, Laredo JD, de Vernejoul MC: Type II autosomal dominant osteopetrosis (Albers-Schonberg disease): clinical and radiological manifestations in 42 patients. Bone. 2000, 26: 87-93. 10.1016/S8756-3282(99)00244-6.CrossRefPubMed
16.
Zurück zum Zitat Maroteaux P, Lamy M: [Pyknodysostosis.]. Presse Med. 1962, 70: 999-1002.PubMed Maroteaux P, Lamy M: [Pyknodysostosis.]. Presse Med. 1962, 70: 999-1002.PubMed
18.
Zurück zum Zitat Bartsocas CS: Pycnodysostosis: Toulouse-Lautrec's and Aesop's disease?. Hormones (Athens). 2002, 1: 260-262. 10.1159/000068796.CrossRef Bartsocas CS: Pycnodysostosis: Toulouse-Lautrec's and Aesop's disease?. Hormones (Athens). 2002, 1: 260-262. 10.1159/000068796.CrossRef
19.
Zurück zum Zitat Edelson JG, Obad S, Geiger R, On A, Artul HJ: Pycnodysostosis. Orthopedic aspects with a description of 14 new cases. Clin Orthop Relat Res. 1992, 263-276. Edelson JG, Obad S, Geiger R, On A, Artul HJ: Pycnodysostosis. Orthopedic aspects with a description of 14 new cases. Clin Orthop Relat Res. 1992, 263-276.
20.
Zurück zum Zitat Muto T, Michiya H, Taira H, Murase H, Kanazawa M: Pycnodysostosis. Report of a case and review of the Japanese literature, with emphasis on oral and maxillofacial findings. Oral Surg Oral Med Oral Pathol. 1991, 72: 449-455. 10.1016/0030-4220(91)90559-U.CrossRefPubMed Muto T, Michiya H, Taira H, Murase H, Kanazawa M: Pycnodysostosis. Report of a case and review of the Japanese literature, with emphasis on oral and maxillofacial findings. Oral Surg Oral Med Oral Pathol. 1991, 72: 449-455. 10.1016/0030-4220(91)90559-U.CrossRefPubMed
21.
Zurück zum Zitat Jones CM, Rennie JS, Blinkhorn AS: Pycnodysostosis. A review of reported dental abnormalities and a report of the dental findings in two cases. Br Dent J. 1988, 164: 218-220. 10.1038/sj.bdj.4806405.CrossRefPubMed Jones CM, Rennie JS, Blinkhorn AS: Pycnodysostosis. A review of reported dental abnormalities and a report of the dental findings in two cases. Br Dent J. 1988, 164: 218-220. 10.1038/sj.bdj.4806405.CrossRefPubMed
22.
Zurück zum Zitat Soliman AT, Ramadan MA, Sherif A, Aziz Bedair ES, Rizk MM: Pycnodysostosis: clinical, radiologic, and endocrine evaluation and linear growth after growth hormone therapy. Metabolism. 2001, 50: 905-911. 10.1053/meta.2001.24924.CrossRefPubMed Soliman AT, Ramadan MA, Sherif A, Aziz Bedair ES, Rizk MM: Pycnodysostosis: clinical, radiologic, and endocrine evaluation and linear growth after growth hormone therapy. Metabolism. 2001, 50: 905-911. 10.1053/meta.2001.24924.CrossRefPubMed
23.
Zurück zum Zitat Baker RK, Wallach S, Tashjian AH: Plasma calcitonin in pycnodysostosis: intermittently high basal levels and exaggerated responses to calcium and glucagon infusions. J Clin Endocrinol Metab. 1973, 37: 46-55.CrossRefPubMed Baker RK, Wallach S, Tashjian AH: Plasma calcitonin in pycnodysostosis: intermittently high basal levels and exaggerated responses to calcium and glucagon infusions. J Clin Endocrinol Metab. 1973, 37: 46-55.CrossRefPubMed
24.
Zurück zum Zitat Spranger J, Albrecht C, Rohwedder HJ, Wiedemann HR: [Dysosteosclerosis – a special form of generalized osteosclerosis]. Fortschr Geb Rontgenstr Nuklearmed. 1968, 109: 504-512.CrossRefPubMed Spranger J, Albrecht C, Rohwedder HJ, Wiedemann HR: [Dysosteosclerosis – a special form of generalized osteosclerosis]. Fortschr Geb Rontgenstr Nuklearmed. 1968, 109: 504-512.CrossRefPubMed
25.
Zurück zum Zitat Elcioglu NH, Vellodi A, Hall CM: Dysosteosclerosis: a report of three new cases and evolution of the radiological findings. J Med Genet. 2002, 39: 603-607. 10.1136/jmg.39.8.603.PubMedCentralCrossRefPubMed Elcioglu NH, Vellodi A, Hall CM: Dysosteosclerosis: a report of three new cases and evolution of the radiological findings. J Med Genet. 2002, 39: 603-607. 10.1136/jmg.39.8.603.PubMedCentralCrossRefPubMed
26.
Zurück zum Zitat Ghai S, Sharma R, Ghai S: Mixed sclerosing bone dysplasia – a case report with literature review. Clin Imaging. 2003, 27: 203-205. 10.1016/S0899-7071(02)00516-8.CrossRefPubMed Ghai S, Sharma R, Ghai S: Mixed sclerosing bone dysplasia – a case report with literature review. Clin Imaging. 2003, 27: 203-205. 10.1016/S0899-7071(02)00516-8.CrossRefPubMed
27.
Zurück zum Zitat Butkus CE, Michels VV, Lindor NM, Cooney WP: Melorheostosis in a patient with familial osteopoikilosis. Am J Med Genet. 1997, 72: 43-46. 10.1002/(SICI)1096-8628(19971003)72:1<43::AID-AJMG9>3.0.CO;2-W.CrossRefPubMed Butkus CE, Michels VV, Lindor NM, Cooney WP: Melorheostosis in a patient with familial osteopoikilosis. Am J Med Genet. 1997, 72: 43-46. 10.1002/(SICI)1096-8628(19971003)72:1<43::AID-AJMG9>3.0.CO;2-W.CrossRefPubMed
28.
Zurück zum Zitat Debeer P, Pykels E, Lammens J, Devriendt K, Fryns JP: Melorheostosis in a family with autosomal dominant osteopoikilosis: report of a third family. Am J Med Genet A. 2003, 119A: 188-193. 10.1002/ajmg.a.20072.CrossRefPubMed Debeer P, Pykels E, Lammens J, Devriendt K, Fryns JP: Melorheostosis in a family with autosomal dominant osteopoikilosis: report of a third family. Am J Med Genet A. 2003, 119A: 188-193. 10.1002/ajmg.a.20072.CrossRefPubMed
29.
Zurück zum Zitat Nevin NC, Thomas PS, Davis RI, Cowie GH: Melorheostosis in a family with autosomal dominant osteopoikilosis. Am J Med Genet. 1999, 82: 409-414. 10.1002/(SICI)1096-8628(19990219)82:5<409::AID-AJMG10>3.0.CO;2-2.CrossRefPubMed Nevin NC, Thomas PS, Davis RI, Cowie GH: Melorheostosis in a family with autosomal dominant osteopoikilosis. Am J Med Genet. 1999, 82: 409-414. 10.1002/(SICI)1096-8628(19990219)82:5<409::AID-AJMG10>3.0.CO;2-2.CrossRefPubMed
30.
Zurück zum Zitat Voorhoeve N: L'image radiologique non encore decrit d'une anomalie du squelette; ses rapports avec la dyschondroplasie et l'osteopathia condensans disseminata. Acta Radiol. 1924, 3: 407-427. 10.3109/00016922409133734.CrossRef Voorhoeve N: L'image radiologique non encore decrit d'une anomalie du squelette; ses rapports avec la dyschondroplasie et l'osteopathia condensans disseminata. Acta Radiol. 1924, 3: 407-427. 10.3109/00016922409133734.CrossRef
31.
Zurück zum Zitat Savarirayan R, Nance J, Morris L, Haan E, Couper R: Osteopathia striata with cranial sclerosis: highly variable phenotypic expression within a family. Clin Genet. 1997, 52: 199-205.CrossRefPubMed Savarirayan R, Nance J, Morris L, Haan E, Couper R: Osteopathia striata with cranial sclerosis: highly variable phenotypic expression within a family. Clin Genet. 1997, 52: 199-205.CrossRefPubMed
32.
Zurück zum Zitat Manolagas SC: Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000, 21: 115-137. 10.1210/er.21.2.115.PubMed Manolagas SC: Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000, 21: 115-137. 10.1210/er.21.2.115.PubMed
33.
Zurück zum Zitat Walker DG: The classic: Osteopetrosis cured by temporary parabiosis. Clin Orthop Relat Res. 1982, 2-3. Walker DG: The classic: Osteopetrosis cured by temporary parabiosis. Clin Orthop Relat Res. 1982, 2-3.
34.
Zurück zum Zitat Doffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, Bodemer C, Kenwrick S, Dupuis-Girod S, Blanche S: X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001, 27: 277-285. 10.1038/85837.CrossRefPubMed Doffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, Bodemer C, Kenwrick S, Dupuis-Girod S, Blanche S: X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001, 27: 277-285. 10.1038/85837.CrossRefPubMed
35.
Zurück zum Zitat Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa S: The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990, 345: 442-444. 10.1038/345442a0.CrossRefPubMed Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa S: The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990, 345: 442-444. 10.1038/345442a0.CrossRefPubMed
36.
Zurück zum Zitat Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L, Bredius R, Mancini G, Cant A, Bishop N: Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet. 2007, 39: 960-962. 10.1038/ng2076.CrossRefPubMed Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L, Bredius R, Mancini G, Cant A, Bishop N: Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet. 2007, 39: 960-962. 10.1038/ng2076.CrossRefPubMed
37.
Zurück zum Zitat Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ: Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001, 104: 205-215. 10.1016/S0092-8674(01)00206-9.CrossRefPubMed Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ: Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001, 104: 205-215. 10.1016/S0092-8674(01)00206-9.CrossRefPubMed
38.
Zurück zum Zitat Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L: Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet. 2000, 25: 343-346. 10.1038/77131.CrossRefPubMed Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L: Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet. 2000, 25: 343-346. 10.1038/77131.CrossRefPubMed
39.
Zurück zum Zitat Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, Hasan C, Bode U, Jentsch TJ, Kubisch C: Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet. 2000, 9: 2059-2063. 10.1093/hmg/9.13.2059.CrossRefPubMed Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, Hasan C, Bode U, Jentsch TJ, Kubisch C: Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet. 2000, 9: 2059-2063. 10.1093/hmg/9.13.2059.CrossRefPubMed
40.
Zurück zum Zitat Li YP, Chen W, Liang Y, Li E, Stashenko P: Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet. 1999, 23: 447-451. 10.1038/70563.CrossRefPubMed Li YP, Chen W, Liang Y, Li E, Stashenko P: Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet. 1999, 23: 447-451. 10.1038/70563.CrossRefPubMed
41.
Zurück zum Zitat Sobacchi C, Frattini A, Orchard P, Porras O, Tezcan I, Andolina M, Babul-Hirji R, Baric I, Canham N, Chitayat D: The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet. 2001, 10: 1767-1773. 10.1093/hmg/10.17.1767.CrossRefPubMed Sobacchi C, Frattini A, Orchard P, Porras O, Tezcan I, Andolina M, Babul-Hirji R, Baric I, Canham N, Chitayat D: The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet. 2001, 10: 1767-1773. 10.1093/hmg/10.17.1767.CrossRefPubMed
42.
Zurück zum Zitat Kasper D, Planells-Cases R, Fuhrmann JC, Scheel O, Zeitz O, Ruether K, Schmitt A, Poet M, Steinfeld R, Schweizer M: Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. Embo J. 2005, 24: 1079-1091. 10.1038/sj.emboj.7600576.PubMedCentralCrossRefPubMed Kasper D, Planells-Cases R, Fuhrmann JC, Scheel O, Zeitz O, Ruether K, Schmitt A, Poet M, Steinfeld R, Schweizer M: Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. Embo J. 2005, 24: 1079-1091. 10.1038/sj.emboj.7600576.PubMedCentralCrossRefPubMed
43.
Zurück zum Zitat Cleiren E, Benichou O, Van Hul E, Gram J, Bollerslev J, Singer FR, Beaverson K, Aledo A, Whyte MP, Yoneyama T: Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet. 2001, 10: 2861-2867. 10.1093/hmg/10.25.2861.CrossRefPubMed Cleiren E, Benichou O, Van Hul E, Gram J, Bollerslev J, Singer FR, Beaverson K, Aledo A, Whyte MP, Yoneyama T: Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet. 2001, 10: 2861-2867. 10.1093/hmg/10.25.2861.CrossRefPubMed
44.
Zurück zum Zitat Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC: ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature. 2006, 440: 220-223. 10.1038/nature04535.CrossRefPubMed Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC: ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature. 2006, 440: 220-223. 10.1038/nature04535.CrossRefPubMed
45.
Zurück zum Zitat Chalhoub N, Benachenhou N, Vacher J: Physical and transcriptional map of the mouse Chromosome 10 proximal region syntenic to human 6q16-q21. Mamm Genome. 2001, 12: 887-892. 10.1007/s00335-001-1014-5.CrossRefPubMed Chalhoub N, Benachenhou N, Vacher J: Physical and transcriptional map of the mouse Chromosome 10 proximal region syntenic to human 6q16-q21. Mamm Genome. 2001, 12: 887-892. 10.1007/s00335-001-1014-5.CrossRefPubMed
46.
Zurück zum Zitat Ramirez A, Faupel J, Goebel I, Stiller A, Beyer S, Stockle C, Hasan C, Bode U, Kornak U, Kubisch C: Identification of a novel mutation in the coding region of the grey-lethal gene OSTM1 in human malignant infantile osteopetrosis. Hum Mutat. 2004, 23: 471-476. 10.1002/humu.20028.CrossRefPubMed Ramirez A, Faupel J, Goebel I, Stiller A, Beyer S, Stockle C, Hasan C, Bode U, Kornak U, Kubisch C: Identification of a novel mutation in the coding region of the grey-lethal gene OSTM1 in human malignant infantile osteopetrosis. Hum Mutat. 2004, 23: 471-476. 10.1002/humu.20028.CrossRefPubMed
47.
Zurück zum Zitat Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE: Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA. 1983, 80: 2752-2756. 10.1073/pnas.80.9.2752.PubMedCentralCrossRefPubMed Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE: Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA. 1983, 80: 2752-2756. 10.1073/pnas.80.9.2752.PubMedCentralCrossRefPubMed
48.
Zurück zum Zitat Everts V, Korper W, Hoeben KA, Jansen ID, Bromme D, Cleutjens KB, Heeneman S, Peters C, Reinheckel T, Saftig P, Beertsen W: Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone. J Bone Miner Res. 2006, 21: 1399-1408. 10.1359/jbmr.060614.CrossRefPubMed Everts V, Korper W, Hoeben KA, Jansen ID, Bromme D, Cleutjens KB, Heeneman S, Peters C, Reinheckel T, Saftig P, Beertsen W: Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone. J Bone Miner Res. 2006, 21: 1399-1408. 10.1359/jbmr.060614.CrossRefPubMed
49.
Zurück zum Zitat Troen BR: The regulation of cathepsin K gene expression. Ann N Y Acad Sci. 2006, 1068: 165-172. 10.1196/annals.1346.018.CrossRefPubMed Troen BR: The regulation of cathepsin K gene expression. Ann N Y Acad Sci. 2006, 1068: 165-172. 10.1196/annals.1346.018.CrossRefPubMed
50.
Zurück zum Zitat Bossard MJ, Tomaszek TA, Thompson SK, Amegadzie BY, Hanning CR, Jones C, Kurdyla JT, McNulty DE, Drake FH, Gowen M, Levy MA: Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J Biol Chem. 1996, 271: 12517-12524. 10.1074/jbc.271.21.12517.CrossRefPubMed Bossard MJ, Tomaszek TA, Thompson SK, Amegadzie BY, Hanning CR, Jones C, Kurdyla JT, McNulty DE, Drake FH, Gowen M, Levy MA: Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J Biol Chem. 1996, 271: 12517-12524. 10.1074/jbc.271.21.12517.CrossRefPubMed
51.
Zurück zum Zitat Votta BJ, Levy MA, Badger A, Bradbeer J, Dodds RA, James IE, Thompson S, Bossard MJ, Carr T, Connor JR: Peptide aldehyde inhibitors of cathepsin K inhibit bone resorption both in vitro and in vivo. J Bone Miner Res. 1997, 12: 1396-1406. 10.1359/jbmr.1997.12.9.1396.CrossRefPubMed Votta BJ, Levy MA, Badger A, Bradbeer J, Dodds RA, James IE, Thompson S, Bossard MJ, Carr T, Connor JR: Peptide aldehyde inhibitors of cathepsin K inhibit bone resorption both in vitro and in vivo. J Bone Miner Res. 1997, 12: 1396-1406. 10.1359/jbmr.1997.12.9.1396.CrossRefPubMed
52.
Zurück zum Zitat Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K: Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA. 1998, 95: 13453-13458. 10.1073/pnas.95.23.13453.PubMedCentralCrossRefPubMed Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K: Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA. 1998, 95: 13453-13458. 10.1073/pnas.95.23.13453.PubMedCentralCrossRefPubMed
53.
Zurück zum Zitat Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, Bertoncello I, Drake F, Zavarselk S, Tellis I: Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res. 1999, 14: 1654-1663. 10.1359/jbmr.1999.14.10.1654.CrossRefPubMed Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, Bertoncello I, Drake F, Zavarselk S, Tellis I: Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res. 1999, 14: 1654-1663. 10.1359/jbmr.1999.14.10.1654.CrossRefPubMed
54.
Zurück zum Zitat Gelb BD, Shi GP, Chapman HA, Desnick RJ: Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996, 273: 1236-1238. 10.1126/science.273.5279.1236.CrossRefPubMed Gelb BD, Shi GP, Chapman HA, Desnick RJ: Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996, 273: 1236-1238. 10.1126/science.273.5279.1236.CrossRefPubMed
55.
Zurück zum Zitat Johnson MR, Polymeropoulos MH, Vos HL, Ortiz de Luna RI, Francomano CA: A nonsense mutation in the cathepsin K gene observed in a family with pycnodysostosis. Genome Res. 1996, 6: 1050-1055. 10.1101/gr.6.11.1050.CrossRefPubMed Johnson MR, Polymeropoulos MH, Vos HL, Ortiz de Luna RI, Francomano CA: A nonsense mutation in the cathepsin K gene observed in a family with pycnodysostosis. Genome Res. 1996, 6: 1050-1055. 10.1101/gr.6.11.1050.CrossRefPubMed
56.
Zurück zum Zitat Van Wesenbeeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B, MacKay CA, Van Hul E, Timmermans JP, Vanhoenacker F: Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest. 2007, 117: 919-930. 10.1172/JCI30328.PubMedCentralCrossRefPubMed Van Wesenbeeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B, MacKay CA, Van Hul E, Timmermans JP, Vanhoenacker F: Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest. 2007, 117: 919-930. 10.1172/JCI30328.PubMedCentralCrossRefPubMed
57.
Zurück zum Zitat van Wesenbeeck L, Odgren PR, Mackay CA, Van Hul W: Localization of the gene causing the osteopetrotic phenotype in the incisors absent (ia) rat on chromosome 10q32.1. J Bone Miner Res. 2004, 19: 183-189. 10.1359/jbmr.2004.19.2.183.CrossRefPubMed van Wesenbeeck L, Odgren PR, Mackay CA, Van Hul W: Localization of the gene causing the osteopetrotic phenotype in the incisors absent (ia) rat on chromosome 10q32.1. J Bone Miner Res. 2004, 19: 183-189. 10.1359/jbmr.2004.19.2.183.CrossRefPubMed
58.
Zurück zum Zitat Hellemans J, Preobrazhenska O, Willaert A, Debeer P, Verdonk PC, Costa T, Janssens K, Menten B, Van Roy N, Vermeulen SJ: Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nat Genet. 2004, 36: 1213-1218. 10.1038/ng1453.CrossRefPubMed Hellemans J, Preobrazhenska O, Willaert A, Debeer P, Verdonk PC, Costa T, Janssens K, Menten B, Van Roy N, Vermeulen SJ: Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nat Genet. 2004, 36: 1213-1218. 10.1038/ng1453.CrossRefPubMed
59.
Zurück zum Zitat Hellemans J, Debeer P, Wright M, Janecke A, Kjaer KW, Verdonk PC, Savarirayan R, Basel L, Moss C, Roth J: Germline LEMD3 mutations are rare in sporadic patients with isolated melorheostosis. Hum Mutat. 2006, 27: 290-10.1002/humu.9403.CrossRefPubMed Hellemans J, Debeer P, Wright M, Janecke A, Kjaer KW, Verdonk PC, Savarirayan R, Basel L, Moss C, Roth J: Germline LEMD3 mutations are rare in sporadic patients with isolated melorheostosis. Hum Mutat. 2006, 27: 290-10.1002/humu.9403.CrossRefPubMed
60.
Zurück zum Zitat Grzeschik KH, Bornholdt D, Oeffner F, Konig A, del Carmen Boente M, Enders H, Fritz B, Hertl M, Grasshoff U, Hofling K: Deficiency of PORCN, a regulator of Wnt signaling, is associated with focal dermal hypoplasia. Nat Genet. 2007, 39: 833-835. 10.1038/ng2052.CrossRefPubMed Grzeschik KH, Bornholdt D, Oeffner F, Konig A, del Carmen Boente M, Enders H, Fritz B, Hertl M, Grasshoff U, Hofling K: Deficiency of PORCN, a regulator of Wnt signaling, is associated with focal dermal hypoplasia. Nat Genet. 2007, 39: 833-835. 10.1038/ng2052.CrossRefPubMed
61.
Zurück zum Zitat Wang X, Reid Sutton V, Omar Peraza-Llanes J, Yu Z, Rosetta R, Kou YC, Eble TN, Patel A, Thaller C, Fang P, Veyver Van den IB: Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia. Nat Genet. 2007, 39: 836-838. 10.1038/ng2057.CrossRefPubMed Wang X, Reid Sutton V, Omar Peraza-Llanes J, Yu Z, Rosetta R, Kou YC, Eble TN, Patel A, Thaller C, Fang P, Veyver Van den IB: Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia. Nat Genet. 2007, 39: 836-838. 10.1038/ng2057.CrossRefPubMed
62.
Zurück zum Zitat Jenkins ZA, van Kogelenberg M, Morgan T, Jeffs A, Fukuzawa R, Pearl E, Thaller C, Hing AV, Porteous ME, Garcia-Minaur S: Germline mutations in WTX cause a sclerosing skeletal dysplasia but do not predispose to tumorigenesis. Nat Genet. 2009, 41: 95-100. 10.1038/ng.270.CrossRefPubMed Jenkins ZA, van Kogelenberg M, Morgan T, Jeffs A, Fukuzawa R, Pearl E, Thaller C, Hing AV, Porteous ME, Garcia-Minaur S: Germline mutations in WTX cause a sclerosing skeletal dysplasia but do not predispose to tumorigenesis. Nat Genet. 2009, 41: 95-100. 10.1038/ng.270.CrossRefPubMed
63.
Zurück zum Zitat Waguespack SG, Hui SL, White KE, Buckwalter KA, Econs MJ: Measurement of tartrate-resistant acid phosphatase and the brain isoenzyme of creatine kinase accurately diagnoses type II autosomal dominant osteopetrosis but does not identify gene carriers. J Clin Endocrinol Metab. 2002, 87: 2212-2217. 10.1210/jc.87.5.2212.CrossRefPubMed Waguespack SG, Hui SL, White KE, Buckwalter KA, Econs MJ: Measurement of tartrate-resistant acid phosphatase and the brain isoenzyme of creatine kinase accurately diagnoses type II autosomal dominant osteopetrosis but does not identify gene carriers. J Clin Endocrinol Metab. 2002, 87: 2212-2217. 10.1210/jc.87.5.2212.CrossRefPubMed
64.
Zurück zum Zitat Alatalo SL, Ivaska KK, Waguespack SG, Econs MJ, Vaananen HK, Halleen JM: Osteoclast-derived serum tartrate-resistant acid phosphatase 5b in Albers-Schonberg disease (type II autosomal dominant osteopetrosis). Clin Chem. 2004, 50: 883-890. 10.1373/clinchem.2003.029355.CrossRefPubMed Alatalo SL, Ivaska KK, Waguespack SG, Econs MJ, Vaananen HK, Halleen JM: Osteoclast-derived serum tartrate-resistant acid phosphatase 5b in Albers-Schonberg disease (type II autosomal dominant osteopetrosis). Clin Chem. 2004, 50: 883-890. 10.1373/clinchem.2003.029355.CrossRefPubMed
65.
Zurück zum Zitat Del Fattore A, Peruzzi B, Rucci N, Recchia I, Cappariello A, Longo M, Fortunati D, Ballanti P, Iacobini M, Luciani M: Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment. J Med Genet. 2006, 43: 315-325. 10.1136/jmg.2005.036673.PubMedCentralCrossRefPubMed Del Fattore A, Peruzzi B, Rucci N, Recchia I, Cappariello A, Longo M, Fortunati D, Ballanti P, Iacobini M, Luciani M: Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment. J Med Genet. 2006, 43: 315-325. 10.1136/jmg.2005.036673.PubMedCentralCrossRefPubMed
66.
Zurück zum Zitat Ogur G, Ogur E, Celasun B, Baser I, Imirzalioglu N, Ozturk T, Alemdaroglu A: Prenatal diagnosis of autosomal recessive osteopetrosis, infantile type, by X-ray evaluation. Prenat Diagn. 1995, 15: 477-481. 10.1002/pd.1970150512.CrossRefPubMed Ogur G, Ogur E, Celasun B, Baser I, Imirzalioglu N, Ozturk T, Alemdaroglu A: Prenatal diagnosis of autosomal recessive osteopetrosis, infantile type, by X-ray evaluation. Prenat Diagn. 1995, 15: 477-481. 10.1002/pd.1970150512.CrossRefPubMed
67.
Zurück zum Zitat Landa J, Margolis N, Di Cesare P: Orthopaedic management of the patient with osteopetrosis. J Am Acad Orthop Surg. 2007, 15: 654-662.PubMed Landa J, Margolis N, Di Cesare P: Orthopaedic management of the patient with osteopetrosis. J Am Acad Orthop Surg. 2007, 15: 654-662.PubMed
68.
Zurück zum Zitat Hwang JM, Kim IO, Wang KC: Complete visual recovery in osteopetrosis by early optic nerve decompression. Pediatr Neurosurg. 2000, 33: 328-332. 10.1159/000055980.CrossRefPubMed Hwang JM, Kim IO, Wang KC: Complete visual recovery in osteopetrosis by early optic nerve decompression. Pediatr Neurosurg. 2000, 33: 328-332. 10.1159/000055980.CrossRefPubMed
69.
Zurück zum Zitat Driessen GJ, Gerritsen EJ, Fischer A, Fasth A, Hop WC, Veys P, Porta F, Cant A, Steward CG, Vossen JM: Long-term outcome of haematopoietic stem cell transplantation in autosomal recessive osteopetrosis: an EBMT report. Bone Marrow Transplant. 2003, 32: 657-663. 10.1038/sj.bmt.1704194.CrossRefPubMed Driessen GJ, Gerritsen EJ, Fischer A, Fasth A, Hop WC, Veys P, Porta F, Cant A, Steward CG, Vossen JM: Long-term outcome of haematopoietic stem cell transplantation in autosomal recessive osteopetrosis: an EBMT report. Bone Marrow Transplant. 2003, 32: 657-663. 10.1038/sj.bmt.1704194.CrossRefPubMed
70.
Zurück zum Zitat Steward CG, Pellier I, Mahajan A, Ashworth MT, Stuart AG, Fasth A, Lang D, Fischer A, Friedrich W, Schulz AS: Severe pulmonary hypertension: a frequent complication of stem cell transplantation for malignant infantile osteopetrosis. Br J Haematol. 2004, 124: 63-71. 10.1046/j.1365-2141.2003.04739.x.CrossRefPubMed Steward CG, Pellier I, Mahajan A, Ashworth MT, Stuart AG, Fasth A, Lang D, Fischer A, Friedrich W, Schulz AS: Severe pulmonary hypertension: a frequent complication of stem cell transplantation for malignant infantile osteopetrosis. Br J Haematol. 2004, 124: 63-71. 10.1046/j.1365-2141.2003.04739.x.CrossRefPubMed
71.
Zurück zum Zitat Frattini A, Blair HC, Sacco MG, Cerisoli F, Faggioli F, Cato EM, Pangrazio A, Musio A, Rucci F, Sobacchi C: Rescue of ATPa3-deficient murine malignant osteopetrosis by hematopoietic stem cell transplantation in utero. Proc Natl Acad Sci USA. 2005, 102: 14629-14634. 10.1073/pnas.0507637102.PubMedCentralCrossRefPubMed Frattini A, Blair HC, Sacco MG, Cerisoli F, Faggioli F, Cato EM, Pangrazio A, Musio A, Rucci F, Sobacchi C: Rescue of ATPa3-deficient murine malignant osteopetrosis by hematopoietic stem cell transplantation in utero. Proc Natl Acad Sci USA. 2005, 102: 14629-14634. 10.1073/pnas.0507637102.PubMedCentralCrossRefPubMed
72.
Zurück zum Zitat Key LL, Ries WL, Rodriguiz RM, Hatcher HC: Recombinant human interferon gamma therapy for osteopetrosis. J Pediatr. 1992, 121: 119-124. 10.1016/S0022-3476(05)82557-0.CrossRefPubMed Key LL, Ries WL, Rodriguiz RM, Hatcher HC: Recombinant human interferon gamma therapy for osteopetrosis. J Pediatr. 1992, 121: 119-124. 10.1016/S0022-3476(05)82557-0.CrossRefPubMed
73.
Zurück zum Zitat Key LL, Rodriguiz RM, Willi SM, Wright NM, Hatcher HC, Eyre DR, Cure JK, Griffin PP, Ries WL: Long-term treatment of osteopetrosis with recombinant human interferon gamma. N Engl J Med. 1995, 332: 1594-1599. 10.1056/NEJM199506153322402.CrossRefPubMed Key LL, Rodriguiz RM, Willi SM, Wright NM, Hatcher HC, Eyre DR, Cure JK, Griffin PP, Ries WL: Long-term treatment of osteopetrosis with recombinant human interferon gamma. N Engl J Med. 1995, 332: 1594-1599. 10.1056/NEJM199506153322402.CrossRefPubMed
74.
Zurück zum Zitat Kocher MS, Kasser JR: Osteopetrosis. Am J Orthop. 2003, 32: 222-228.PubMed Kocher MS, Kasser JR: Osteopetrosis. Am J Orthop. 2003, 32: 222-228.PubMed
75.
Zurück zum Zitat Key L, Carnes D, Cole S, Holtrop M, Bar-Shavit Z, Shapiro F, Arceci R, Steinberg J, Gundberg C, Kahn A: Treatment of congenital osteopetrosis with high-dose calcitriol. N Engl J Med. 1984, 310: 409-415.CrossRefPubMed Key L, Carnes D, Cole S, Holtrop M, Bar-Shavit Z, Shapiro F, Arceci R, Steinberg J, Gundberg C, Kahn A: Treatment of congenital osteopetrosis with high-dose calcitriol. N Engl J Med. 1984, 310: 409-415.CrossRefPubMed
76.
Zurück zum Zitat Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C: Infantile Malignant, Autosomal Recessive Osteopetrosis: The Rich and The Poor. Calcif Tissue Int. 2008 Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C: Infantile Malignant, Autosomal Recessive Osteopetrosis: The Rich and The Poor. Calcif Tissue Int. 2008
77.
Zurück zum Zitat Del Fattore ACA, Teti A: Genetics, pathogenesis and complications of osteopetrosis. Bone. 2008, 42: 19-29. 10.1016/j.bone.2007.08.029.CrossRefPubMed Del Fattore ACA, Teti A: Genetics, pathogenesis and complications of osteopetrosis. Bone. 2008, 42: 19-29. 10.1016/j.bone.2007.08.029.CrossRefPubMed
Metadaten
Titel
Osteopetrosis
verfasst von
Zornitza Stark
Ravi Savarirayan
Publikationsdatum
01.12.2009
Verlag
BioMed Central
Erschienen in
Orphanet Journal of Rare Diseases / Ausgabe 1/2009
Elektronische ISSN: 1750-1172
DOI
https://doi.org/10.1186/1750-1172-4-5

Weitere Artikel der Ausgabe 1/2009

Orphanet Journal of Rare Diseases 1/2009 Zur Ausgabe