Skip to main content
Erschienen in: Clinical Research in Cardiology 11/2023

Open Access 12.09.2023 | Original Paper

Physical exercise as a treatment for persisting symptoms post-COVID infection: review of ongoing studies and prospective randomized controlled training study

verfasst von: Alexander Kogel, Moritz Machatschek, Ronja Scharschmidt, Carolin Wollny, Florian Lordick, Mohamed Ghanem, Ulrich Laufs, Sven Fikenzer

Erschienen in: Clinical Research in Cardiology | Ausgabe 11/2023

Abstract

Background and purpose

No evidence-based treatment is available for patients with persisting symptoms post-COVID-19 infection. We hypothesized that physical exercise may represent a safe and effective treatment option for post-COVID.

Methods

We performed a systematic search of the literature that revealed a lack of randomized training studies in patients post-COVID. Based on these findings, a prospective randomized controlled study with open-label and blinded endpoint evaluation was designed. 272 patients with symptoms of fatigue persisting over 6 weeks post-COVID infection were screened. Patients with pathological cardiovascular findings were excluded. 57 patients consented and were randomized to 4 weeks of supervised personalized strength and endurance training or usual care. The follow-up period was 3 and 6 months.

Results

There were no adverse events related to the training. Spiroergometry of the training group showed a significantly higher increase in VO2peak (10.0 ± 12.7% vs. 0.1 ± 8.9%, p < 0.01, respectively) and oxygen pulse (9.8 ± 10.8% vs. 0.0 ± 13.9%, p < 0.05, respectively). Parameters of the Multidimensional Fatigue Inventory-20, McGill Quality of Life Questionnaire, and Post-COVID-19 Functional Status were improved after 4 weeks in both groups. In the follow-up period, the total physical activity per week was significantly greater in the exercise group than in controls (1280 ± 1192 min vs. 644 ± 554 min, p < 0.05, respectively). The improvements in fatigue and quality of life were not statistically different between the training and usual care groups.

Conclusion

Exercise is safe and improves maximal exercise capacity in post-COVID patients. Fatigue and quality of life improve over time in individuals that are willing to participate in a training study irrespective of their allocation.

Registration

German Clinical Trials Register: DRKS00026686. Date of registration: 27.09.2021.

Graphical abstract

Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s00392-023-02300-6.
Alexander Kogel, Moritz Machatschek, Ulrich Laufs and Sven Fikenzer contributed equally.

Introduction

Subsequent to the health problems of the acute phase of SARS-CoV-2 infection, the long-term consequences of SARS-CoV-2 infection are affecting large numbers of patients worldwide. Estimates of patients affected by persisting or new symptoms post-COVID reach from 6 to 28 percent of the infected population [1]. To date, no evidence-based treatment is available for persisting symptoms post-COVID infection. The most common symptoms post-COVID are fatigue, muscle weakness, and sleep difficulties [2]. Fatigue in particular is associated with a significantly reduced quality of life [3]. There is a strong overlap in the spectrum of the symptoms post-COVID and the chronic fatigue syndrome / myalgic encephalomyelitis, which is characterized by post-exertional fatigue and persistent symptoms related to cognitive and autonomous dysfunction [4]. Various triggers including viral infections (e.g. with the Epstein–Barr virus) are discussed for chronic fatigue syndrome [5].
The molecular mechanisms causing the symptoms post-COVID are not completely understood and are likely multi-factorial. A summary of these mechanisms is depicted in Supplemental Fig. 1. Physical exercise is well established to exert anti-inflammatory, vasculo-protective, and anti-aging effects [68].
Based on the potential mechanisms contributing to the persisting symptoms post-COVID and the potential effects of physical exercise on these pathologies we hypothesized that physical training may be associated with beneficial effects for patients with persisting symptoms post-COVID. However, in addition to the assessment of potentially positive effects, it is important to establish the safety of exercise post-COVID. Physical exercise has negative effects in mice with myocarditis [9]. In athletes, myocarditis is the underlying cause of sudden cardiac death in about 10 percent of cases [10].
We, therefore, performed a systematic search of the literature for training studies in patients post-COVID to review the available information on the safety and efficacy of physical exercise for these patients. The systematic review of the literature revealed a shortage of prospective, randomized training studies and a lack of information on safety. Therefore, we designed and performed a prospective study to test the effects of supervised personalized strength endurance training for 4 weeks or usual care on safety, fatigue, and quality of life.

Methods

Data source and search strategy

ClinicalTrials.gov, Deutsches Studienregister, PubMed, and the World Health Organization International Clinical Trials Registry Platform were searched to identify RCTs investigating exercise interventions in post-COVID syndrome. The date of the last search was February 16th, 2022. We used “exercise” in combination with “fatigue” or “post-COVID” as keywords and filtered for randomized controlled trials. Criteria for inclusion in this review were RCT design with an exercise intervention and a control group that underwent no intervention. The flow diagram of the screening is depicted in Supplemental Fig. 2.

Study design

The post-COVID-training study (DRKS00026686) was approved by the Ethics Committee of the Medical Faculty, University of Leipzig (reference number 357/21-ek). Written informed consent was obtained from all the participants. This was a prospective, two-armed, randomized controlled trial. The primary outcome is the subjective improvement in perceived fatigue according to MFI-20 in at least 2 of 5 categories at follow-up (1/3/6 month-follow-up). Secondary outcomes are changes in spiroergometric parameters and strength (1 month-follow-up) and improvement in the McGill Quality of Life Questionnaire and Post-COVID Functional Status Scale (1/3/6 month-follow-up). The sample size was calculated to achieve a significant training effect measured as an improvement in VO2peak.

Patient selection

Participants were recruited over 12 months through a post-COVID clinic at the Department of Internal Medicine, University Hospital Leipzig. Patients over the age of 18 with sustained fatigue symptoms (> 50 points with four or more dimensions affected on the MFI-20-questionnaire) at a minimum of 6 weeks after a COVID-19 infection with no known cardiac or pulmonary condition were eligible. The definition of “post-COVID syndrome” was defined in a consensus paper in late 2021 [11]. Our study was started before the publication of this consensus definition. In our study, four patients—two in each group—do not meet the new definition. Thus, over 90% of the study population fulfills the criteria of the “post-COVID syndrome”. Exclusion criteria entailed known heart failure with reduced or preserved ejection fraction, coronary artery disease, myocarditis, obstructive or restrictive pulmonary disease, or COVID-19-associated cardiovascular complications (e.g. pulmonary artery embolism, myocardial infarction, pulmonary fibrosis). The flow diagram of the inclusion into the study is shown in Fig. 1.

Randomization

Participants were randomly allocated to the intervention (4 weeks of two to three times weekly personalized strength endurance training) or the control using a 1:1 ratio. The allocation sequence was produced via computer-generated random numbers. It was not possible to blind the participants or medical staff to the group allocation. Staff blinded to group allocation performed data entry and analysis.

Examinations

All participants underwent a basic medical examination confirming eligibility.

Intervention

Participation took place over 6 months comprising one assessment visit at baseline, and one visit at the end of the intervention, and two follow-up assessments after 3 and 6 months.
Participants randomly assigned to the intervention group were asked to attend twice- to thrice-weekly supervised 45-min exercise sessions consisting of strength and endurance exercises. Strength exercises were set for 70% of the before assessed one repetition maximum (1-RM) during isotonic concentric activity and an additional 20% overload during eccentric activity and included leg press, squats, pull, crunch, back extension, and press for 1 min and 30 s pause in between for two rounds. Endurance exercises were set to power in Watts at the before-assessed respiratory compensation point (RCP) with 60–70 revolutions per minute (rpm) and included using a bike-ergometer and crosstrainer. Exercise compliance was assessed using the Technogym assessment tool (Technogym™, TECHNOGYM GERMANY GMBH, Neu-Isenburg, Germany).
Participants randomly assigned to the control group were given no restrictions.

Questionnaires

For all assessments, self-reporting questionnaires in German were used to assess fatigue (Multidimensional Fatigue Inventory-20) [12], quality of life (McGill Quality of Life Questionnaire (MQOL) [13], functional status (Post-COVID-19 Functional Status (PCFS) [14], and physical activity (WHO Global Physical Activity Questionnaire (GPAQ) [15].

Strength measurements and cardiopulmonary exercise testing

Strength was evaluated using one repetition maximum (1-RM) of each aforementioned exercise. In addition, at each visit cardiorespiratory fitness was assessed using spirometry (Vyntus™ CPX, Vyaire Germany, Hoechberg, Germany) and a cardiopulmonary exercise test (CPET); performed on a semi-recumbent ergometer (GE eBike, GE Healthcare GmbH, Solingen, Germany) at a constant speed of 55–70 revolutions per minute (rpm) beginning at a workload of 25 W ramping 15 W per minute until voluntary exhaustion occurred. Each participant continued for an additional 5-min recovery period at a workload of 25 W. In the CPET, spirometry data were collected using a digital spirometer (Vyntus™ CPX, Vyaire Germany, Hoechberg, Germany). Maximum oxygen consumption (VO2max), minute ventilation (VE), and HR (GE-Cardiosoft, GE Healthcare GmbH, Solingen, Germany) were monitored continuously.
Safety of exercise was defined as no new symptoms or worsening of symptoms, no palpitations, no hospitalizations, and no clinical signs of heart failure.

Statistical analysis

All statistical analyses were performed using GraphPad Prism 9 (version 9.4.1, GraphPad Software LLC), and Microsoft Office Excel (version 16.53, Microsoft). Continuous variables were expressed as mean value ± standard deviation (SD). Changes between two visits in one group were analysed using a paired t test. Group effects were analysed by unpaired t tests. Statistical significance was accepted for p value < 0.05. We used the CONSORT reporting guidelines [16].

Results

Prospective training study

57 patients with persisting symptoms post-COVID infection consented to participation and were randomized. The study took place from September 2021 to March 2023. The study ended after randomizing the targeted sample size. None of the patients needed hospital admission during the acute infection with SARS-CoV2. The clinical characteristics including echocardiographic and laboratory data are presented in Table 1. The mean age was 42.7 ± 13.4 years and 61% (N = 27) were females.
Table 1
Baseline characteristics of the study population
Study population
 
Exercise
Control
p
Total
N
22
22
 
Sex
(f;m)
13;9
14;8
 
Age
y
40.4 ± 13.1
43.6 ± 14.3
0.275
Height
cm
172.7 ± 9.5
170.8 ± 12.2
0.584
Weight
kg
71.1 ± 10.4
75.1 ± 17.0
0.369
BMI
index
23.8 ± 2.7
25.5 ± 3.9
0.117
Training units/wks
number
2.3 ± 0.4
  
Exercise compliance
%
96.7 ± 2.0
  
Time post-COVID
days
284.5 ± 148.6
270.4 ± 151
0.761
LVEF
%
65.0 ± 5.6
65.3 ± 6.5
0.865
GLS
%
− 20.0 ± 1.5
− 20.0 ± 2.2
0.971
Laboratory data
    
 Hemoglobin
mmol/l
8.7 ± 0.7
8.6 ± 0.8
0.720
 hsCRP
mmol/l
1.4 ± 1.4
1.4 ± 1.2
0.993
 Troponin-T
pg/ml
4.3 ± 1.4
4.5 ± 1.9
0.777
 NT-proBNP
pg/ml
71.6 ± 29.8
83.7 ± 62.4
0.450
 Ferritin
ng/ml
121.9 ± 107.6
139.3 ± 109.5
0.645
 Transferrin
g/l
2.7 ± 0.6
2.6 ± 0.3
0.608
 TSH
mU/l
1.6 ± 0.6
1.4 ± 0.9
0.350
BMI body-mass index; wks weeks
We found no abnormalities or differences between the groups in echocardiographic measurements, laboratory data (Table 1), or spirometry (Table 2).
Table 2
Spirometry
  
Exercise
 
Control
 
Group effects t1
  
t0
t1
p
t0
t1
p
p
Spirometry
                
 FVC
l
4.2
 ± 
1.1
4.2
 ± 
1.1
0.767
4.1
 ± 
1.0
4.1
 ± 
1.0
0.748
0.845
 FEV1
l
3.5
 ± 
0.9
3.5
 ± 
0.9
0.482
3.4
 ± 
0.8
3.4
 ± 
0.8
0.925
0.826
 Tiffeneau 
%
83.4
 ± 
7.0
82.7
 ± 
5.9
0.401
82.7
 ± 
5.6
82.8
 ± 
6.1
0.872
0.921
PEF
l/s
7.4
 ± 
1.7
7.7
 ± 
1.7
0.036
7.1
 ± 
2.0
7.2
 ± 
1.7
0.457
0.932
FVC forced vital capacity; FEV1 forced expiratory volume in the first second; PEF peak expiratory flow
p-value < 0.05 are written bold
The patients of the exercise group underwent 9.2 ± 1.6 physical training sessions (7–12). The individualized combined training was very well tolerated by the participants and the exercise compliance was high at 96.7 ± 2.0%. There were no adverse events during the training sessions. The total physical activity (GPAQ) did not change over time (exercise pre: 1472 ± 1213 min/wk, post: 1518 ± 1623 min/wk, p = 0.903; control pre: 1185 ± 1268 min/wk, post: 895 ± 888 min/wk, p = 0.221).
After 4 weeks of training, we found significant improvements in Ppeak 11.2 ± 15.1% (p < 0.001), endurance capacity (VO2peak) 10 ± 12.7% (p < 0.01), oxygen pulse 9.8 ± 10.8% (p < 0.05) and strength in leg press: 18.2 ± 19.2% (p < 0.001), rowing: 13.6 ± 16.7% (p < 0.001) and bench press: 11.8 ± 13.5% (p < 0.001) in the exercise group compared to baseline. The control showed only improvements compared to baseline in Ppeak 5.7 ± 10.7% (p < 0.05), leg press 15.3 ± 20.6% (p < 0.01), and rowing 15.3 ± 32.8% (p < 0.01) (Table 3, Fig. 2). A group effect was found for VO2peak (p < 0.01) and oxygen pulse (p < 0.05) between exercise and control, respectively.
Table 3
Cardiopulmonary exercise test and strength test
  
Exercise
 
Control
 
Group effects t1
  
t0
t1
p
t0
t1
p
p
RCP
                
 Workload
Watt
111.8
 ± 
33.5
120.6
 ± 
39.2
0.082
110.1
 ± 
31.9
112.7
 ± 
33.8
0.609
0.570
Peak
                
 Workload
Watt
160.6
 ± 
52.0
174.1
 ± 
47.9
 < 0.001
151.2
 ± 
41.1
158.2
 ± 
40.4
0.025
0.391
 HR
bpm
166.3
 ± 
18.3
166.3
 ± 
16.9
0.988
151.7
 ± 
25.4
153.0
 ± 
25.3
0.775
0.092
 RRsys
mmHg
179.8
 ± 
29.3
184.8
 ± 
24.2
0.714
178.0
 ± 
13.9
181.9
 ± 
21.0
0.504
0.323
 RRdia
mmHg
90.7
 ± 
21.5
95.4
 ± 
17.1
0.562
92.9
 ± 
13.2
91.0
 ± 
9.3
0.468
0.154
 VO2 peak
ml/min*kg
26.7
 ± 
7.2
29.1
 ± 
7.6
0.001
25.3
 ± 
7.1
25.2
 ± 
7.4
0.972
0.518
 RER
ratio
1.16
 ± 
0.07
1.16
 ± 
0.08
0.940
1.15
 ± 
0.11
1.18
 ± 
0.11
0.159
0.602
 VE
l/min
75.5
 ± 
22.8
80.0
 ± 
19.0
0.094
71.5
 ± 
18.2
72.0
 ± 
19.0
0.823
0.208
 Respiratory rate
brpm
36.5
 ± 
7.2
38.7
 ± 
7.5
0.168
37.2
 ± 
8.2
38.9
 ± 
11.6
0.326
0.760
 Oxygen pulse
(ml/min)/bpm
11.5
 ± 
3.4
12.4
 ± 
3.3
0.003
12.4
 ± 
3.6
12.2
 ± 
3.4
0.729
0.361
5 min recovery
                
 HR
bpm
111.1
 ± 
14.4
106.9
 ± 
13.1
0.109
103.9
 ± 
20.5
100.5
 ± 
17.7
0.215
0.234
Strength test (1-RPM)
                
 Leg press
kg
120.9
 ± 
41.4
142.7
 ± 
50.7
 < 0.001
122.3
 ± 
55.6
138.0
 ± 
64.7
0.003
0.953
 Rowing
kg
54.6
 ± 
18.3
60.9
 ± 
18.9
0.001
48.5
 ± 
17.8
53.9
 ± 
18.1
0.006
0.381
 Bench press
kg
48.2
 ± 
17.6
53.2
 ± 
19.1
0.001
44.2
 ± 
18.8
46.5
 ± 
20.4
0.117
0.594
HR heart rate; RRsys systolic blood pressure; RRdia diastolic blood pressure; VE respiratory minute volume; RCP respiratory compensation point; RER respiratory exchange ratio
p-value < 0.05 are written bold
MFI-20 and quality of life (MQOL) were improved after 4 weeks in both groups. There was no difference in the MFI-20 score or the number of dimensions changed between the two groups (exercise − 2.2 ± 1.9 vs. control − 1.7 ± 1.7; p = 0.428). The post-COVID-functional scale was also improved in both groups (exercise − 0.6 ± 0.9 vs. control − 0.5 ± 0.9; p = 0.933) (Table 4, Fig. 3).
Table 4
MFI-20, MQOL, and PCFS
  
Exercise
Time effect (t0 vs. t1)
Control
Time effect (t0 vs. t1)
Group effects t1
Group effects t2
Group effects t3
  
t0
t1
t2
t3
p
t0
t1
t2
t3
p
p
p
p
MFI-20
              
 Sum
Score
71.3 ± 12.7
53.7 ± 17.4
55.3 ± 17.4
47.8 ± 19.8
 < 0.001
73.5 ± 10.2
56.0 ± 17.0
58.8 ± 14.7
55.5 ± 16.4
 < 0.001
0.927
0.636
0.336
 General fatigue
Score
16.5 ± 2.5
12.4 ± 3.5
13.5 ± 3.8
11.9 ± 4.3
 < 0.001
16.8 ± 2.9
12.9 ± 3.6
14.4 ± 3.2
13.7 ± 3.9
 < 0.001
0.904
0.572
0.347
 Physical fatigue
Score
14.9 ± 2.9
10.8 ± 4.0
10.7 ± 4.7
9.7 ± 5.1
 < 0.001
16.3 ± 3.2
12.1 ± 4.4
12.9 ± 3.8
12.2 ± 3.7
 < 0.001
0.434
0.178
0.144
 Reduced activity
Score
14.9 ± 2.9
10.8 ± 4.4
11.4 ± 4.2
9.9 ± 4.5
 < 0.001
14.8 ± 2.6
11.1 ± 4.3
11.6 ± 3.8
11.0 ± 4.0
0.001
0.370
0.938
0.647
 Reduced motivation
Score
11.0 ± 3.4
8.6 ± 3.5
8.0 ± 3.2
6.8 ± 3.1
0.006
11.6 ± 3.3
8.5 ± 3.5
8.4 ± 3.1
8.3 ± 3.8
0.001
0.911
0.733
0.296
 Mental fatigue
Score
14.0 ± 3.7
11.0 ± 4.2
11.7 ± 4.3
9.6 ± 4.2
0.001
14.0 ± 2.7
11.4 ± 3.6
11.4 ± 3.3
10.4 ± 3.5
0.001
0.623
0.690
0.547
MQOL
              
 Average
Score
21.2 ± 6.0
24.7 ± 5.7
25.2 ± 5.7
25.1 ± 6.8
 < 0.001
18.3 ± 4.8
24.7 ± 5.7
23.0 ± 5.8
23.3 ± 6.0
 < 0.001
0.836
0.235
0.074
PCFS
              
 Average
Score
2.6 ± 0.8
2.1 ± 1.1
2.2 ± 1.0
1.9 ± 1.1
0.018
2.8 ± 0.9
2.3 ± 0.9
2.2 ± 1.0
2.2 ± 1.0
0.018
0.412
1.000
0.547
MFI-20 multidimensional Fatigue Inventory-20; MGOL McGILL Quality Of Life Questionnaire; PCSF the five point Post-COVID-Functional-Scale
p-value < 0.05 are written bold
After 3 months, there were no significant differences between the groups in any of the questionnaires or subdomains. After 6 months, the total physical activity per week was significantly greater in the exercise group than in the control group (exercise 1280 ± 1192 vs. control 644 ± 554, p < 0.05). In addition, the subdomain of psychological quality of life in the MQOL was significantly better in the exercise group than in the control group (exercise 29 ± 9 vs. control 25 ± 9, p < 0.05). Within the groups, only the MFI-20 of the exercise group improved significantly between the 3- and 6-month follow-up. The effects of the study remained stable through the follow-up period (Fig. 4). We saw no harm or unintended effects in our study.

Discussion

The study shows that physical exercise is safe in patients with persisting symptoms post-COVID. Exercise improved endurance capacity, oxygen pulse, and strength compared to control. The self-reported quality of life and fatigue improved over time in both groups. In the follow-up period, the exercise group was more active and the MFI-20 improved more than in the control group. The physical training was not associated with additional effects on questionnaires or subdomains of fatigue compared to the patients randomized to the control group.
Our systematic search of the ongoing trials investigating exercise in post-COVID patients identified 107 records. Six records were removed due to duplication in different databases. Ultimately, 15 studies were found reporting a randomized design with an exercise intervention and a control group that underwent no intervention. Most of the studies (n = 13) use a combined exercise intervention. An endurance-only intervention and a resistance-only intervention are planned in one trial each. The sample size, comparator types, blinding, and supervision of the ongoing RCTs are summarized in Supplemental Table 1. A detailed summary of the characteristics of each study can be found in Supplemental Tables 2–4. An overview of primary outcomes sorted into the groups defined by the potential mechanisms is shown in Supplemental Fig. 3. In comparison to other trials, our trial was the only one to use a supervised combined training regimen and follow-up for 5 months after the intervention ended. Although supervising exercise during an ongoing pandemic (as in our study) can be challenging, it is well established that supervised exercise yields a better result compared to unsupervised training programs [17]. Supervision also improves the safety of patients. Most studies identified by the systematic search of the literature use a combined training regimen. Combined exercise interventions target a wide spectrum of physiological dimensions of exercise capacity but conclusions about specific aspects of exercise that are effective are hard to draw. Combined exercise interventions may be more effective on submaximal exercise capacity and quality of life compared to isolated endurance exercise [18]. Therefore, a careful evaluation and studies of the effective training modality are needed to tailor a possible training intervention to the needs of patients post-COVID infection.
One major limitation compared to the other studies is the shorter duration of our training intervention.
The improvement in quality of life and fatigue post-COVID over time is supported by the literature [19]. Several potential limitations and explanations may contribute to the lack of an additional effect of physical exercise on fatigue: All training studies face a selection bias because only patients willing to participate in a training study can be randomized. These individuals may have a better prognosis reducing the additional effect of any intervention. Specifically, the subgroup of fatigue patients dominantly affected in the reduced motivation dimension of the MFI-20 may be under-represented. In our population, this dimension was the least affected.
Additionally, we found a higher daily activity in the exercise group in the follow-up period which is supportive of the under-representation of persons with reduced motivation. On the other hand, this greater activity can also be discussed as the cause of the improvement in the MFI-20 in the follow-up period.
The duration of the intervention may have been too short, however, we observed marked improvements in cardiovascular capacity in the intervention group. In one trial investigating exercise as a treatment option, the duration was 8 weeks compared to 4 weeks in our study. This study found effects in some fatigue-associated questionnaires, but the MFI-20 questionnaire was not used [19]. The sample size is too low for the identification of a subgroup potentially benefitting from exercise. However, there is no larger randomized training study in patients post-COVID published. The expected intra-group variability in physical performance, as well as fatigue symptoms at baseline, may be concealing effects. Another explanation may relate to the endpoint fatigue which is a very difficult-to-treat symptom. It is possible that the underlying pathologies of fatigue are not susceptible to physical exercise. Interestingly, fatigue does not correlate with the severity of the initial COVID infection, serum markers of inflammation or cardiovascular biomarkers, or cell turnover or echocardiographic findings [20, 21].
The symptoms post-COVID are characterized by physical fatigue, reduced activation, and impaired motivation. Our study shows that an individually planned and structured training regimen is highly effective in improving cardiovascular capacity, e.g. the maximum oxygen uptake and the oxygen pulse, in this patient population. Training effects have been consistently associated with a reduction of cardiovascular as well as all-cause mortality [22, 23].
In addition to the assessment of potentially positive effects, the safety of exercise post-COVID needs to be established. Physical exercise can promote sudden cardiac death in patients with myocarditis [24]. Sudden cardiac death has been reported in non-hospitalized patients with COVID-19 infection and mild symptoms [25]. However, dysrhythmias and cardiac arrest are rare in non-hospitalized individuals compared to hospitalized individuals with COVID-19 and also the presence of myocarditis in the athlete population post-COVID seems to be low [26]. Patients with persisting myocarditis should not be included in exercise programs according to international sport cardiology guidelines [27, 28]. Exercise aggravates myocarditis in animals [9]. Pro-arrhythmic effects of exercise in myocarditis are well established [29]. Myocarditis is a common cause of sudden cardiac death in athletes [10] and myocarditis is a frequent underlying cause of sudden cardiac death in physically active persons [30]. Our study, therefore, provides important reassurance that patients post-COVID without elevation of troponin and signs of cardiac diseases can safely perform physical exercise.
In conclusion, an individualized exercise program is a safe and well-tolerated treatment option in patients with persisting symptoms post-COVID. These patients significantly improve in physical performance after 4 weeks compared to patients without exercise intervention and these positive effects persist after the intervention ended. Exercise had no beneficial effect on fatigue symptoms or quality of life in our study. Additional results from longer or different exercise interventions on quality of life and fatigue are eagerly awaited.

Acknowledgements

We thank Johanna Richter for her assistance in creating the graphics used in this work.

Declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

Neuer Inhalt

Print-Titel

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Anhänge

Supplementary Information

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Wulf Hanson S, Abbafati C, Aerts JG, Al-Aly Z, Ashbaugh C, Ballouz T, Blyuss O, Bobkova P, Bonsel G, Borzakova S, Buonsenso D, Butnaru D, Carter A, Chu H, de Rose C, Diab MM, Ekbom E, El Tantawi M, Fomin V, Frithiof R, Gamirova A, Glybochko PV, Haagsma JA, Haghjooy Javanmard S, Hamilton EB, Harris G, Heijenbrok-Kal MH, Helbok R, Hellemons ME, Hillus D, Huijts SM, Hultström M, Jassat W, Kurth F, Larsson I-M, Lipcsey M, Liu C, Loflin CD, Malinovschi A, Mao W, Mazankova L, McCulloch D, Menges D, Mohammadifard N, Munblit D, Nekliudov NA, Ogbuoji O, Osmanov IM, Peñalvo JL, Petersen MS, Puhan MA, Rahman M, Rass V, Reinig N, Ribbers GM, Ricchiuto A, Rubertsson S, Samitova E, Sarrafzadegan N, Shikhaleva A, Simpson KE, Sinatti D, Soriano JB, Spiridonova E, Steinbeis F, Svistunov AA, Valentini P, van de Water BJ, van den Berg-Emons R, Wallin E, Witzenrath M, Wu Y, Xu H, Zoller T, Adolph C, Albright J, Amlag JO, Aravkin AY, Bang-Jensen BL, Bisignano C, Castellano R, Castro E, Chakrabarti S, Collins JK, Dai X, Daoud F, Dapper C, Deen A, Duncan BB, Erickson M, Ewald SB, Ferrari AJ, Flaxman AD, Fullman N, Gamkrelidze A, Giles JR, Guo G, Hay SI, He J, Helak M, Hulland EN, Kereselidze M, Krohn KJ, Lazzar-Atwood A, Lindstrom A, Lozano R, Malta DC, Månsson J, Mantilla Herrera AM, Mokdad AH, Monasta L, Nomura S, Pasovic M, Pigott DM, Reiner RC, Reinke G, Ribeiro ALP, Santomauro DF, Sholokhov A, Spurlock EE, Walcott R, Walker A, Wiysonge CS, Zheng P, Bettger JP, Murray CJL, Vos T (2022) Estimated Global Proportions of Individuals With Persistent Fatigue, Cognitive, and Respiratory Symptom Clusters Following Symptomatic COVID-19 in 2020 and 2021. JAMA 328:1604–1615. https://doi.org/10.1001/jama.2022.18931CrossRefPubMedPubMedCentral Wulf Hanson S, Abbafati C, Aerts JG, Al-Aly Z, Ashbaugh C, Ballouz T, Blyuss O, Bobkova P, Bonsel G, Borzakova S, Buonsenso D, Butnaru D, Carter A, Chu H, de Rose C, Diab MM, Ekbom E, El Tantawi M, Fomin V, Frithiof R, Gamirova A, Glybochko PV, Haagsma JA, Haghjooy Javanmard S, Hamilton EB, Harris G, Heijenbrok-Kal MH, Helbok R, Hellemons ME, Hillus D, Huijts SM, Hultström M, Jassat W, Kurth F, Larsson I-M, Lipcsey M, Liu C, Loflin CD, Malinovschi A, Mao W, Mazankova L, McCulloch D, Menges D, Mohammadifard N, Munblit D, Nekliudov NA, Ogbuoji O, Osmanov IM, Peñalvo JL, Petersen MS, Puhan MA, Rahman M, Rass V, Reinig N, Ribbers GM, Ricchiuto A, Rubertsson S, Samitova E, Sarrafzadegan N, Shikhaleva A, Simpson KE, Sinatti D, Soriano JB, Spiridonova E, Steinbeis F, Svistunov AA, Valentini P, van de Water BJ, van den Berg-Emons R, Wallin E, Witzenrath M, Wu Y, Xu H, Zoller T, Adolph C, Albright J, Amlag JO, Aravkin AY, Bang-Jensen BL, Bisignano C, Castellano R, Castro E, Chakrabarti S, Collins JK, Dai X, Daoud F, Dapper C, Deen A, Duncan BB, Erickson M, Ewald SB, Ferrari AJ, Flaxman AD, Fullman N, Gamkrelidze A, Giles JR, Guo G, Hay SI, He J, Helak M, Hulland EN, Kereselidze M, Krohn KJ, Lazzar-Atwood A, Lindstrom A, Lozano R, Malta DC, Månsson J, Mantilla Herrera AM, Mokdad AH, Monasta L, Nomura S, Pasovic M, Pigott DM, Reiner RC, Reinke G, Ribeiro ALP, Santomauro DF, Sholokhov A, Spurlock EE, Walcott R, Walker A, Wiysonge CS, Zheng P, Bettger JP, Murray CJL, Vos T (2022) Estimated Global Proportions of Individuals With Persistent Fatigue, Cognitive, and Respiratory Symptom Clusters Following Symptomatic COVID-19 in 2020 and 2021. JAMA 328:1604–1615. https://​doi.​org/​10.​1001/​jama.​2022.​18931CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, Kang L, Guo L, Liu M, Zhou X, Luo J, Huang Z, Tu S, Zhao Y, Chen L, Xu D, Li Y, Li C, Peng L, Li Y, Xie W, Cui D, Shang L, Fan G, Xu J, Wang G, Wang Y, Zhong J, Wang C, Wang J, Zhang D, Cao B (2021) 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. The Lancet 397:220–232. https://doi.org/10.1016/S0140-6736(20)32656-8CrossRef Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, Kang L, Guo L, Liu M, Zhou X, Luo J, Huang Z, Tu S, Zhao Y, Chen L, Xu D, Li Y, Li C, Peng L, Li Y, Xie W, Cui D, Shang L, Fan G, Xu J, Wang G, Wang Y, Zhong J, Wang C, Wang J, Zhang D, Cao B (2021) 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. The Lancet 397:220–232. https://​doi.​org/​10.​1016/​S0140-6736(20)32656-8CrossRef
19.
20.
Zurück zum Zitat Townsend L, Dyer AH, Jones K, Dunne J, Mooney A, Gaffney F, O’Connor L, Leavy D, O’Brien K, Dowds J, Sugrue JA, Hopkins D, Martin-Loeches I, Ni Cheallaigh C, Nadarajan P, McLaughlin AM, Bourke NM, Bergin C, O’Farrelly C, Bannan C, Conlon N (2020) Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS ONE 15:e0240784. https://doi.org/10.1371/journal.pone.0240784CrossRefPubMedPubMedCentral Townsend L, Dyer AH, Jones K, Dunne J, Mooney A, Gaffney F, O’Connor L, Leavy D, O’Brien K, Dowds J, Sugrue JA, Hopkins D, Martin-Loeches I, Ni Cheallaigh C, Nadarajan P, McLaughlin AM, Bourke NM, Bergin C, O’Farrelly C, Bannan C, Conlon N (2020) Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS ONE 15:e0240784. https://​doi.​org/​10.​1371/​journal.​pone.​0240784CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Pelliccia A, Sharma S, Gati S, Bäck M, Börjesson M, Caselli S, Collet J-P, Corrado D, Drezner JA, Halle M, Hansen D, Heidbuchel H, Myers J, Niebauer J, Papadakis M, Piepoli MF, Prescott E, Roos-Hesselink JW, Graham Stuart A, Taylor RS, Thompson PD, Tiberi M, Vanhees L, Wilhelm M (2021) 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur Heart J 42:17–96. https://doi.org/10.1093/eurheartj/ehaa605CrossRefPubMed Pelliccia A, Sharma S, Gati S, Bäck M, Börjesson M, Caselli S, Collet J-P, Corrado D, Drezner JA, Halle M, Hansen D, Heidbuchel H, Myers J, Niebauer J, Papadakis M, Piepoli MF, Prescott E, Roos-Hesselink JW, Graham Stuart A, Taylor RS, Thompson PD, Tiberi M, Vanhees L, Wilhelm M (2021) 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur Heart J 42:17–96. https://​doi.​org/​10.​1093/​eurheartj/​ehaa605CrossRefPubMed
28.
Zurück zum Zitat Pelliccia A, Solberg EE, Papadakis M, Adami PE, Biffi A, Caselli S, La Gerche A, Niebauer J, Pressler A, Schmied CM, Serratosa L, Halle M, van Buuren F, Borjesson M, Carrè F, Panhuyzen-Goedkoop NM, Heidbuchel H, Olivotto I, Corrado D, Sinagra G, Sharma S (2019) Recommendations for participation in competitive and leisure time sport in athletes with cardiomyopathies, myocarditis, and pericarditis: position statement of the Sport Cardiology Section of the European Association of Preventive Cardiology (EAPC). Eur Heart J 40:19–33. https://doi.org/10.1093/eurheartj/ehy730CrossRefPubMed Pelliccia A, Solberg EE, Papadakis M, Adami PE, Biffi A, Caselli S, La Gerche A, Niebauer J, Pressler A, Schmied CM, Serratosa L, Halle M, van Buuren F, Borjesson M, Carrè F, Panhuyzen-Goedkoop NM, Heidbuchel H, Olivotto I, Corrado D, Sinagra G, Sharma S (2019) Recommendations for participation in competitive and leisure time sport in athletes with cardiomyopathies, myocarditis, and pericarditis: position statement of the Sport Cardiology Section of the European Association of Preventive Cardiology (EAPC). Eur Heart J 40:19–33. https://​doi.​org/​10.​1093/​eurheartj/​ehy730CrossRefPubMed
Metadaten
Titel
Physical exercise as a treatment for persisting symptoms post-COVID infection: review of ongoing studies and prospective randomized controlled training study
verfasst von
Alexander Kogel
Moritz Machatschek
Ronja Scharschmidt
Carolin Wollny
Florian Lordick
Mohamed Ghanem
Ulrich Laufs
Sven Fikenzer
Publikationsdatum
12.09.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Research in Cardiology / Ausgabe 11/2023
Print ISSN: 1861-0684
Elektronische ISSN: 1861-0692
DOI
https://doi.org/10.1007/s00392-023-02300-6

Weitere Artikel der Ausgabe 11/2023

Clinical Research in Cardiology 11/2023 Zur Ausgabe

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.