Skip to main content
Erschienen in: Clinical Pharmacokinetics 11/2004

01.09.2004 | Leading Article

Potential Role of Cerebral Cytochrome P450 in Clinical Pharmacokinetics

Modulation by Endogenous Compounds

verfasst von: Guillermo Gervasini, Juan Antonio Carrillo, Dr Julio Benitez

Erschienen in: Clinical Pharmacokinetics | Ausgabe 11/2004

Einloggen, um Zugang zu erhalten

Abstract

Cytochrome P450 (CYP) enzymes catalyse phase I metabolic reactions of psychotropic drugs. The main isoenzymes responsible for this biotransformation are CYP1A2, CYP2D6, CYP3A and those of the subfamily CYP2C. Although these enzymes are present in the human brain, their specific role in this tissue remains unclear. However, because CYP enzymatic activities have been reported in the human brain and because brain microsomes have been shown to metabolise the same probe substrates used to assess specific hepatic CYP activities and substrates of known hepatic CYPs, local drug metabolism is believed to be likely. There are also indications that CYP2D6 is involved in the metabolism of endogenous substrates in the brain. This, along with the fact that several neurotransmitters modulate CYP enzyme activities in human liver microsomes, indicates that CYP enzymes present in brain could be under various regulatory mechanisms and that those mechanisms could influence drug pharmacokinetics and, hence, drug response.
In this paper we review the presence of CYP1A2, CYP2C9, CYP2D6 and CYP3A in brain, as well as the possible existence of local brain metabolism, and discuss the putative implications of endogenous modulation of these isoenzymes by neurotransmitters.
Literatur
2.
Zurück zum Zitat Sasame HA, Ames MM, Nelson SD. Cytochrome P-450 and NADPH cytochrome c reductase in rat brain: formation of catechols and reactive catechol metabolites. Biochem Biophys Res Commun 1977; 78: 919–26PubMedCrossRef Sasame HA, Ames MM, Nelson SD. Cytochrome P-450 and NADPH cytochrome c reductase in rat brain: formation of catechols and reactive catechol metabolites. Biochem Biophys Res Commun 1977; 78: 919–26PubMedCrossRef
3.
Zurück zum Zitat Ravindranath V, Anandatheerthavarada HK, Shankar SK. Xenobiotic metabolism in human brain: presence of cytochrome P-450 and associated mono-oxygenases. Brain Res 1989; 496: 331–5PubMedCrossRef Ravindranath V, Anandatheerthavarada HK, Shankar SK. Xenobiotic metabolism in human brain: presence of cytochrome P-450 and associated mono-oxygenases. Brain Res 1989; 496: 331–5PubMedCrossRef
4.
Zurück zum Zitat Bhamre S, Anandatheerthavarada HK, Shankar SK, et al. Microsomal cytochrome P450 in human brain regions. Biochem Pharmacol 1992; 44: 1223–5PubMedCrossRef Bhamre S, Anandatheerthavarada HK, Shankar SK, et al. Microsomal cytochrome P450 in human brain regions. Biochem Pharmacol 1992; 44: 1223–5PubMedCrossRef
5.
Zurück zum Zitat Bhamre S, Anandatheerathavarada HK, Shankar SK, et al. Purification of multiple forms of cytochrome P450 from a human brain and reconstitution of catalytic activities. Arch Biochem Biophys 1993; 301: 251–5PubMedCrossRef Bhamre S, Anandatheerathavarada HK, Shankar SK, et al. Purification of multiple forms of cytochrome P450 from a human brain and reconstitution of catalytic activities. Arch Biochem Biophys 1993; 301: 251–5PubMedCrossRef
6.
Zurück zum Zitat Ghersi-Egea JF, Perrin R, Leininger-Muller B, et al. Subcellular localization of cytochrome P450, and activities of several enzymes responsible for drug metabolism in the human brain. Biochem Pharmacol 1993; 45: 647–58PubMedCrossRef Ghersi-Egea JF, Perrin R, Leininger-Muller B, et al. Subcellular localization of cytochrome P450, and activities of several enzymes responsible for drug metabolism in the human brain. Biochem Pharmacol 1993; 45: 647–58PubMedCrossRef
7.
Zurück zum Zitat Bhagwat SV, Boyd MR, Ravindranath V. Multiple forms of cytochrome P450 and associated monooxygenase activities in human brain mitochondria. Biochem Pharmacol 2000; 59: 573–82PubMedCrossRef Bhagwat SV, Boyd MR, Ravindranath V. Multiple forms of cytochrome P450 and associated monooxygenase activities in human brain mitochondria. Biochem Pharmacol 2000; 59: 573–82PubMedCrossRef
8.
Zurück zum Zitat Guengerich FP, Mason PS. Immunological comparison of hepatic and extrahepatic cytochromes P-450. Mol Pharmacol 1979; 15: 154–64PubMed Guengerich FP, Mason PS. Immunological comparison of hepatic and extrahepatic cytochromes P-450. Mol Pharmacol 1979; 15: 154–64PubMed
9.
Zurück zum Zitat Marietta MP, Vesell ES, Hartman RD, et al. Characterization of cytochrome P-450-dependent aminopyrine N-demethylase in rat brain: comparison with hepatic aminopyrine N-demethylation. J Pharmacol Exp Ther 1979; 208: 271–9PubMed Marietta MP, Vesell ES, Hartman RD, et al. Characterization of cytochrome P-450-dependent aminopyrine N-demethylase in rat brain: comparison with hepatic aminopyrine N-demethylation. J Pharmacol Exp Ther 1979; 208: 271–9PubMed
10.
Zurück zum Zitat Anandatheerthavarada HK, Shankar SK, Ravindranath V. Rat brain cytochromes P-450: catalytic, immunochemical properties and inducibility of multiple forms. Brain Res 1990; 536: 339–43PubMedCrossRef Anandatheerthavarada HK, Shankar SK, Ravindranath V. Rat brain cytochromes P-450: catalytic, immunochemical properties and inducibility of multiple forms. Brain Res 1990; 536: 339–43PubMedCrossRef
11.
Zurück zum Zitat Kalow W, Tyndale RF. Debrisoquine/sparteine monooxygenase and other P-450s in brain. In: Kalow W, editor. Pharmacogenetics of drug metabolism. New York: Pergamon Press Inc., 1992: 649–56 Kalow W, Tyndale RF. Debrisoquine/sparteine monooxygenase and other P-450s in brain. In: Kalow W, editor. Pharmacogenetics of drug metabolism. New York: Pergamon Press Inc., 1992: 649–56
12.
Zurück zum Zitat Mesnil M, Testa B, Jenner P. Xenobiotic metabolism by brain monooxygenases and other cerebral enzymes. Adv Drug Res 1984; 13: 96–207 Mesnil M, Testa B, Jenner P. Xenobiotic metabolism by brain monooxygenases and other cerebral enzymes. Adv Drug Res 1984; 13: 96–207
13.
Zurück zum Zitat Warner M, Kohler C, Hansson T, et al. Regional distribution of cytochrome P-450 in the rat brain: spectral quantitation and contribution of P-450b,e, and P-450c,d. J Neurochem 1988; 50: 1057–65PubMedCrossRef Warner M, Kohler C, Hansson T, et al. Regional distribution of cytochrome P-450 in the rat brain: spectral quantitation and contribution of P-450b,e, and P-450c,d. J Neurochem 1988; 50: 1057–65PubMedCrossRef
14.
Zurück zum Zitat Miksys S, Hoffmann E, Tyndale RF. Regional and cellular induction of nicotine-metabolizing CYP2B1 in rat brain by chronic nicotine treatment. Biochem Pharmacol 2000; 59: 1501–11PubMedCrossRef Miksys S, Hoffmann E, Tyndale RF. Regional and cellular induction of nicotine-metabolizing CYP2B1 in rat brain by chronic nicotine treatment. Biochem Pharmacol 2000; 59: 1501–11PubMedCrossRef
15.
Zurück zum Zitat Walther B, Ghersi-Egea JF, Minn A, et al. Subcellular distribution of cytochrome P-450 in the brain. Brain Res 1986; 375: 338–44PubMedCrossRef Walther B, Ghersi-Egea JF, Minn A, et al. Subcellular distribution of cytochrome P-450 in the brain. Brain Res 1986; 375: 338–44PubMedCrossRef
16.
Zurück zum Zitat Miksys S, Rao Y, Sellers EM, et al. Regional and cellular distribution of CYP2D subfamily members in rat brain. Xenobiotica 2000; 30: 547–64PubMedCrossRef Miksys S, Rao Y, Sellers EM, et al. Regional and cellular distribution of CYP2D subfamily members in rat brain. Xenobiotica 2000; 30: 547–64PubMedCrossRef
17.
Zurück zum Zitat Miksys S, Schoedel KA, Mash DC, et al. Nicotine-metabolizing CYP2B6 enzyme in human brain regions: higher levels in smokers and smoking alcoholics [abstract]. FASEB J 2001; 15: A573 Miksys S, Schoedel KA, Mash DC, et al. Nicotine-metabolizing CYP2B6 enzyme in human brain regions: higher levels in smokers and smoking alcoholics [abstract]. FASEB J 2001; 15: A573
18.
Zurück zum Zitat Miksys S, Rao Y, Hoffmann E, et al. Regional and cellular expression of CYP2D6 in human brain: higher levels in alcoholics. J Neurochem 2002; 82: 1376–87PubMedCrossRef Miksys S, Rao Y, Hoffmann E, et al. Regional and cellular expression of CYP2D6 in human brain: higher levels in alcoholics. J Neurochem 2002; 82: 1376–87PubMedCrossRef
19.
Zurück zum Zitat Siegle I, Fritz P, Eckhardt K, et al. Cellular localization and regional distribution of CYP2D6 mRNA and protein expression in human brain. Pharmacogenetics 2001; 11: 237–45PubMedCrossRef Siegle I, Fritz P, Eckhardt K, et al. Cellular localization and regional distribution of CYP2D6 mRNA and protein expression in human brain. Pharmacogenetics 2001; 11: 237–45PubMedCrossRef
20.
Zurück zum Zitat McFayden MC, Melvin WT, Murray GI. Regional distribution of individual forms of cytochrome P450 mRNA in normal adult human brain. Biochem Pharmacol 1998; 55: 825–30PubMedCrossRef McFayden MC, Melvin WT, Murray GI. Regional distribution of individual forms of cytochrome P450 mRNA in normal adult human brain. Biochem Pharmacol 1998; 55: 825–30PubMedCrossRef
21.
Zurück zum Zitat Farin FM, Omiecinski CJ. Regiospecific expression of cytochrome P-450s and microsomal epoxide hydrolase in human brain tissue. J Toxicol Environ Health 1993; 40: 317–35PubMedCrossRef Farin FM, Omiecinski CJ. Regiospecific expression of cytochrome P-450s and microsomal epoxide hydrolase in human brain tissue. J Toxicol Environ Health 1993; 40: 317–35PubMedCrossRef
22.
Zurück zum Zitat Morse DC, Stein AP, Thomas PE, et al. Distribution and induction of cytochrome P450 1A1 and 1A2 in rat brain. Toxicol Appl Pharmacol 1998; 152: 232–9PubMedCrossRef Morse DC, Stein AP, Thomas PE, et al. Distribution and induction of cytochrome P450 1A1 and 1A2 in rat brain. Toxicol Appl Pharmacol 1998; 152: 232–9PubMedCrossRef
23.
Zurück zum Zitat Iba MM, Storch A, Ghosal A, et al. Constitutive and inducible levels of CYP1A1 and CYP1A2 in rat cerebral cortex and cerebellum. Arch Toxicol 2003; 77(10): 547–54PubMedCrossRef Iba MM, Storch A, Ghosal A, et al. Constitutive and inducible levels of CYP1A1 and CYP1A2 in rat cerebral cortex and cerebellum. Arch Toxicol 2003; 77(10): 547–54PubMedCrossRef
24.
Zurück zum Zitat Schilter B, Omiecinski CJ. Regional distribution and expression modulation of cytochrome P-450 and epoxide hydrolase mRNAs in the rat brain. Mol Pharmacol 1993; 44: 990–6PubMed Schilter B, Omiecinski CJ. Regional distribution and expression modulation of cytochrome P-450 and epoxide hydrolase mRNAs in the rat brain. Mol Pharmacol 1993; 44: 990–6PubMed
25.
Zurück zum Zitat Knupfer H, Knupfer MM, Hotfilder M, et al. P450-expression in brain tumors. Oncol Res 1999; 11: 523–8PubMed Knupfer H, Knupfer MM, Hotfilder M, et al. P450-expression in brain tumors. Oncol Res 1999; 11: 523–8PubMed
26.
Zurück zum Zitat Watts PM, Riedl AG, Douek DC, et al. Co-localization of P450 enzymes in the rat substantia nigra with tyrosine hydroxylase. Neuroscience 1998; 86: 511–9PubMedCrossRef Watts PM, Riedl AG, Douek DC, et al. Co-localization of P450 enzymes in the rat substantia nigra with tyrosine hydroxylase. Neuroscience 1998; 86: 511–9PubMedCrossRef
27.
Zurück zum Zitat Riedl AG, Watts PM, Douek DC, et al. Expression and distribution of CYP2C enzymes in rat basal ganglia. Synapse 2000; 38: 392–402PubMedCrossRef Riedl AG, Watts PM, Douek DC, et al. Expression and distribution of CYP2C enzymes in rat basal ganglia. Synapse 2000; 38: 392–402PubMedCrossRef
28.
Zurück zum Zitat Huang CB. Immunohistochemical localization of cytochrome P450 enzymes 2C and 4A in the normal rat brain. Chin Med J (Engl) 1998; 111: 1007–12 Huang CB. Immunohistochemical localization of cytochrome P450 enzymes 2C and 4A in the normal rat brain. Chin Med J (Engl) 1998; 111: 1007–12
29.
Zurück zum Zitat Klose TS, Blaisdell JA, Goldstein JA. Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs. J Biochem Mol Toxicol 1999; 13: 289–95PubMedCrossRef Klose TS, Blaisdell JA, Goldstein JA. Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs. J Biochem Mol Toxicol 1999; 13: 289–95PubMedCrossRef
30.
Zurück zum Zitat Luo G, Zeldin DC, Blaisdell JA, et al. Cloning and expression of murine CYP2Cs and their ability to metabolize arachidonic acid. Arch Biochem Biophys 1998; 357: 45–57PubMedCrossRef Luo G, Zeldin DC, Blaisdell JA, et al. Cloning and expression of murine CYP2Cs and their ability to metabolize arachidonic acid. Arch Biochem Biophys 1998; 357: 45–57PubMedCrossRef
31.
Zurück zum Zitat Chinta SJ, Pai HV, Upadhya SC, et al. Constitutive expression and localization of the major drug metabolizing enzyme, cytochrome P4502D in human brain. Brain Res Mol Brain Res 2002; 103: 49–61PubMedCrossRef Chinta SJ, Pai HV, Upadhya SC, et al. Constitutive expression and localization of the major drug metabolizing enzyme, cytochrome P4502D in human brain. Brain Res Mol Brain Res 2002; 103: 49–61PubMedCrossRef
32.
Zurück zum Zitat Norris PJ, Hardwick JP, Emson PC. Regional distribution of cytochrome P450 2D1 in the rat central nervous system. J Comp Neurol 1996; 366: 244–58PubMedCrossRef Norris PJ, Hardwick JP, Emson PC. Regional distribution of cytochrome P450 2D1 in the rat central nervous system. J Comp Neurol 1996; 366: 244–58PubMedCrossRef
33.
Zurück zum Zitat Riedl AG, Watts PM, Edwards RJ, et al. Expression and localisation of CYP2D enzymes in rat basal ganglia. Brain Res 1999; 822: 175–91PubMedCrossRef Riedl AG, Watts PM, Edwards RJ, et al. Expression and localisation of CYP2D enzymes in rat basal ganglia. Brain Res 1999; 822: 175–91PubMedCrossRef
34.
Zurück zum Zitat Kirches E, Scherlach C, von Bossanyi P, et al. MGMT- and P450 3A-inhibitors do not sensitize glioblastoma cell cultures against nitrosoureas. Clin Neuropathol 1999; 18: 1–8PubMed Kirches E, Scherlach C, von Bossanyi P, et al. MGMT- and P450 3A-inhibitors do not sensitize glioblastoma cell cultures against nitrosoureas. Clin Neuropathol 1999; 18: 1–8PubMed
35.
Zurück zum Zitat Wang H, Kawashima H, Strobel HW. cDNA cloning of a novel CYP3A from rat brain. Biochem Biophys Res Commun 1996; 221: 157–62PubMedCrossRef Wang H, Kawashima H, Strobel HW. cDNA cloning of a novel CYP3A from rat brain. Biochem Biophys Res Commun 1996; 221: 157–62PubMedCrossRef
36.
Zurück zum Zitat Anakk S, Ku CY, Vore M, et al. Insights into gender bias: rat cytochrome P450 3A9. J Pharmacol Exp Ther 2003; 305: 703–9PubMedCrossRef Anakk S, Ku CY, Vore M, et al. Insights into gender bias: rat cytochrome P450 3A9. J Pharmacol Exp Ther 2003; 305: 703–9PubMedCrossRef
37.
Zurück zum Zitat Jayyosi Z, Cooper KO, Thomas PE. Brain cytochrome P450 and testosterone metabolism by rat brain subcellular fractions: presence of cytochrome P450 3A immunoreactive protein in rat brain mitochondria. Arch Biochem Biophys 1992; 298: 265–70PubMedCrossRef Jayyosi Z, Cooper KO, Thomas PE. Brain cytochrome P450 and testosterone metabolism by rat brain subcellular fractions: presence of cytochrome P450 3A immunoreactive protein in rat brain mitochondria. Arch Biochem Biophys 1992; 298: 265–70PubMedCrossRef
38.
Zurück zum Zitat Dai D, Bai R, Hodgson E, et al. Cloning, sequencing, heterologous expression, and characterization of murine cytochrome P450 3a25*(Cyp3a25), a testosterone 6beta-hydroxylase. J Biochem Mol Toxicol 2001; 15: 90–9PubMedCrossRef Dai D, Bai R, Hodgson E, et al. Cloning, sequencing, heterologous expression, and characterization of murine cytochrome P450 3a25*(Cyp3a25), a testosterone 6beta-hydroxylase. J Biochem Mol Toxicol 2001; 15: 90–9PubMedCrossRef
39.
Zurück zum Zitat Miksys SL, Tyndale RF. Drug-metabolizing cytochrome P450s in the brain. J Psychiatry Neurosci 2002; 27: 406–15PubMed Miksys SL, Tyndale RF. Drug-metabolizing cytochrome P450s in the brain. J Psychiatry Neurosci 2002; 27: 406–15PubMed
40.
Zurück zum Zitat Hedlund E, Gustafsson JA, Warner M. Cytochrome P450 in the brain: 2B or not 2B. Trends Pharmacol Sci 1998; 19: 82–5PubMedCrossRef Hedlund E, Gustafsson JA, Warner M. Cytochrome P450 in the brain: 2B or not 2B. Trends Pharmacol Sci 1998; 19: 82–5PubMedCrossRef
41.
Zurück zum Zitat Britto MR, Wedlund PJ. Cytochrome P-450 in the brain: potential evolutionary and therapeutic relevance of localization of drug-metabolizing enzymes. Drug Metab Dispos 1992; 20: 446–50PubMed Britto MR, Wedlund PJ. Cytochrome P-450 in the brain: potential evolutionary and therapeutic relevance of localization of drug-metabolizing enzymes. Drug Metab Dispos 1992; 20: 446–50PubMed
42.
Zurück zum Zitat Anandatheerthavarada HK, Shankar SK, Bhamre S, et al. Induction of brain cytochrome P-450IIE1 by chronic ethanol treatment. Brain Res 1993; 601: 279–85PubMedCrossRef Anandatheerthavarada HK, Shankar SK, Bhamre S, et al. Induction of brain cytochrome P-450IIE1 by chronic ethanol treatment. Brain Res 1993; 601: 279–85PubMedCrossRef
43.
Zurück zum Zitat Tyndale RF, Li Y, Li NY, et al. Characterization of cytochrome P-450 2D1 activity in rat brain: high-affinity kinetics for dextromethorphan. Drug Metab Dispos 1999; 27: 924–30PubMed Tyndale RF, Li Y, Li NY, et al. Characterization of cytochrome P-450 2D1 activity in rat brain: high-affinity kinetics for dextromethorphan. Drug Metab Dispos 1999; 27: 924–30PubMed
44.
Zurück zum Zitat Dhawan A, Parmar D, Dayal M, et al. Cytochrome P450 (P450) isoenzyme specific dealkylation of alkoxyresorufins in rat brain microsomes. Mol Cell Biochem 1999; 200: 169–76PubMedCrossRef Dhawan A, Parmar D, Dayal M, et al. Cytochrome P450 (P450) isoenzyme specific dealkylation of alkoxyresorufins in rat brain microsomes. Mol Cell Biochem 1999; 200: 169–76PubMedCrossRef
45.
Zurück zum Zitat Voirol P, Jonzier-Perey M, Porchet F, et al. Cytochrome P-450 activities in human and rat brain microsomes. Brain Res 2000; 855: 235–43PubMedCrossRef Voirol P, Jonzier-Perey M, Porchet F, et al. Cytochrome P-450 activities in human and rat brain microsomes. Brain Res 2000; 855: 235–43PubMedCrossRef
46.
Zurück zum Zitat Dragoni S, Bellik L, Frosini M, et al. Cytochrome P450-dependent metabolism of 1-deprenyl in monkey (Cercopithecus aethiops) and C57BL/6 mouse brain microsomal preparations. J Neurochem 2003; 86: 1174–80PubMedCrossRef Dragoni S, Bellik L, Frosini M, et al. Cytochrome P450-dependent metabolism of 1-deprenyl in monkey (Cercopithecus aethiops) and C57BL/6 mouse brain microsomal preparations. J Neurochem 2003; 86: 1174–80PubMedCrossRef
47.
Zurück zum Zitat Pai HV, Upadhya SC, Chinta SJ, et al. Differential metabolism of alprazolam by liver and brain cytochrome P4503A to pharmacologically active metabolite. Pharmacogenomics J 2002; 2: 243–58PubMedCrossRef Pai HV, Upadhya SC, Chinta SJ, et al. Differential metabolism of alprazolam by liver and brain cytochrome P4503A to pharmacologically active metabolite. Pharmacogenomics J 2002; 2: 243–58PubMedCrossRef
48.
Zurück zum Zitat Coleman T, Spellman EF, Rostami-Hodjegan A, et al. The 1′-hydroxylation of rac-bufuralol by rat brain microsomes. Drug Metab Dispos 2000; 28: 1094–9PubMed Coleman T, Spellman EF, Rostami-Hodjegan A, et al. The 1′-hydroxylation of rac-bufuralol by rat brain microsomes. Drug Metab Dispos 2000; 28: 1094–9PubMed
49.
Zurück zum Zitat Baum LO, Strobel HW. Regulation of expression of cytochrome P-450 2D mRNA in rat brain with steroid hormones. Brain Res 1997; 765: 67–73PubMedCrossRef Baum LO, Strobel HW. Regulation of expression of cytochrome P-450 2D mRNA in rat brain with steroid hormones. Brain Res 1997; 765: 67–73PubMedCrossRef
50.
Zurück zum Zitat Bergh AF, Strobel HW. Anatomical distribution of NADPH-cytochrome P450 reductase and cytochrome P4502D forms in rat brain: effects of xenobiotics and sex steroids. Mol Cell Biochem 1996; 162: 31–41PubMed Bergh AF, Strobel HW. Anatomical distribution of NADPH-cytochrome P450 reductase and cytochrome P4502D forms in rat brain: effects of xenobiotics and sex steroids. Mol Cell Biochem 1996; 162: 31–41PubMed
51.
Zurück zum Zitat Martinez C, Agundez JA, Gervasini G, et al. Tryptamine: a possible endogenous substrate for CYP2D6. Pharmacogenetics 1997; 7: 85–93PubMedCrossRef Martinez C, Agundez JA, Gervasini G, et al. Tryptamine: a possible endogenous substrate for CYP2D6. Pharmacogenetics 1997; 7: 85–93PubMedCrossRef
52.
Zurück zum Zitat Gervasini G, Martinez C, Agundez JA, et al. Inhibition of cytochrome P450 2C9 activity in vitro by 5-hydroxytryptamine and adrenaline. Pharmacogenetics 2001; 11: 29–37PubMedCrossRef Gervasini G, Martinez C, Agundez JA, et al. Inhibition of cytochrome P450 2C9 activity in vitro by 5-hydroxytryptamine and adrenaline. Pharmacogenetics 2001; 11: 29–37PubMedCrossRef
53.
Zurück zum Zitat Agundez JA, Gallardo L, Martinez C, et al. Modulation of CYP1A2 enzyme activity by indoleamines: inhibition by serotonin and tryptamine. Pharmacogenetics 1998; 8: 251–8PubMed Agundez JA, Gallardo L, Martinez C, et al. Modulation of CYP1A2 enzyme activity by indoleamines: inhibition by serotonin and tryptamine. Pharmacogenetics 1998; 8: 251–8PubMed
54.
Zurück zum Zitat Schilter B, Andersen MR, Acharya C, et al. Activation of cytochrome P450 gene expression in the rat brain by phenobarbital-like inducers. J Pharmacol Exp Ther 2000; 294: 916–22PubMed Schilter B, Andersen MR, Acharya C, et al. Activation of cytochrome P450 gene expression in the rat brain by phenobarbital-like inducers. J Pharmacol Exp Ther 2000; 294: 916–22PubMed
55.
Zurück zum Zitat Warner M, Gustafsson JA. Effect of ethanol on cytochrome P450 in the rat brain. Proc Natl Acad Sci U S A 1994; 91: 1019–23PubMedCrossRef Warner M, Gustafsson JA. Effect of ethanol on cytochrome P450 in the rat brain. Proc Natl Acad Sci U S A 1994; 91: 1019–23PubMedCrossRef
56.
Zurück zum Zitat Upadhya SC, Chinta SJ, Pai HV, et al. Toxicological consequences of differential regulation of cytochrome p450 isoforms in rat brain regions by phenobarbital. Arch Biochem Biophys 2002; 399: 56–65PubMedCrossRef Upadhya SC, Chinta SJ, Pai HV, et al. Toxicological consequences of differential regulation of cytochrome p450 isoforms in rat brain regions by phenobarbital. Arch Biochem Biophys 2002; 399: 56–65PubMedCrossRef
57.
Zurück zum Zitat Rosenbrock H, Hagemeyer CE, Singec I, et al. Testosterone metabolism in rat brain is differentially enhanced by phenytoin-inducible cytochrome P450 isoforms. J Neuroendocrinol 1999; 11: 597–604PubMedCrossRef Rosenbrock H, Hagemeyer CE, Singec I, et al. Testosterone metabolism in rat brain is differentially enhanced by phenytoin-inducible cytochrome P450 isoforms. J Neuroendocrinol 1999; 11: 597–604PubMedCrossRef
58.
Zurück zum Zitat Hansson T, Tindberg N, Ingelman-Sundberg M, et al. Regional distribution of ethanol-inducible cytochrome P450 IIE1 in the rat central nervous system. Neuroscience 1990; 34: 451–63PubMedCrossRef Hansson T, Tindberg N, Ingelman-Sundberg M, et al. Regional distribution of ethanol-inducible cytochrome P450 IIE1 in the rat central nervous system. Neuroscience 1990; 34: 451–63PubMedCrossRef
59.
Zurück zum Zitat Schoedel KA, Sellers EM, Tyndale RF. Induction of CYP2B1/2 and nicotine metabolism by ethanol in rat liver but not rat brain. Biochem Pharmacol 2001; 62: 1025–36PubMedCrossRef Schoedel KA, Sellers EM, Tyndale RF. Induction of CYP2B1/2 and nicotine metabolism by ethanol in rat liver but not rat brain. Biochem Pharmacol 2001; 62: 1025–36PubMedCrossRef
60.
Zurück zum Zitat Strobel HW, Thompson CM, Antonovic L. Cytochromes P450 in brain: function and significance. Curr Drug Metab 2001; 2: 199–214PubMedCrossRef Strobel HW, Thompson CM, Antonovic L. Cytochromes P450 in brain: function and significance. Curr Drug Metab 2001; 2: 199–214PubMedCrossRef
61.
Zurück zum Zitat Hedlund E, Gustafsson JA, Warner M. Cytochrome P450 in the brain: a review. Curr Drug Metab 2001; 2: 245–63PubMedCrossRef Hedlund E, Gustafsson JA, Warner M. Cytochrome P450 in the brain: a review. Curr Drug Metab 2001; 2: 245–63PubMedCrossRef
62.
Zurück zum Zitat Nissbrandt H, Bergquist F, Jonason J, et al. Inhibition of cytochrome P450 2E1 induces an increase in extracellular dopamine in rat substantia nigra: a new metabolic pathway? Synapse 2001; 40: 294–301PubMedCrossRef Nissbrandt H, Bergquist F, Jonason J, et al. Inhibition of cytochrome P450 2E1 induces an increase in extracellular dopamine in rat substantia nigra: a new metabolic pathway? Synapse 2001; 40: 294–301PubMedCrossRef
63.
Zurück zum Zitat Renton KW, Nicholson TE. Hepatic and central nervous system cytochrome P450 are down-regulated during lipopolysaccharide-evoked localized inflammation in brain. J Pharmacol Exp Ther 2000; 294: 524–30PubMed Renton KW, Nicholson TE. Hepatic and central nervous system cytochrome P450 are down-regulated during lipopolysaccharide-evoked localized inflammation in brain. J Pharmacol Exp Ther 2000; 294: 524–30PubMed
64.
Zurück zum Zitat Geng J, Strobel HW. Identification of cytochromes P450 1A2, 2A1, 2C7, 2E1 in rat glioma C6 cell line by RT-PCR and specific restriction enzyme digestion. Biochem Biophys Res Commun 1993; 197: 1179–84PubMedCrossRef Geng J, Strobel HW. Identification of cytochromes P450 1A2, 2A1, 2C7, 2E1 in rat glioma C6 cell line by RT-PCR and specific restriction enzyme digestion. Biochem Biophys Res Commun 1993; 197: 1179–84PubMedCrossRef
65.
Zurück zum Zitat Brosen K. Drug interactions and the cytochrome P450 system: the role of cytochrome P450 1A2. Clin Pharmacokinet 1995; 29 Suppl. 1: 20–5PubMedCrossRef Brosen K. Drug interactions and the cytochrome P450 system: the role of cytochrome P450 1A2. Clin Pharmacokinet 1995; 29 Suppl. 1: 20–5PubMedCrossRef
66.
Zurück zum Zitat Bertilsson L, Carrillo JA, Dahl ML, et al. Clozapine disposition covaries with CYP1A2 activity determined by a caffeine test. Br J Clin Pharmacol 1994; 38: 471–3PubMedCrossRef Bertilsson L, Carrillo JA, Dahl ML, et al. Clozapine disposition covaries with CYP1A2 activity determined by a caffeine test. Br J Clin Pharmacol 1994; 38: 471–3PubMedCrossRef
67.
Zurück zum Zitat Ring BJ, Catlow J, Lindsay TJ, et al. Identification of the human cytochromes P450 responsible for the in vitro formation of the major oxidative metabolites of the antipsychotic agent olanzapine. J Pharmacol Exp Ther 1996; 276: 658–66PubMed Ring BJ, Catlow J, Lindsay TJ, et al. Identification of the human cytochromes P450 responsible for the in vitro formation of the major oxidative metabolites of the antipsychotic agent olanzapine. J Pharmacol Exp Ther 1996; 276: 658–66PubMed
68.
Zurück zum Zitat Cohen LJ, De Vane CL. Clinical implications of antidepressant pharmacokinetics and pharmacogenetics. Ann Pharmacother 1996; 30: 1471–80PubMed Cohen LJ, De Vane CL. Clinical implications of antidepressant pharmacokinetics and pharmacogenetics. Ann Pharmacother 1996; 30: 1471–80PubMed
69.
Zurück zum Zitat Carrillo JA, Benitez J. CYP1A2 activity, gender and smoking, as variables influencing the toxicity of caffeine. Br J Clin Pharmacol 1996; 41: 605–8PubMedCrossRef Carrillo JA, Benitez J. CYP1A2 activity, gender and smoking, as variables influencing the toxicity of caffeine. Br J Clin Pharmacol 1996; 41: 605–8PubMedCrossRef
70.
Zurück zum Zitat Carrillo JA, Herraiz AG, Ramos SI, et al. Role of the smoking-induced cytochrome P450 (CYP)1A2 and polymorphic CYP2D6 in steady-state concentration of olanzapine. J Clin Psychopharmacol 2003; 23: 119–27PubMedCrossRef Carrillo JA, Herraiz AG, Ramos SI, et al. Role of the smoking-induced cytochrome P450 (CYP)1A2 and polymorphic CYP2D6 in steady-state concentration of olanzapine. J Clin Psychopharmacol 2003; 23: 119–27PubMedCrossRef
71.
Zurück zum Zitat Carrillo JA, Benitez J. Caffeine metabolism in a healthy Spanish population: N-acetylator phenotype and oxidation pathways. Clin Pharmacol Ther 1994; 55: 293–304PubMedCrossRef Carrillo JA, Benitez J. Caffeine metabolism in a healthy Spanish population: N-acetylator phenotype and oxidation pathways. Clin Pharmacol Ther 1994; 55: 293–304PubMedCrossRef
72.
Zurück zum Zitat Butler MA, Iwasaki M, Guengerich FP, et al. Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc Natl Acad Sci U S A 1989; 86: 7696–700PubMedCrossRef Butler MA, Iwasaki M, Guengerich FP, et al. Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc Natl Acad Sci U S A 1989; 86: 7696–700PubMedCrossRef
73.
Zurück zum Zitat Bourrie M, Meunier V, Berger Y, et al. Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes. J Pharmacol Exp Ther 1996; 277: 321–32PubMed Bourrie M, Meunier V, Berger Y, et al. Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes. J Pharmacol Exp Ther 1996; 277: 321–32PubMed
74.
Zurück zum Zitat Fuhr U, Rost KL, Engelhardt R, et al. Evaluation of caffeine as a test drug for CYP1A2, NAT2 and CYP2E1 phenotyping in man by in vivo versus in vitro correlations. Pharmacogenetics 1996; 6: 159–76PubMedCrossRef Fuhr U, Rost KL, Engelhardt R, et al. Evaluation of caffeine as a test drug for CYP1A2, NAT2 and CYP2E1 phenotyping in man by in vivo versus in vitro correlations. Pharmacogenetics 1996; 6: 159–76PubMedCrossRef
75.
Zurück zum Zitat Nakajima M, Yokoi T, Mizutani M, et al. Genetic polymorphism in the 5′-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem (Tokyo) 1999; 125: 803–8CrossRef Nakajima M, Yokoi T, Mizutani M, et al. Genetic polymorphism in the 5′-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem (Tokyo) 1999; 125: 803–8CrossRef
76.
Zurück zum Zitat Sachse C, Brockmoller J, Bauer S, et al. Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYPl A2 gene tested with caffeine. Br J Clin Pharmacol 1999; 47: 445–9PubMedCrossRef Sachse C, Brockmoller J, Bauer S, et al. Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYPl A2 gene tested with caffeine. Br J Clin Pharmacol 1999; 47: 445–9PubMedCrossRef
77.
Zurück zum Zitat Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 1997; 29: 413–580PubMedCrossRef Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 1997; 29: 413–580PubMedCrossRef
78.
Zurück zum Zitat Brosen K, Skjelbo E, Rasmussen BB, et al. Fluvoxamine is a potent inhibitor of cytochrome P4501A2. Biochem Pharmacol 1993; 45: 1211–4PubMedCrossRef Brosen K, Skjelbo E, Rasmussen BB, et al. Fluvoxamine is a potent inhibitor of cytochrome P4501A2. Biochem Pharmacol 1993; 45: 1211–4PubMedCrossRef
79.
Zurück zum Zitat Meyer MC, Baldessarini RJ, Goff DC, et al. Clinically significant interactions of psychotropic agents with antipsychotic drugs. Drug Saf 1996; 15: 333–46PubMedCrossRef Meyer MC, Baldessarini RJ, Goff DC, et al. Clinically significant interactions of psychotropic agents with antipsychotic drugs. Drug Saf 1996; 15: 333–46PubMedCrossRef
80.
Zurück zum Zitat Shen WW. Cytochrome P450 monooxygenases and interactions of psychotropic drugs: a five-year update. Int J Psychiatry Med 1995; 25: 277–90PubMedCrossRef Shen WW. Cytochrome P450 monooxygenases and interactions of psychotropic drugs: a five-year update. Int J Psychiatry Med 1995; 25: 277–90PubMedCrossRef
81.
Zurück zum Zitat Nicholson TE, Renton KW. Modulation of cytochrome P450 by inflammation in astrocytes. Brain Res 1999; 827: 12–8PubMedCrossRef Nicholson TE, Renton KW. Modulation of cytochrome P450 by inflammation in astrocytes. Brain Res 1999; 827: 12–8PubMedCrossRef
82.
Zurück zum Zitat Carrillo JA, Dahl ML, Svensson JO, et al. Disposition of fluvoxamine in humans is determined by the polymorphic CYP2D6 and also by the CYP1A2 activity. Clin Pharmacol Ther 1996; 60: 183–90PubMedCrossRef Carrillo JA, Dahl ML, Svensson JO, et al. Disposition of fluvoxamine in humans is determined by the polymorphic CYP2D6 and also by the CYP1A2 activity. Clin Pharmacol Ther 1996; 60: 183–90PubMedCrossRef
83.
Zurück zum Zitat Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414–23PubMed Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414–23PubMed
84.
Zurück zum Zitat Goldstein JA, de Morais SM. Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 1994; 4: 285–99PubMedCrossRef Goldstein JA, de Morais SM. Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 1994; 4: 285–99PubMedCrossRef
85.
Zurück zum Zitat Zaphiropoulos PG, Wood T. Identification of the major cytochrome P450s of subfamily 2C that are expressed in brain of female rats and in olfactory lobes of ethanol treated male rats. Biochem Biophys Res Commun 1993; 193: 1006–13PubMedCrossRef Zaphiropoulos PG, Wood T. Identification of the major cytochrome P450s of subfamily 2C that are expressed in brain of female rats and in olfactory lobes of ethanol treated male rats. Biochem Biophys Res Commun 1993; 193: 1006–13PubMedCrossRef
86.
Zurück zum Zitat Ghahramani P, Ellis SW, Lennard MS, et al. Cytochromes P450 mediating the N-demethylation of amitriptyline. Br J Clin Pharmacol 1997; 43: 137–44PubMedCrossRef Ghahramani P, Ellis SW, Lennard MS, et al. Cytochromes P450 mediating the N-demethylation of amitriptyline. Br J Clin Pharmacol 1997; 43: 137–44PubMedCrossRef
87.
Zurück zum Zitat Ono S, Hatanaka T, Hotta H, et al. Specificity of substrate and inhibitor probes for cytochrome P450s: evaluation of in vitro metabolism using cDNA-expressed human P450s and human liver microsomes. Xenobiotica 1996; 26: 681–93PubMedCrossRef Ono S, Hatanaka T, Hotta H, et al. Specificity of substrate and inhibitor probes for cytochrome P450s: evaluation of in vitro metabolism using cDNA-expressed human P450s and human liver microsomes. Xenobiotica 1996; 26: 681–93PubMedCrossRef
88.
Zurück zum Zitat von Moltke LL, Greenblatt DJ, Duan SX, et al. Human cytochromes mediating N-demethylation of fluoxetine in vitro. Psychopharmacology (Berl) 1997; 132: 402–7CrossRef von Moltke LL, Greenblatt DJ, Duan SX, et al. Human cytochromes mediating N-demethylation of fluoxetine in vitro. Psychopharmacology (Berl) 1997; 132: 402–7CrossRef
89.
Zurück zum Zitat Liu ZQ, Shu Y, Huang SL, et al. Effects of CYP2C19 genotype and CYP2C9 on fluoxetine N-demethylation in human liver microsomes. Acta Pharmacol Sin 2001; 22: 85–90PubMed Liu ZQ, Shu Y, Huang SL, et al. Effects of CYP2C19 genotype and CYP2C9 on fluoxetine N-demethylation in human liver microsomes. Acta Pharmacol Sin 2001; 22: 85–90PubMed
90.
Zurück zum Zitat Scott J, Poffenbarger PL. Pharmacogenetics of tolbutamide metabolism in humans. Diabetes 1979; 28: 41–51PubMedCrossRef Scott J, Poffenbarger PL. Pharmacogenetics of tolbutamide metabolism in humans. Diabetes 1979; 28: 41–51PubMedCrossRef
91.
Zurück zum Zitat Aithal GP, Day CP, Kesteven PJ, et al. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999; 353: 717–9PubMedCrossRef Aithal GP, Day CP, Kesteven PJ, et al. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999; 353: 717–9PubMedCrossRef
92.
Zurück zum Zitat Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in vitro and human data. Pharmacogenetics 2002; 12: 251–63PubMedCrossRef Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in vitro and human data. Pharmacogenetics 2002; 12: 251–63PubMedCrossRef
93.
Zurück zum Zitat Dickmann LJ, Rettie AE, Kneller MB, et al. Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. Mol Pharmacol 2001; 60: 382–7PubMed Dickmann LJ, Rettie AE, Kneller MB, et al. Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. Mol Pharmacol 2001; 60: 382–7PubMed
94.
Zurück zum Zitat Kerb R, Aynacioglu AS, Brockmoller J, et al. The predictive value of MDR1, CYP2C9, and CYP2C19 polymorphisms for Phenytoin plasma levels. Pharmacogenomics J 2001; 1: 204–10PubMedCrossRef Kerb R, Aynacioglu AS, Brockmoller J, et al. The predictive value of MDR1, CYP2C9, and CYP2C19 polymorphisms for Phenytoin plasma levels. Pharmacogenomics J 2001; 1: 204–10PubMedCrossRef
95.
Zurück zum Zitat Rifkind AB, Lee C, Chang TK, et al. Arachidonic acid metabolism by human cytochrome P450s 2C8, 2C9, 2E1, and 1A2: regioselective oxygenation and evidence for a role for CYP2C enzymes in arachidonic acid epoxygenation in human liver microsomes. Arch Biochem Biophys 1995; 320: 380–9PubMedCrossRef Rifkind AB, Lee C, Chang TK, et al. Arachidonic acid metabolism by human cytochrome P450s 2C8, 2C9, 2E1, and 1A2: regioselective oxygenation and evidence for a role for CYP2C enzymes in arachidonic acid epoxygenation in human liver microsomes. Arch Biochem Biophys 1995; 320: 380–9PubMedCrossRef
96.
Zurück zum Zitat Zeldin DC, DuBois RN, Falck JR, et al. Molecular cloning, expression and characterization of an endogenous human cytochrome P450 arachidonic acid epoxygenase isoform. Arch Biochem Biophys 1995; 322: 76–86PubMedCrossRef Zeldin DC, DuBois RN, Falck JR, et al. Molecular cloning, expression and characterization of an endogenous human cytochrome P450 arachidonic acid epoxygenase isoform. Arch Biochem Biophys 1995; 322: 76–86PubMedCrossRef
97.
Zurück zum Zitat Harder DR, Alkayed NJ, Lange AR, et al. Functional hyperemia in the brain: hypothesis for astrocyte-derived vasodilator metabolites. Stroke 1998; 29: 229–34PubMedCrossRef Harder DR, Alkayed NJ, Lange AR, et al. Functional hyperemia in the brain: hypothesis for astrocyte-derived vasodilator metabolites. Stroke 1998; 29: 229–34PubMedCrossRef
98.
Zurück zum Zitat Alkayed NJ, Narayanan J, Gebremedhin D, et al. Molecular characterization of an arachidonic acid epoxygenase in rat brain astrocytes. Stroke 1996; 27: 971–9PubMedCrossRef Alkayed NJ, Narayanan J, Gebremedhin D, et al. Molecular characterization of an arachidonic acid epoxygenase in rat brain astrocytes. Stroke 1996; 27: 971–9PubMedCrossRef
99.
Zurück zum Zitat Warner M, Stromstedt M, Wyss A, et al. Regulation of cytochrome P450 in the central nervous system. J Steroid Biochem Mol Biol 1993; 47: 191–4PubMedCrossRef Warner M, Stromstedt M, Wyss A, et al. Regulation of cytochrome P450 in the central nervous system. J Steroid Biochem Mol Biol 1993; 47: 191–4PubMedCrossRef
100.
Zurück zum Zitat Mahgoub A, Idle JR, Dring LG, et al. Polymorphic hydroxylation of debrisoquine in man. Lancet 1977; II: 584–6CrossRef Mahgoub A, Idle JR, Dring LG, et al. Polymorphic hydroxylation of debrisoquine in man. Lancet 1977; II: 584–6CrossRef
101.
Zurück zum Zitat Dahl-Puustinen ML, Liden A, Alm C, et al. Disposition of perphenazine is related to polymorphic debrisoquin hydroxylation in human beings. Clin Pharmacol Ther 1989; 46: 78–81PubMedCrossRef Dahl-Puustinen ML, Liden A, Alm C, et al. Disposition of perphenazine is related to polymorphic debrisoquin hydroxylation in human beings. Clin Pharmacol Ther 1989; 46: 78–81PubMedCrossRef
102.
Zurück zum Zitat Benitez J, Pinas B, Garcia MA, et al. Debrisoquine oxidation phenotype in psychiatric patients. Psychopharmacol Ser 1989; 7: 206–10PubMed Benitez J, Pinas B, Garcia MA, et al. Debrisoquine oxidation phenotype in psychiatric patients. Psychopharmacol Ser 1989; 7: 206–10PubMed
103.
Zurück zum Zitat Dahl ML, Bertilsson L. Genetically variable metabolism of antidepressants and neuroleptic drugs in man. Pharmacogenetics 1993; 3: 61–70PubMedCrossRef Dahl ML, Bertilsson L. Genetically variable metabolism of antidepressants and neuroleptic drugs in man. Pharmacogenetics 1993; 3: 61–70PubMedCrossRef
104.
Zurück zum Zitat Fonne-Pfister R, Bargetzi MJ, Meyer UA. MPTP, the neurotoxin inducing Parkinson’s disease, is a potent competitive inhibitor of human and rat cytochrome P450 isozymes (P450bufI, P450dbl) catalyzing debrisoquine 4-hydroxylation. Biochem Biophys Res Commun 1987; 148: 1144–50PubMedCrossRef Fonne-Pfister R, Bargetzi MJ, Meyer UA. MPTP, the neurotoxin inducing Parkinson’s disease, is a potent competitive inhibitor of human and rat cytochrome P450 isozymes (P450bufI, P450dbl) catalyzing debrisoquine 4-hydroxylation. Biochem Biophys Res Commun 1987; 148: 1144–50PubMedCrossRef
105.
Zurück zum Zitat Lee EJ, Moochhala S. Tissue distribution of bufuralol hydroxylase activity in Sprague-Dawley rats. Life Sci 1989; 44: 827–30PubMedCrossRef Lee EJ, Moochhala S. Tissue distribution of bufuralol hydroxylase activity in Sprague-Dawley rats. Life Sci 1989; 44: 827–30PubMedCrossRef
106.
Zurück zum Zitat Tyndale RF, Sunahara R, Inaba T, et al. Neuronal cytochrome P450IID1 (debrisoquine/sparteine-type): potent inhibition of activity by (−)-cocaine and nucleotide sequence identity to human hepatic P450 gene CYP2D6. Mol Pharmacol 1991; 40: 63–8PubMed Tyndale RF, Sunahara R, Inaba T, et al. Neuronal cytochrome P450IID1 (debrisoquine/sparteine-type): potent inhibition of activity by (−)-cocaine and nucleotide sequence identity to human hepatic P450 gene CYP2D6. Mol Pharmacol 1991; 40: 63–8PubMed
107.
Zurück zum Zitat Allard P, Marcusson JO, Ross SB. [3H]GBR-12935 binding to cytochrome P450 in the human brain. J Neurochem 1994; 62: 342–8PubMedCrossRef Allard P, Marcusson JO, Ross SB. [3H]GBR-12935 binding to cytochrome P450 in the human brain. J Neurochem 1994; 62: 342–8PubMedCrossRef
108.
Zurück zum Zitat Chen ZR, Somogyi AA, Bochner F. Polymorphic O-demethylation of codeine. Lancet 1988; II: 914–5CrossRef Chen ZR, Somogyi AA, Bochner F. Polymorphic O-demethylation of codeine. Lancet 1988; II: 914–5CrossRef
109.
Zurück zum Zitat Yu AM, Idle JR, Byrd LG, et al. Regeneration of serotonin from 5-methoxytryptamine by polymorphic human CYP2D6. Pharmacogenetics 2003; 13: 173–81PubMedCrossRef Yu AM, Idle JR, Byrd LG, et al. Regeneration of serotonin from 5-methoxytryptamine by polymorphic human CYP2D6. Pharmacogenetics 2003; 13: 173–81PubMedCrossRef
110.
Zurück zum Zitat Yu AM, Idle JR, Herraiz T, et al. Screening for endogenous substrates reveals that CYP2D6 is a 5-methoxyindolethylamine O-demethylase. Pharmacogenetics 2003; 13: 307–19PubMedCrossRef Yu AM, Idle JR, Herraiz T, et al. Screening for endogenous substrates reveals that CYP2D6 is a 5-methoxyindolethylamine O-demethylase. Pharmacogenetics 2003; 13: 307–19PubMedCrossRef
111.
112.
Zurück zum Zitat Mortimer O, Persson K, Ladona MG, et al. Polymorphic formation of morphine from codeine in poor and extensive metabolizers of dextromethorphan: relationship to the presence of immunoidentified cytochrome P-450IID1. Clin Pharmacol Ther 1990; 47: 27–35PubMedCrossRef Mortimer O, Persson K, Ladona MG, et al. Polymorphic formation of morphine from codeine in poor and extensive metabolizers of dextromethorphan: relationship to the presence of immunoidentified cytochrome P-450IID1. Clin Pharmacol Ther 1990; 47: 27–35PubMedCrossRef
113.
Zurück zum Zitat Sindrup SH, Brosen K, Bjerring P, et al. Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 1990; 48: 686–93PubMedCrossRef Sindrup SH, Brosen K, Bjerring P, et al. Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 1990; 48: 686–93PubMedCrossRef
114.
Zurück zum Zitat Chen ZR, Irvine RJ, Bochner F, et al. Morphine formation from codeine in rat brain: a possible mechanism of codeine analgesia. Life Sci 1990; 46: 1067–74PubMedCrossRef Chen ZR, Irvine RJ, Bochner F, et al. Morphine formation from codeine in rat brain: a possible mechanism of codeine analgesia. Life Sci 1990; 46: 1067–74PubMedCrossRef
115.
Zurück zum Zitat Eckhardt K, Li S, Ammon S, et al. Same incidence of adverse drug events after codeine administration irrespective of the genetically determined differences in morphine formation. Pain 1998; 76: 27–33PubMedCrossRef Eckhardt K, Li S, Ammon S, et al. Same incidence of adverse drug events after codeine administration irrespective of the genetically determined differences in morphine formation. Pain 1998; 76: 27–33PubMedCrossRef
116.
Zurück zum Zitat Kathiramalainathan K, Kaplan HL, Romach MK, et al. Inhibi tion of cytochrome P450 2D6 modifies codeine abuse liability. J Clin Psychopharmacol 2000; 20: 435–44PubMedCrossRef Kathiramalainathan K, Kaplan HL, Romach MK, et al. Inhibi tion of cytochrome P450 2D6 modifies codeine abuse liability. J Clin Psychopharmacol 2000; 20: 435–44PubMedCrossRef
117.
Zurück zum Zitat Fernandes LC, Kilicarslan T, Kaplan HL, et al. Treatment of codeine dependence with inhibitors of cytochrome P450 2D6. J Clin Psychopharmacol 2002; 22: 326–9PubMedCrossRef Fernandes LC, Kilicarslan T, Kaplan HL, et al. Treatment of codeine dependence with inhibitors of cytochrome P450 2D6. J Clin Psychopharmacol 2002; 22: 326–9PubMedCrossRef
118.
Zurück zum Zitat Gilham DE, Cairns W, Paine MJ, et al. Metabolism of MPTP by cytochrome P4502D6 and the demonstration of 2D6 mRNA in human foetal and adult brain by in situ hybridization. Xenobiotica 1997; 27: 111–25PubMedCrossRef Gilham DE, Cairns W, Paine MJ, et al. Metabolism of MPTP by cytochrome P4502D6 and the demonstration of 2D6 mRNA in human foetal and adult brain by in situ hybridization. Xenobiotica 1997; 27: 111–25PubMedCrossRef
119.
Zurück zum Zitat Yu AM, Granvil CP, Haining RL, et al. The relative contribution of monoamine oxidase and cytochrome P450 isozymes to the metabolic deamination of the trace amine tryptamine. J Pharmacol Exp Ther 2003; 304: 539–46PubMedCrossRef Yu AM, Granvil CP, Haining RL, et al. The relative contribution of monoamine oxidase and cytochrome P450 isozymes to the metabolic deamination of the trace amine tryptamine. J Pharmacol Exp Ther 2003; 304: 539–46PubMedCrossRef
120.
Zurück zum Zitat Hiroi T, Imaoka S, Funae Y. Dopamine formation from tyramine by CYP2D6. Biochem Biophys Res Commun 1998; 249: 838–43PubMedCrossRef Hiroi T, Imaoka S, Funae Y. Dopamine formation from tyramine by CYP2D6. Biochem Biophys Res Commun 1998; 249: 838–43PubMedCrossRef
121.
Zurück zum Zitat Atkinson A, Singleton AB, Steward A, et al. CYP2D6 is associated with Parkinson’s disease but not with dementia with Lewy bodies or Alzheimer’s disease. Pharmacogenetics 1999; 9: 31–5PubMedCrossRef Atkinson A, Singleton AB, Steward A, et al. CYP2D6 is associated with Parkinson’s disease but not with dementia with Lewy bodies or Alzheimer’s disease. Pharmacogenetics 1999; 9: 31–5PubMedCrossRef
122.
Zurück zum Zitat Smith CA, Gough AC, Leigh PN, et al. Debrisoquine hydroxylase gene polymorphism and susceptibility to Parkinson’s disease. Lancet 1992; 339: 1375–7PubMedCrossRef Smith CA, Gough AC, Leigh PN, et al. Debrisoquine hydroxylase gene polymorphism and susceptibility to Parkinson’s disease. Lancet 1992; 339: 1375–7PubMedCrossRef
123.
Zurück zum Zitat Armstrong M, Daly AK, Cholerton S, et al. Mutant debrisoquine hydroxylation genes in Parkinson’s disease. Lancet 1992; 339: 1017–8PubMedCrossRef Armstrong M, Daly AK, Cholerton S, et al. Mutant debrisoquine hydroxylation genes in Parkinson’s disease. Lancet 1992; 339: 1017–8PubMedCrossRef
124.
Zurück zum Zitat Benitez J, Ladero JM, Jimenez-Jimenez FJ, et al. Oxidative polymorphism of debrisoquine in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1990; 53: 289–92PubMedCrossRef Benitez J, Ladero JM, Jimenez-Jimenez FJ, et al. Oxidative polymorphism of debrisoquine in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1990; 53: 289–92PubMedCrossRef
125.
Zurück zum Zitat Agundez JA, Jimenez-Jimenez FJ, Luengo A, et al. Association between the oxidative polymorphism and early onset of Parkinson’s disease. Clin Pharmacol Ther 1995; 57: 291–8PubMedCrossRef Agundez JA, Jimenez-Jimenez FJ, Luengo A, et al. Association between the oxidative polymorphism and early onset of Parkinson’s disease. Clin Pharmacol Ther 1995; 57: 291–8PubMedCrossRef
126.
Zurück zum Zitat Barbeau A, Cloutier T, Roy M, et al. Ecogenetics of Parkinson’s disease: 4-hydroxylation of debrisoquine. Lancet 1985; II: 1213–6CrossRef Barbeau A, Cloutier T, Roy M, et al. Ecogenetics of Parkinson’s disease: 4-hydroxylation of debrisoquine. Lancet 1985; II: 1213–6CrossRef
127.
Zurück zum Zitat Checkoway H, Farin FM, Costa-Mallen P, et al. Genetic polymorphisms in Parkinson’s disease. Neurotoxicology 1998; 19: 635–43PubMed Checkoway H, Farin FM, Costa-Mallen P, et al. Genetic polymorphisms in Parkinson’s disease. Neurotoxicology 1998; 19: 635–43PubMed
128.
Zurück zum Zitat Rempfer R, Crook R, Houlden H, et al. Parkinson’s disease, but not Alzheimer’s disease, Lewy body variant associated with mutant alleles at cytochrome P450 gene [letter]. Lancet 1994; 344: 815PubMedCrossRef Rempfer R, Crook R, Houlden H, et al. Parkinson’s disease, but not Alzheimer’s disease, Lewy body variant associated with mutant alleles at cytochrome P450 gene [letter]. Lancet 1994; 344: 815PubMedCrossRef
129.
Zurück zum Zitat Riedl AG, Watts PM, Jenner P, et al. P450 enzymes and Parkinson’s disease: the story so far. Mov Disord 1998; 13: 212–20PubMedCrossRef Riedl AG, Watts PM, Jenner P, et al. P450 enzymes and Parkinson’s disease: the story so far. Mov Disord 1998; 13: 212–20PubMedCrossRef
130.
Zurück zum Zitat Bertilsson L, Alm C, De Las Carreras C, et al. Debrisoquine hydroxylation polymorphism and personality [letter]. Lancet 1989; I: 555CrossRef Bertilsson L, Alm C, De Las Carreras C, et al. Debrisoquine hydroxylation polymorphism and personality [letter]. Lancet 1989; I: 555CrossRef
131.
Zurück zum Zitat Llerena A, Edman G, Cobaleda J, et al. Relationship between personality and debrisoquine hydroxylation capacity: suggestion of an endogenous neuroactive substrate or product of the cytochrome P4502D6. Acta Psychiatr Scand 1993; 87: 23–8PubMedCrossRef Llerena A, Edman G, Cobaleda J, et al. Relationship between personality and debrisoquine hydroxylation capacity: suggestion of an endogenous neuroactive substrate or product of the cytochrome P4502D6. Acta Psychiatr Scand 1993; 87: 23–8PubMedCrossRef
132.
Zurück zum Zitat Chen X, Xia Y, Alford M, et al. The CYP2D6B allele is associated with a milder synaptic pathology in Alzheimer’s disease. Ann Neurol 1995; 38: 653–8PubMedCrossRef Chen X, Xia Y, Alford M, et al. The CYP2D6B allele is associated with a milder synaptic pathology in Alzheimer’s disease. Ann Neurol 1995; 38: 653–8PubMedCrossRef
133.
Zurück zum Zitat Saitoh T, Xia Y, Chen X, et al. The CYP2D6B mutant allele is overrepresented in the Lewy body variant of Alzheimer’s disease. Ann Neurol 1995; 37: 110–2PubMedCrossRef Saitoh T, Xia Y, Chen X, et al. The CYP2D6B mutant allele is overrepresented in the Lewy body variant of Alzheimer’s disease. Ann Neurol 1995; 37: 110–2PubMedCrossRef
134.
Zurück zum Zitat Cervilla JA, Russ C, Holmes C, et al. CYP2D6 polymorphisms in Alzheimer’s disease, with and without extrapyramidal signs, showing no apolipoprotein E epsilon 4 effect modification. Biol Psychiatry 1999; 45: 426–9PubMedCrossRef Cervilla JA, Russ C, Holmes C, et al. CYP2D6 polymorphisms in Alzheimer’s disease, with and without extrapyramidal signs, showing no apolipoprotein E epsilon 4 effect modification. Biol Psychiatry 1999; 45: 426–9PubMedCrossRef
135.
Zurück zum Zitat Yamada H, Dahl ML, Viitanen M, et al. No association between familial Alzheimer disease and cytochrome P450 polymorphisms. Alzheimer Dis Assoc Disord 1998; 12: 204–7PubMedCrossRef Yamada H, Dahl ML, Viitanen M, et al. No association between familial Alzheimer disease and cytochrome P450 polymorphisms. Alzheimer Dis Assoc Disord 1998; 12: 204–7PubMedCrossRef
136.
Zurück zum Zitat Murphy Jr GM, Yang L, Yesavage J, et al. Rate of cognitive decline in Alzheimer’s disease is not affected by the alpha-1-antichymotrypsin A allele or the CYP2D6 B mutant. Neurosci Lett 1996; 217: 200–2PubMedCrossRef Murphy Jr GM, Yang L, Yesavage J, et al. Rate of cognitive decline in Alzheimer’s disease is not affected by the alpha-1-antichymotrypsin A allele or the CYP2D6 B mutant. Neurosci Lett 1996; 217: 200–2PubMedCrossRef
137.
Zurück zum Zitat Woo SI, Kim JW, Seo HG, et al. CYP2D6*4 polymorphism is not associated with Parkinson’s disease and has no protective role against Alzheimer’s disease in the Korean population. Psychiatry Clin Neurosci 2001; 55: 373–7PubMedCrossRef Woo SI, Kim JW, Seo HG, et al. CYP2D6*4 polymorphism is not associated with Parkinson’s disease and has no protective role against Alzheimer’s disease in the Korean population. Psychiatry Clin Neurosci 2001; 55: 373–7PubMedCrossRef
138.
Zurück zum Zitat Payami H, Lee N, Zareparsi S, et al. Parkinson’s disease, CYP2D6 polymorphism, and age. Neurology 2001; 56: 1363–70PubMedCrossRef Payami H, Lee N, Zareparsi S, et al. Parkinson’s disease, CYP2D6 polymorphism, and age. Neurology 2001; 56: 1363–70PubMedCrossRef
139.
Zurück zum Zitat Harhangi BS, Oostra BA, Heutink P, et al. CYP2D6 polymorphism in Parkinson’s disease: the Rotterdam Study. Mov Disord 2001; 16: 290–3PubMedCrossRef Harhangi BS, Oostra BA, Heutink P, et al. CYP2D6 polymorphism in Parkinson’s disease: the Rotterdam Study. Mov Disord 2001; 16: 290–3PubMedCrossRef
140.
Zurück zum Zitat Chida M, Yokoi T, Kosaka Y, et al. Genetic polymorphism of CYP2D6 in the Japanese population. Pharmacogenetics 1999; 9: 601–5PubMedCrossRef Chida M, Yokoi T, Kosaka Y, et al. Genetic polymorphism of CYP2D6 in the Japanese population. Pharmacogenetics 1999; 9: 601–5PubMedCrossRef
141.
Zurück zum Zitat Kuehl Jr FA, Vandenheuvel WJ, Ormond RE. Urinary metabolites in Parkinson’s disease. Nature 1968; 217: 136–8PubMedCrossRef Kuehl Jr FA, Vandenheuvel WJ, Ormond RE. Urinary metabolites in Parkinson’s disease. Nature 1968; 217: 136–8PubMedCrossRef
142.
Zurück zum Zitat Smith I, Kellow AH. Aromatic amines and Parkinson’s disease [letter]. Nature 1969; 221: 1261PubMedCrossRef Smith I, Kellow AH. Aromatic amines and Parkinson’s disease [letter]. Nature 1969; 221: 1261PubMedCrossRef
143.
Zurück zum Zitat Anderson GM, Ross DL, Klykylo W, et al. Cerebrospinal fluid indoleacetic acid in autistic subjects. J Autism Dev Disord 1988; 18: 259–62PubMedCrossRef Anderson GM, Ross DL, Klykylo W, et al. Cerebrospinal fluid indoleacetic acid in autistic subjects. J Autism Dev Disord 1988; 18: 259–62PubMedCrossRef
144.
Zurück zum Zitat Anderson GM, Gerner RH, Cohen DJ, et al. Central tryptamine turnover in depression, schizophrenia, and anorexia: measurement of indoleacetic acid in cerebrospinal fluid. Biol Psychiatry 1984; 19: 1427–35PubMed Anderson GM, Gerner RH, Cohen DJ, et al. Central tryptamine turnover in depression, schizophrenia, and anorexia: measurement of indoleacetic acid in cerebrospinal fluid. Biol Psychiatry 1984; 19: 1427–35PubMed
145.
Zurück zum Zitat Mousseau DD. Tryptamine: a metabolite of tryptophan implicated in various neuropsychiatric disorders. Metab Brain Dis 1993; 8: 1–44PubMedCrossRef Mousseau DD. Tryptamine: a metabolite of tryptophan implicated in various neuropsychiatric disorders. Metab Brain Dis 1993; 8: 1–44PubMedCrossRef
146.
Zurück zum Zitat Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 1992; 22: 1–21PubMedCrossRef Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 1992; 22: 1–21PubMedCrossRef
147.
Zurück zum Zitat Westlind A, Malmebo S, Johansson I, et al. Cloning and tissue distribution of a novel human cytochrome P450 of the CYP3A subfamily, CYP3A43. Biochem Biophys Res Commun 2001; 281: 1349–55PubMedCrossRef Westlind A, Malmebo S, Johansson I, et al. Cloning and tissue distribution of a novel human cytochrome P450 of the CYP3A subfamily, CYP3A43. Biochem Biophys Res Commun 2001; 281: 1349–55PubMedCrossRef
148.
Zurück zum Zitat Domanski TL, Finta C, Halpert JR, et al. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol Pharmacol 2001; 59: 386–92PubMed Domanski TL, Finta C, Halpert JR, et al. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol Pharmacol 2001; 59: 386–92PubMed
149.
Zurück zum Zitat Nelson DR, Kamataki T, Waxman DJ, et al. The P450 super-family: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 1993; 12: 1–51PubMedCrossRef Nelson DR, Kamataki T, Waxman DJ, et al. The P450 super-family: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 1993; 12: 1–51PubMedCrossRef
150.
Zurück zum Zitat Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27: 383–91PubMedCrossRef Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27: 383–91PubMedCrossRef
151.
Zurück zum Zitat Perloff MD, von Moltke LL, Greenblatt DJ. Ritonavir and dexamethasone induce expression of CYP3A and P-glycoprotein in rats. Xenobiotica 2004; 34(2): 133–50PubMedCrossRef Perloff MD, von Moltke LL, Greenblatt DJ. Ritonavir and dexamethasone induce expression of CYP3A and P-glycoprotein in rats. Xenobiotica 2004; 34(2): 133–50PubMedCrossRef
152.
Zurück zum Zitat Rebbeck TR, Jaffe JM, Walker AH, et al. Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 1998; 90: 1225–9PubMedCrossRef Rebbeck TR, Jaffe JM, Walker AH, et al. Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 1998; 90: 1225–9PubMedCrossRef
153.
Zurück zum Zitat Dai D, Tang J, Rose R, et al. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J Pharmacol Exp Ther 2001; 299: 825–31PubMed Dai D, Tang J, Rose R, et al. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J Pharmacol Exp Ther 2001; 299: 825–31PubMed
154.
Zurück zum Zitat Hustert E, Haberl M, Burk O, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001; 11: 773–9PubMedCrossRef Hustert E, Haberl M, Burk O, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001; 11: 773–9PubMedCrossRef
155.
Zurück zum Zitat Martinez C, Gervasini G, Agundez JA, et al. Modulation of midazolam 1-hydroxylation activity in vitro by neurotransmitters and precursors. Eur J Clin Pharmacol 2000; 56: 145–51PubMedCrossRef Martinez C, Gervasini G, Agundez JA, et al. Modulation of midazolam 1-hydroxylation activity in vitro by neurotransmitters and precursors. Eur J Clin Pharmacol 2000; 56: 145–51PubMedCrossRef
156.
Zurück zum Zitat Joseph SA, Walker DW. Monoamine concentrations in cerebrospinal fluid of fetal and newborn sheep. Am J Physiol 1994; 266: R472–80PubMed Joseph SA, Walker DW. Monoamine concentrations in cerebrospinal fluid of fetal and newborn sheep. Am J Physiol 1994; 266: R472–80PubMed
157.
Zurück zum Zitat Ratge D, Bauersfeld W, Wisser H. The relationship of free and conjugated catecholamines in plasma and cerebrospinal fluid in cerebral and meningeal disease. J Neural Transm 1985; 62: 267–84PubMedCrossRef Ratge D, Bauersfeld W, Wisser H. The relationship of free and conjugated catecholamines in plasma and cerebrospinal fluid in cerebral and meningeal disease. J Neural Transm 1985; 62: 267–84PubMedCrossRef
158.
Zurück zum Zitat Gundlah C, Simon LD, Auerbach SB. Differences in hypothalamic serotonin between estrous phases and gender: an in vivo microdialysis study. Brain Res 1998; 785: 91–6PubMedCrossRef Gundlah C, Simon LD, Auerbach SB. Differences in hypothalamic serotonin between estrous phases and gender: an in vivo microdialysis study. Brain Res 1998; 785: 91–6PubMedCrossRef
159.
Zurück zum Zitat Kalen P, Kokaia M, Lindvall O, et al. Basic characteristics of noradrenaline release in the hippocampus of intact and 6-hydroxydopamine-lesioned rats as studied by in vivo microdialysis. Brain Res 1988; 474: 374–9PubMedCrossRef Kalen P, Kokaia M, Lindvall O, et al. Basic characteristics of noradrenaline release in the hippocampus of intact and 6-hydroxydopamine-lesioned rats as studied by in vivo microdialysis. Brain Res 1988; 474: 374–9PubMedCrossRef
160.
Zurück zum Zitat Gonon FG, Buda MJ. Regulation of dopamine release by im pulse flow and by autoreceptors as studied by in vivo voltammetry in the rat striatum. Neuroscience 1985; 14: 765–74PubMedCrossRef Gonon FG, Buda MJ. Regulation of dopamine release by im pulse flow and by autoreceptors as studied by in vivo voltammetry in the rat striatum. Neuroscience 1985; 14: 765–74PubMedCrossRef
161.
Zurück zum Zitat Maillet S, Vion-Dury J, Confort-Gouny S, et al. Experimental protocol for clinical analysis of cerebrospinal fluid by high resolution proton magnetic resonance spectroscopy. Brain Res Brain Res Protoc 1998; 3: 123–34PubMedCrossRef Maillet S, Vion-Dury J, Confort-Gouny S, et al. Experimental protocol for clinical analysis of cerebrospinal fluid by high resolution proton magnetic resonance spectroscopy. Brain Res Brain Res Protoc 1998; 3: 123–34PubMedCrossRef
162.
Zurück zum Zitat Wright AW, Watt JA, Kennedy M, et al. Quantitation of morphine, morphine-3-glucuronide, and morphine-6-glucuronide in plasma and cerebrospinal fluid using solid-phase extraction and high-performance liquid chromatography with electrochemical detection. Ther Drug Monit 1994; 16: 200–8PubMedCrossRef Wright AW, Watt JA, Kennedy M, et al. Quantitation of morphine, morphine-3-glucuronide, and morphine-6-glucuronide in plasma and cerebrospinal fluid using solid-phase extraction and high-performance liquid chromatography with electrochemical detection. Ther Drug Monit 1994; 16: 200–8PubMedCrossRef
163.
Zurück zum Zitat Sindrup SH, Poulsen L, Brosen K, et al. Are poor metabolisers of sparteine/debrisoquine less pain tolerant than extensive metabolisers? Pain 1993; 53: 335–9PubMedCrossRef Sindrup SH, Poulsen L, Brosen K, et al. Are poor metabolisers of sparteine/debrisoquine less pain tolerant than extensive metabolisers? Pain 1993; 53: 335–9PubMedCrossRef
164.
Zurück zum Zitat Gram LF, Brosen K, Sindrup SH, et al. Genetic and interethnic variability in drug metabolism: what are the clinical consequences? In: Alvan G, Balant L, Bechtel PR, et al., editors. COST B1 conference on variability and specificity in drug metabolism. Luxembourg: European Commission, 1995: 93–110 Gram LF, Brosen K, Sindrup SH, et al. Genetic and interethnic variability in drug metabolism: what are the clinical consequences? In: Alvan G, Balant L, Bechtel PR, et al., editors. COST B1 conference on variability and specificity in drug metabolism. Luxembourg: European Commission, 1995: 93–110
165.
Zurück zum Zitat Cardoso ER, Reddy K, Bose D. Effect of subarachnoid hemorrhage on intracranial pulse waves in cats. J Neurosurg 1988; 69: 712–8PubMedCrossRef Cardoso ER, Reddy K, Bose D. Effect of subarachnoid hemorrhage on intracranial pulse waves in cats. J Neurosurg 1988; 69: 712–8PubMedCrossRef
166.
Zurück zum Zitat Piredda S, Monaco F. Ethosuximide in tears, saliva, and cerebrospinal fluid. Ther Drug Monit 1981; 3: 321–3PubMedCrossRef Piredda S, Monaco F. Ethosuximide in tears, saliva, and cerebrospinal fluid. Ther Drug Monit 1981; 3: 321–3PubMedCrossRef
167.
Zurück zum Zitat Soto J, Sacristan JA, Alsar MJ. Cerebrospinal fluid concentrations of caffeine following oral drug administration: correlation with salivary and plasma concentrations. Ther Drug Monit 1994; 16: 108–10PubMedCrossRef Soto J, Sacristan JA, Alsar MJ. Cerebrospinal fluid concentrations of caffeine following oral drug administration: correlation with salivary and plasma concentrations. Ther Drug Monit 1994; 16: 108–10PubMedCrossRef
168.
Zurück zum Zitat Sokomba EN, Patsalos PN, Lolin YI, et al. Concurrent monitoring of central carbamazepine and transmitter amine metabolism and motor activity in individual unrestrained rats using repetitive withdrawal of cerebrospinal fluid. Neuropharmacology 1988; 27: 409–15PubMedCrossRef Sokomba EN, Patsalos PN, Lolin YI, et al. Concurrent monitoring of central carbamazepine and transmitter amine metabolism and motor activity in individual unrestrained rats using repetitive withdrawal of cerebrospinal fluid. Neuropharmacology 1988; 27: 409–15PubMedCrossRef
169.
Zurück zum Zitat Scheinin H, Scheinin M. Repetitive measurement of monoamine metabolite levels in cerebrospinal fluid of conscious rats: effects of reserpine and haloperidol. Eur J Pharmacol 1985; 113: 345–51PubMedCrossRef Scheinin H, Scheinin M. Repetitive measurement of monoamine metabolite levels in cerebrospinal fluid of conscious rats: effects of reserpine and haloperidol. Eur J Pharmacol 1985; 113: 345–51PubMedCrossRef
170.
Zurück zum Zitat Kanto J, Scheinin M. Biochemical assessment of preoperative stress: a study with diazepam and measurement of monoamine metabolites and catecholamines in cerebrospinal fluid and plasma. Br J Anaesth 1991; 66: 587–90PubMedCrossRef Kanto J, Scheinin M. Biochemical assessment of preoperative stress: a study with diazepam and measurement of monoamine metabolites and catecholamines in cerebrospinal fluid and plasma. Br J Anaesth 1991; 66: 587–90PubMedCrossRef
171.
Zurück zum Zitat Dillen L, Duchateau A, De Potter WP, et al. Selected ion monitoring analysis of monoamine metabolites in cerebrospinal fluid: application to the study of in vivo effects of alpha 2-antagonists. Biomed Environ Mass Spectrom 1987; 14: 675–82PubMedCrossRef Dillen L, Duchateau A, De Potter WP, et al. Selected ion monitoring analysis of monoamine metabolites in cerebrospinal fluid: application to the study of in vivo effects of alpha 2-antagonists. Biomed Environ Mass Spectrom 1987; 14: 675–82PubMedCrossRef
Metadaten
Titel
Potential Role of Cerebral Cytochrome P450 in Clinical Pharmacokinetics
Modulation by Endogenous Compounds
verfasst von
Guillermo Gervasini
Juan Antonio Carrillo
Dr Julio Benitez
Publikationsdatum
01.09.2004
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 11/2004
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200443110-00001

Weitere Artikel der Ausgabe 11/2004

Clinical Pharmacokinetics 11/2004 Zur Ausgabe