Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 9/2012

01.09.2012 | Original Article

Preclinical evaluation and quantification of [18F]MK-9470 as a radioligand for PET imaging of the type 1 cannabinoid receptor in rat brain

verfasst von: Cindy Casteels, Michel Koole, Sofie Celen, Guy Bormans, Koen Van Laere

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 9/2012

Einloggen, um Zugang zu erhalten

Abstract

Purpose

[18F]MK-9470 is an inverse agonist for the type 1 cannabinoid (CB1) receptor allowing its use in PET imaging. We characterized the kinetics of [18F]MK-9470 and evaluated its ability to quantify CB1 receptor availability in the rat brain.

Methods

Dynamic small-animal PET scans with [18F]MK-9470 were performed in Wistar rats on a FOCUS-220 system for up to 10 h. Both plasma and perfused brain homogenates were analysed using HPLC to quantify radiometabolites. Displacement and blocking experiments were done using cold MK-9470 and another inverse agonist, SR141716A. The distribution volume (V T) of [18F]MK-9470 was used as a quantitative measure and compared to the use of brain uptake, expressed as SUV, a simplified method of quantification.

Results

The percentage of intact [18F]MK-9470 in arterial plasma samples was 80 ± 23 % at 10 min, 38 ± 30 % at 40 min and 13 ± 14 % at 210 min. A polar radiometabolite fraction was detected in plasma and brain tissue. The brain radiometabolite concentration was uniform across the whole brain. Displacement and pretreatment studies showed that 56 % of the tracer binding was specific and reversible. V T values obtained with a one-tissue compartment model plus constrained radiometabolite input had good identifiability (≤10 %). Ignoring the radiometabolite contribution using a one-tissue compartment model alone, i.e. without constrained radiometabolite input, overestimated the [18F]MK-9470 V T, but was correlated. A correlation between [18F]MK-9470 V T and SUV in the brain was also found (R 2 = 0.26–0.33; p ≤ 0.03).

Conclusion

While the presence of a brain-penetrating radiometabolite fraction complicates the quantification of [18F]MK-9470 in the rat brain, its tracer kinetics can be modelled using a one-tissue compartment model with and without constrained radiometabolite input.
Literatur
1.
Zurück zum Zitat Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002;54:161–202.PubMedCrossRef Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002;54:161–202.PubMedCrossRef
2.
Zurück zum Zitat Di Marzo V, Bifulco M, De Petrocellis L. The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov. 2004;3:771–84.PubMedCrossRef Di Marzo V, Bifulco M, De Petrocellis L. The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov. 2004;3:771–84.PubMedCrossRef
3.
Zurück zum Zitat Parolaro D, Realini N, Vigano D, Guidali C, Rubino T. The endocannabinoid system and psychiatric disorders. Exp Neurol. 2010;224:3–14.PubMedCrossRef Parolaro D, Realini N, Vigano D, Guidali C, Rubino T. The endocannabinoid system and psychiatric disorders. Exp Neurol. 2010;224:3–14.PubMedCrossRef
4.
Zurück zum Zitat Scotter EL, Abood ME, Glass M. The endocannabinoid system as a target for the treatment of neurodegenerative disease. Br J Pharmacol. 2010;160:480–98.PubMedCrossRef Scotter EL, Abood ME, Glass M. The endocannabinoid system as a target for the treatment of neurodegenerative disease. Br J Pharmacol. 2010;160:480–98.PubMedCrossRef
5.
Zurück zum Zitat Katona I, Freund TF. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med. 2008;14:923–30.PubMedCrossRef Katona I, Freund TF. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med. 2008;14:923–30.PubMedCrossRef
6.
Zurück zum Zitat Bahr BA, Karanian DA, Makanji SS, Makriyannis A. Targeting the endocannabinoid system in treating brain disorders. Expert Opin Investig Drugs. 2006;15:351–65.PubMedCrossRef Bahr BA, Karanian DA, Makanji SS, Makriyannis A. Targeting the endocannabinoid system in treating brain disorders. Expert Opin Investig Drugs. 2006;15:351–65.PubMedCrossRef
7.
Zurück zum Zitat Charalambous A, Marciniak G, Shiue CY, Dewey SL, Schlyer DJ, Wolf AP, et al. PET studies in the primate brain and biodistribution in mice using (-)-5'-18F-delta 8-THC. Pharmacol Biochem Behav. 1991;40:503–7.PubMedCrossRef Charalambous A, Marciniak G, Shiue CY, Dewey SL, Schlyer DJ, Wolf AP, et al. PET studies in the primate brain and biodistribution in mice using (-)-5'-18F-delta 8-THC. Pharmacol Biochem Behav. 1991;40:503–7.PubMedCrossRef
8.
Zurück zum Zitat Horti AG, Fan H, Kuwabara H, Hilton J, Ravert HT, Holt DP, et al. 11C-JHU75528: a radiotracer for PET imaging of CB1 cannabinoid receptors. J Nucl Med. 2006;47:1689–96.PubMed Horti AG, Fan H, Kuwabara H, Hilton J, Ravert HT, Holt DP, et al. 11C-JHU75528: a radiotracer for PET imaging of CB1 cannabinoid receptors. J Nucl Med. 2006;47:1689–96.PubMed
9.
Zurück zum Zitat Terry G, Liow JS, Chernet E, Zoghbi SS, Phebus L, Felder CC, et al. Positron emission tomography imaging using an inverse agonist radioligand to assess cannabinoid CB1 receptors in rodents. Neuroimage. 2008;41:690–8.PubMedCrossRef Terry G, Liow JS, Chernet E, Zoghbi SS, Phebus L, Felder CC, et al. Positron emission tomography imaging using an inverse agonist radioligand to assess cannabinoid CB1 receptors in rodents. Neuroimage. 2008;41:690–8.PubMedCrossRef
10.
Zurück zum Zitat Yasuno F, Brown AK, Zoghbi SS, Krushinski JH, Chernet E, Tauscher J, et al. The PET radioligand [11C]MePPEP binds reversibly and with high specific signal to cannabinoid CB1 receptors in nonhuman primate brain. Neuropsychopharmacology. 2008;33:259–69.PubMedCrossRef Yasuno F, Brown AK, Zoghbi SS, Krushinski JH, Chernet E, Tauscher J, et al. The PET radioligand [11C]MePPEP binds reversibly and with high specific signal to cannabinoid CB1 receptors in nonhuman primate brain. Neuropsychopharmacology. 2008;33:259–69.PubMedCrossRef
11.
Zurück zum Zitat Terry GE, Liow JS, Zoghbi SS, Hirvonen J, Farris AG, Lerner A, et al. Quantitation of cannabinoid CB1 receptors in healthy human brain using positron emission tomography and an inverse agonist radioligand. Neuroimage. 2009;48:362–70.PubMedCrossRef Terry GE, Liow JS, Zoghbi SS, Hirvonen J, Farris AG, Lerner A, et al. Quantitation of cannabinoid CB1 receptors in healthy human brain using positron emission tomography and an inverse agonist radioligand. Neuroimage. 2009;48:362–70.PubMedCrossRef
12.
Zurück zum Zitat Terry GE, Hirvonen J, Liow JS, Seneca N, Tauscher JT, Schaus JM, et al. Biodistribution and dosimetry in humans of two inverse agonists to image cannabinoid CB1 receptors using positron emission tomography. Eur J Nucl Med Mol Imaging. 2010;37:1499–506.PubMedCrossRef Terry GE, Hirvonen J, Liow JS, Seneca N, Tauscher JT, Schaus JM, et al. Biodistribution and dosimetry in humans of two inverse agonists to image cannabinoid CB1 receptors using positron emission tomography. Eur J Nucl Med Mol Imaging. 2010;37:1499–506.PubMedCrossRef
13.
Zurück zum Zitat Terry GE, Hirvonen J, Liow JS, Zoghbi SS, Gladding R, Tauscher JT, et al. Imaging and quantitation of cannabinoid CB1 receptors in human and monkey brains using (18)F-labeled inverse agonist radioligands. J Nucl Med. 2010;51:112–20.PubMedCrossRef Terry GE, Hirvonen J, Liow JS, Zoghbi SS, Gladding R, Tauscher JT, et al. Imaging and quantitation of cannabinoid CB1 receptors in human and monkey brains using (18)F-labeled inverse agonist radioligands. J Nucl Med. 2010;51:112–20.PubMedCrossRef
14.
Zurück zum Zitat Burns HD, Van Laere K, Sanabria-Bohorquez S, Hamill TG, Bormans G, Eng WS, et al. [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor. Proc Natl Acad Sci U S A. 2007;104:9800–5.PubMedCrossRef Burns HD, Van Laere K, Sanabria-Bohorquez S, Hamill TG, Bormans G, Eng WS, et al. [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor. Proc Natl Acad Sci U S A. 2007;104:9800–5.PubMedCrossRef
15.
Zurück zum Zitat Wong DF, Kuwabara H, Horti AG, Raymont V, Brasic J, Guevara M, et al. Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR. Neuroimage. 2010;52:1505–13.PubMedCrossRef Wong DF, Kuwabara H, Horti AG, Raymont V, Brasic J, Guevara M, et al. Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR. Neuroimage. 2010;52:1505–13.PubMedCrossRef
16.
Zurück zum Zitat Addy C, Wright H, Van Laere K, Gantz I, Erondu N, Musser BJ, et al. The acyclic CB1R inverse agonist taranabant mediates weight loss by increasing energy expenditure and decreasing caloric intake. Cell Metab. 2008;7:68–78.PubMedCrossRef Addy C, Wright H, Van Laere K, Gantz I, Erondu N, Musser BJ, et al. The acyclic CB1R inverse agonist taranabant mediates weight loss by increasing energy expenditure and decreasing caloric intake. Cell Metab. 2008;7:68–78.PubMedCrossRef
17.
Zurück zum Zitat Van Laere K, Goffin K, Casteels C, Dupont P, Mortelmans L, de Hoon J, et al. Gender-dependent increases with healthy aging of the human cerebral cannabinoid-type 1 receptor binding using [(18)F]MK-9470 PET. Neuroimage. 2008;39:1533–41.PubMedCrossRef Van Laere K, Goffin K, Casteels C, Dupont P, Mortelmans L, de Hoon J, et al. Gender-dependent increases with healthy aging of the human cerebral cannabinoid-type 1 receptor binding using [(18)F]MK-9470 PET. Neuroimage. 2008;39:1533–41.PubMedCrossRef
18.
Zurück zum Zitat Van Laere K, Goffin K, Bormans G, Casteels C, Mortelmans L, de Hoon J, et al. Relationship of type 1 cannabinoid receptor availability in the human brain to novelty-seeking temperament. Arch Gen Psychiatry. 2009;66:196–204.PubMedCrossRef Van Laere K, Goffin K, Bormans G, Casteels C, Mortelmans L, de Hoon J, et al. Relationship of type 1 cannabinoid receptor availability in the human brain to novelty-seeking temperament. Arch Gen Psychiatry. 2009;66:196–204.PubMedCrossRef
19.
Zurück zum Zitat Van Laere K, Casteels C, Dhollander I, Goffin K, Grachev I, Bormans G, et al. Widespread decrease of type 1 cannabinoid receptor availability in Huntington disease in vivo. J Nucl Med. 2010;51:1413–7.PubMedCrossRef Van Laere K, Casteels C, Dhollander I, Goffin K, Grachev I, Bormans G, et al. Widespread decrease of type 1 cannabinoid receptor availability in Huntington disease in vivo. J Nucl Med. 2010;51:1413–7.PubMedCrossRef
20.
Zurück zum Zitat Gérard N, Pieters G, Goffin K, Bormans G, Van Laere K. Brain type 1 cannabinoid receptor availability in patients with anorexia and bulimia nervosa. Biol Psychiatry. 2011;70:777–84.PubMedCrossRef Gérard N, Pieters G, Goffin K, Bormans G, Van Laere K. Brain type 1 cannabinoid receptor availability in patients with anorexia and bulimia nervosa. Biol Psychiatry. 2011;70:777–84.PubMedCrossRef
21.
Zurück zum Zitat Van Laere K, Casteels C, Lunskens S, Goffin K, Grachev ID, Bormans G, et al. Regional changes in type 1 cannabinoid receptor availability in Parkinson's disease in vivo. Neurobiol Aging. 2012;33:620.e1–8.CrossRef Van Laere K, Casteels C, Lunskens S, Goffin K, Grachev ID, Bormans G, et al. Regional changes in type 1 cannabinoid receptor availability in Parkinson's disease in vivo. Neurobiol Aging. 2012;33:620.e1–8.CrossRef
22.
Zurück zum Zitat Goffin K, Van Paesschen W, Van Laere K. In vivo activation of endocannabinoid system in temporal lobe epilepsy with hippocampal sclerosis. Brain. 2011;134:1033–40.PubMedCrossRef Goffin K, Van Paesschen W, Van Laere K. In vivo activation of endocannabinoid system in temporal lobe epilepsy with hippocampal sclerosis. Brain. 2011;134:1033–40.PubMedCrossRef
23.
Zurück zum Zitat Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.PubMedCrossRef Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.PubMedCrossRef
24.
Zurück zum Zitat Need AB, Davis RJ. Alexander-Chacko JT, Eastwood B, Chernet E, Phebus LA, et al. The relationship of in vivo central CB1 receptor occupancy to changes in cortical monoamine release and feeding elicited by CB1 receptor antagonists in rats. Psychopharmacology (Berl). 2006;184:26–35.CrossRef Need AB, Davis RJ. Alexander-Chacko JT, Eastwood B, Chernet E, Phebus LA, et al. The relationship of in vivo central CB1 receptor occupancy to changes in cortical monoamine release and feeding elicited by CB1 receptor antagonists in rats. Psychopharmacology (Berl). 2006;184:26–35.CrossRef
25.
Zurück zum Zitat Boellaard R, van Lingen A, Lammertsma AA. Experimental and clinical evaluation of iterative reconstruction (OSEM) in dynamic PET: quantitative characteristics and effects on kinetic modeling. J Nucl Med. 2001;42:808–17.PubMed Boellaard R, van Lingen A, Lammertsma AA. Experimental and clinical evaluation of iterative reconstruction (OSEM) in dynamic PET: quantitative characteristics and effects on kinetic modeling. J Nucl Med. 2001;42:808–17.PubMed
26.
Zurück zum Zitat Hoekzema E, Rojas S, Herance R, Pareto D, Abad S, Jimenez X, et al. [(11)C]-DASB microPET imaging in the aged rat: frontal and meso-thalamic increases in serotonin transporter binding. Exp Gerontol. 2011;46:1020–5.PubMedCrossRef Hoekzema E, Rojas S, Herance R, Pareto D, Abad S, Jimenez X, et al. [(11)C]-DASB microPET imaging in the aged rat: frontal and meso-thalamic increases in serotonin transporter binding. Exp Gerontol. 2011;46:1020–5.PubMedCrossRef
27.
Zurück zum Zitat Sanabria-Bohorquez SM, Hamill TG, Goffin K, De Lepeleire I, Bormans G, Burns HD, et al. Kinetic analysis of the cannabinoid-1 receptor PET tracer [(18)F]MK-9470 in human brain. Eur J Nucl Med Mol Imaging. 2010;37:920–33.PubMedCrossRef Sanabria-Bohorquez SM, Hamill TG, Goffin K, De Lepeleire I, Bormans G, Burns HD, et al. Kinetic analysis of the cannabinoid-1 receptor PET tracer [(18)F]MK-9470 in human brain. Eur J Nucl Med Mol Imaging. 2010;37:920–33.PubMedCrossRef
28.
Zurück zum Zitat Celen S, Koole M, De Angelis M, Sannen I, Chitneni SK, Alcazar J, et al. Preclinical evaluation of 18F-JNJ41510417 as a radioligand for PET imaging of phosphodiesterase-10A in the brain. J Nucl Med. 2010;51:1584–91.PubMedCrossRef Celen S, Koole M, De Angelis M, Sannen I, Chitneni SK, Alcazar J, et al. Preclinical evaluation of 18F-JNJ41510417 as a radioligand for PET imaging of phosphodiesterase-10A in the brain. J Nucl Med. 2010;51:1584–91.PubMedCrossRef
29.
Zurück zum Zitat Casteels C, Vermaelen P, Nuyts J, Van Der Linden A, Baekelandt V, Mortelmans L, et al. Construction and evaluation of multitracer small-animal PET probabilistic atlases for voxel-based functional mapping of the rat brain. J Nucl Med. 2006;47:1858–66.PubMed Casteels C, Vermaelen P, Nuyts J, Van Der Linden A, Baekelandt V, Mortelmans L, et al. Construction and evaluation of multitracer small-animal PET probabilistic atlases for voxel-based functional mapping of the rat brain. J Nucl Med. 2006;47:1858–66.PubMed
30.
Zurück zum Zitat Tai YC, Ruangma A, Rowland D, Siegel S, Newport DF, Chow PL, et al. Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med. 2005;46:455–63.PubMed Tai YC, Ruangma A, Rowland D, Siegel S, Newport DF, Chow PL, et al. Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med. 2005;46:455–63.PubMed
31.
Zurück zum Zitat Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med. 2004;45:1431–4.PubMed Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med. 2004;45:1431–4.PubMed
32.
Zurück zum Zitat Thie JA, Hubner KF, Isidoro FP, Smith GT. A weight index for the standardized uptake value in 2-deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography. Mol Imaging Biol. 2007;9:91–8.PubMedCrossRef Thie JA, Hubner KF, Isidoro FP, Smith GT. A weight index for the standardized uptake value in 2-deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography. Mol Imaging Biol. 2007;9:91–8.PubMedCrossRef
33.
Zurück zum Zitat Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, et al. Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A. 1990;87:1932–6.PubMedCrossRef Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, et al. Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A. 1990;87:1932–6.PubMedCrossRef
34.
Zurück zum Zitat Fujita M, Seibyl JP, Verhoeff NP, Ichise M, Baldwin RM, Zoghbi SS, et al. Kinetic and equilibrium analyses of [(123)I]epidepride binding to striatal and extrastriatal dopamine D(2) receptors. Synapse. 1999;34:290–304.PubMedCrossRef Fujita M, Seibyl JP, Verhoeff NP, Ichise M, Baldwin RM, Zoghbi SS, et al. Kinetic and equilibrium analyses of [(123)I]epidepride binding to striatal and extrastriatal dopamine D(2) receptors. Synapse. 1999;34:290–304.PubMedCrossRef
35.
Zurück zum Zitat Hirst RA, Almond SL, Lambert DG. Characterisation of the rat cerebella CB1 receptor using SR141716A, a central cannabinoid receptor antagonist. Neurosci Lett. 1996;220:101–4.PubMedCrossRef Hirst RA, Almond SL, Lambert DG. Characterisation of the rat cerebella CB1 receptor using SR141716A, a central cannabinoid receptor antagonist. Neurosci Lett. 1996;220:101–4.PubMedCrossRef
36.
Zurück zum Zitat Zoghbi SS, Shetty HU, Ichise M, Fujita M, Imaizumi M, Liow JS, et al. PET imaging of the dopamine transporter with 18F-FECNT: a polar radiometabolite confounds brain radioligand measurements. J Nucl Med. 2006;47:520–7.PubMed Zoghbi SS, Shetty HU, Ichise M, Fujita M, Imaizumi M, Liow JS, et al. PET imaging of the dopamine transporter with 18F-FECNT: a polar radiometabolite confounds brain radioligand measurements. J Nucl Med. 2006;47:520–7.PubMed
37.
Zurück zum Zitat Dewar KM, Montreuil B, Grondin L, Reader TA. Dopamine D2 receptors labeled with [3H]raclopride in rat and rabbit brains. Equilibrium binding, kinetics, distribution and selectivity. J Pharmacol Exp Ther. 1989;250:696–706.PubMed Dewar KM, Montreuil B, Grondin L, Reader TA. Dopamine D2 receptors labeled with [3H]raclopride in rat and rabbit brains. Equilibrium binding, kinetics, distribution and selectivity. J Pharmacol Exp Ther. 1989;250:696–706.PubMed
38.
Zurück zum Zitat Khawaja X, Evans N, Reilly Y, Ennis C, Minchin MC. Characterisation of the binding of [3H]WAY-100635, a novel 5-hydroxytryptamine1A receptor antagonist, to rat brain. J Neurochem. 1995;64:2716–26.PubMedCrossRef Khawaja X, Evans N, Reilly Y, Ennis C, Minchin MC. Characterisation of the binding of [3H]WAY-100635, a novel 5-hydroxytryptamine1A receptor antagonist, to rat brain. J Neurochem. 1995;64:2716–26.PubMedCrossRef
39.
Zurück zum Zitat Vandenbroucke A, Foudray AM, Olcott PD, Levin CS. Performance characterization of a new high resolution PET scintillation detector. Phys Med Biol. 2010;55:5895–911.PubMedCrossRef Vandenbroucke A, Foudray AM, Olcott PD, Levin CS. Performance characterization of a new high resolution PET scintillation detector. Phys Med Biol. 2010;55:5895–911.PubMedCrossRef
Metadaten
Titel
Preclinical evaluation and quantification of [18F]MK-9470 as a radioligand for PET imaging of the type 1 cannabinoid receptor in rat brain
verfasst von
Cindy Casteels
Michel Koole
Sofie Celen
Guy Bormans
Koen Van Laere
Publikationsdatum
01.09.2012
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 9/2012
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-012-2163-3

Weitere Artikel der Ausgabe 9/2012

European Journal of Nuclear Medicine and Molecular Imaging 9/2012 Zur Ausgabe