Skip to main content
Erschienen in: Der Radiologe 2/2016

01.02.2016 | Magnetresonanztomografie | Leitthema

Quantitative Perfusionsbildgebung in der Magnetresonanztomographie

verfasst von: PD Dr. Ing. F. G. Zöllner, T. Gaa, F. Zimmer, M. M. Ong, P. Riffel, D. Hausmann, S. O. Schoenberg, M. Weis

Erschienen in: Die Radiologie | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Zusammenfassung

Klinisches/methodisches Problem

Die Magnetresonanztomographie (MRT) zeichnet sich durch einen überlegenen Gewebekontrast aus, während sie nichtinvasiv und frei von ionisierender Strahlung ist. Sie bietet Zugang zu Gewebe- und Organfunktion. Eine dieser funktionellen bildgebenden Verfahren ist die Perfusionsbildgebung. Mit dieser Technik können u. a. Gewebeperfusion und Kapillarpermeabilität aus dynamischen Bilddaten bestimmt werden.

Radiologische Standardverfahren

Perfusionsbildgebung mithilfe der MRT kann durch 2 Ansätze, nämlich „arterial spin labeling“ (ASL) und dynamische kontrastverstärkte (DCE-)MRT durchgeführt werden. Während die erste Methode magnetisch markierte Wasserprotonen im arteriellen Blut als endogenen Tracer verwendet, erfolgt bei der DCE-MRT eine Injektion eines Kontrastmittels, üblicherweise Gadolinium (Gd) als Tracer für die Berechnung hämodynamischer Parameter.

Leistungsfähigkeit

Aus Studien werden das Potenzial und die Möglichkeiten der MRT-Perfusionsbildgebung deutlich, sei es in Bezug auf die Diagnostik oder aber auch zunehmend im Bereich des Therapiemonitorings.

Bewertung

Nutzung und Anwendung der MRT-Perfusionsbildgebung beschränken sich jedoch auf spezialisierte Zentren wie Universitätskliniken. Eine breite Anwendung der Technik ist bisher leider nicht erfolgt.

Empfehlung für die Praxis

Die MRT-Perfusionsbildgebung ist ein wertvolles Tool, das im Rahmen europäischer und internationaler Standardisierungsbemühungen für die Praxis zukünftig einsetzbar werden sollte.
Literatur
1.
Zurück zum Zitat Ai T, Morelli JN, Hu X et al (2012) A historical overview of magnetic resonance imaging, focusing on technological innovations. Invest Radiol 47:725–741CrossRefPubMed Ai T, Morelli JN, Hu X et al (2012) A historical overview of magnetic resonance imaging, focusing on technological innovations. Invest Radiol 47:725–741CrossRefPubMed
2.
Zurück zum Zitat Alsop DC, Detre JA, Golay X et al (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the european consortium for aSL in dementia. Magn Reson Med 73:102–116PubMedCentralCrossRefPubMed Alsop DC, Detre JA, Golay X et al (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the european consortium for aSL in dementia. Magn Reson Med 73:102–116PubMedCentralCrossRefPubMed
3.
Zurück zum Zitat Bjornerud A, Sorensen AG, Mouridsen K et al (2011) T1- and T2*-dominant extravasation correction in DSC-MRI: part I – theoretical considerations and implications for assessment of tumor hemodynamic properties. J Cereb Blood Flow Metab 31:2041–2053PubMedCentralCrossRefPubMed Bjornerud A, Sorensen AG, Mouridsen K et al (2011) T1- and T2*-dominant extravasation correction in DSC-MRI: part I – theoretical considerations and implications for assessment of tumor hemodynamic properties. J Cereb Blood Flow Metab 31:2041–2053PubMedCentralCrossRefPubMed
4.
Zurück zum Zitat Bolar DS, Levin DL, Hopkins SR et al (2006) Quantification of regional pulmonary blood flow using ASL-FAIRER. Magn Reson Med 55:1308–1317CrossRefPubMed Bolar DS, Levin DL, Hopkins SR et al (2006) Quantification of regional pulmonary blood flow using ASL-FAIRER. Magn Reson Med 55:1308–1317CrossRefPubMed
5.
Zurück zum Zitat Buxton RB, Frank LR, Wong EC et al (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396CrossRefPubMed Buxton RB, Frank LR, Wong EC et al (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396CrossRefPubMed
6.
Zurück zum Zitat Calamante F (2013) Arterial input function in perfusion MRI: a comprehensive review. Prog Nucl Magn Reson Spectrosc 74:1–32CrossRefPubMed Calamante F (2013) Arterial input function in perfusion MRI: a comprehensive review. Prog Nucl Magn Reson Spectrosc 74:1–32CrossRefPubMed
7.
Zurück zum Zitat Cutajar M, Thomas DL, Hales PW et al (2014) Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility. Eur Radiol 24:1300–1308CrossRefPubMed Cutajar M, Thomas DL, Hales PW et al (2014) Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility. Eur Radiol 24:1300–1308CrossRefPubMed
8.
Zurück zum Zitat Dai W, Garcia D, Bazelaire CD et al (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60:1488–1497PubMedCentralCrossRefPubMed Dai W, Garcia D, Bazelaire CD et al (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60:1488–1497PubMedCentralCrossRefPubMed
9.
Zurück zum Zitat Davenport MS, Heye T, Dale BM et al (2013) Inter-and intra-rater reproducibility of quantitative dynamic contrast enhanced MRI using TWIST perfusion data in a uterine fibroid model. J Magn Reson Imaging 38:329–335CrossRefPubMed Davenport MS, Heye T, Dale BM et al (2013) Inter-and intra-rater reproducibility of quantitative dynamic contrast enhanced MRI using TWIST perfusion data in a uterine fibroid model. J Magn Reson Imaging 38:329–335CrossRefPubMed
10.
Zurück zum Zitat Davids M, Zollner FG, Ruttorf M et al (2014) Fully-automated quality assurance in multi-center studies using MRI phantom measurements. Magn Reson Imaging 32:771–780CrossRefPubMed Davids M, Zollner FG, Ruttorf M et al (2014) Fully-automated quality assurance in multi-center studies using MRI phantom measurements. Magn Reson Imaging 32:771–780CrossRefPubMed
11.
13.
Zurück zum Zitat Dujardin M, Sourbron S, Luypaert R et al (2005) Quantification of renal perfusion and function on a voxel-by-voxel basis: a feasibility study. Magn Reson Med 54:841–849CrossRefPubMed Dujardin M, Sourbron S, Luypaert R et al (2005) Quantification of renal perfusion and function on a voxel-by-voxel basis: a feasibility study. Magn Reson Med 54:841–849CrossRefPubMed
14.
Zurück zum Zitat Emblem KE, Due-Tonnessen P, Hald JK et al (2014) Machine learning in preoperative glioma MRI: survival associations by perfusion-based support vector machine outperforms traditional MRI. J Magn Reson Imaging 40:47–54CrossRefPubMed Emblem KE, Due-Tonnessen P, Hald JK et al (2014) Machine learning in preoperative glioma MRI: survival associations by perfusion-based support vector machine outperforms traditional MRI. J Magn Reson Imaging 40:47–54CrossRefPubMed
15.
Zurück zum Zitat European Society Of R (2015) ESR position paper on imaging Biobanks. Insights Imaging 6:403–410CrossRef European Society Of R (2015) ESR position paper on imaging Biobanks. Insights Imaging 6:403–410CrossRef
16.
Zurück zum Zitat Futterer JJ, Heijmink SW, Scheenen TW et al (2006) Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241:449–458CrossRefPubMed Futterer JJ, Heijmink SW, Scheenen TW et al (2006) Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241:449–458CrossRefPubMed
17.
Zurück zum Zitat Günther M, Bock M, Schad LR (2001) Arterial spin labeling in combination with a look-locker sampling strategy: Inflow turbo-sampling EPI-FAIR (ITS-FAIR). Magn Reson Med 46:974–984CrossRefPubMed Günther M, Bock M, Schad LR (2001) Arterial spin labeling in combination with a look-locker sampling strategy: Inflow turbo-sampling EPI-FAIR (ITS-FAIR). Magn Reson Med 46:974–984CrossRefPubMed
18.
Zurück zum Zitat Gunther M, Oshio K, Feinberg DA (2005) Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med 54:491–498CrossRefPubMed Gunther M, Oshio K, Feinberg DA (2005) Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med 54:491–498CrossRefPubMed
19.
Zurück zum Zitat Hahn OM, Yang C, Medved M et al (2008) Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma. J Clin Oncol 26:4572–4578PubMedCentralCrossRefPubMed Hahn OM, Yang C, Medved M et al (2008) Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma. J Clin Oncol 26:4572–4578PubMedCentralCrossRefPubMed
20.
Zurück zum Zitat Heusch P, Wittsack HJ, Blondin D, Ljimani A, Nguyen-Quang M, Martirosian P, Zenginli H, Bilk P, Kröpil P, Heusner TA, Antoch G, Lanzman RS (2014) Functional evaluation of transplanted kidneys using arterial spin labeling MRI. J Magn Reson Imaging 40(1):84–89 Heusch P, Wittsack HJ, Blondin D, Ljimani A, Nguyen-Quang M, Martirosian P, Zenginli H, Bilk P, Kröpil P, Heusner TA, Antoch G, Lanzman RS (2014) Functional evaluation of transplanted kidneys using arterial spin labeling MRI. J Magn Reson Imaging 40(1):84–89
21.
Zurück zum Zitat Heye T, Davenport MS, Horvath JJ et al (2013) Reproducibility of dynamic contrast-enhanced MR imaging. part I. perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions. Radiology 266:801–811CrossRefPubMed Heye T, Davenport MS, Horvath JJ et al (2013) Reproducibility of dynamic contrast-enhanced MR imaging. part I. perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions. Radiology 266:801–811CrossRefPubMed
22.
Zurück zum Zitat Ishimori Y, Kimura H, Matsuda T et al (2003) Dynamic contrast-enhanced T(1) measuring MRI using variable flip angle SPGR. Nihon Hoshasen Gijutsu Gakkai Zasshi 59:1535–1541PubMed Ishimori Y, Kimura H, Matsuda T et al (2003) Dynamic contrast-enhanced T(1) measuring MRI using variable flip angle SPGR. Nihon Hoshasen Gijutsu Gakkai Zasshi 59:1535–1541PubMed
23.
Zurück zum Zitat Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34:293–301CrossRefPubMed Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34:293–301CrossRefPubMed
24.
Zurück zum Zitat Kneeshaw PJ, Lowry M, Manton D et al (2006) Differentiation of benign from malignant breast disease associated with screening detected microcalcifications using dynamic contrast enhanced magnetic resonance imaging. Breast 15:29–38CrossRefPubMed Kneeshaw PJ, Lowry M, Manton D et al (2006) Differentiation of benign from malignant breast disease associated with screening detected microcalcifications using dynamic contrast enhanced magnetic resonance imaging. Breast 15:29–38CrossRefPubMed
25.
Zurück zum Zitat Kwong KK, Belliveau JW, Chesler DA et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679PubMedCentralCrossRefPubMed Kwong KK, Belliveau JW, Chesler DA et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679PubMedCentralCrossRefPubMed
26.
Zurück zum Zitat Lanzman RS, Robson PM, Sun MR et al (2012) Arterial spin-labeling MR imaging of renal masses: correlation with histopathologic findings. Radiology 265:799–808PubMedCentralCrossRefPubMed Lanzman RS, Robson PM, Sun MR et al (2012) Arterial spin-labeling MR imaging of renal masses: correlation with histopathologic findings. Radiology 265:799–808PubMedCentralCrossRefPubMed
27.
Zurück zum Zitat Lietzmann F, Zöllner FG, Attenberger UI et al (2012) DCE-MRI of the human kidney using BLADE: a feasibility study in healthy volunteers. J Magn Reson Imaging 35:868–874CrossRefPubMed Lietzmann F, Zöllner FG, Attenberger UI et al (2012) DCE-MRI of the human kidney using BLADE: a feasibility study in healthy volunteers. J Magn Reson Imaging 35:868–874CrossRefPubMed
28.
Zurück zum Zitat Luh WM, Wong EC, Bandettini PA et al (1999) QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 41:1246–1254CrossRefPubMed Luh WM, Wong EC, Bandettini PA et al (1999) QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 41:1246–1254CrossRefPubMed
29.
Zurück zum Zitat Macintosh BJ, Filippini N, Chappell MA et al (2010) Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI. Magn Reson Med 63:641–647CrossRefPubMed Macintosh BJ, Filippini N, Chappell MA et al (2010) Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI. Magn Reson Med 63:641–647CrossRefPubMed
30.
Zurück zum Zitat Martirosian P, Boss A, Schraml C et al (2010) Magnetic resonance perfusion imaging without contrast media. Eur J Nucl Med Mol Imaging 37(Suppl 1):52–64CrossRef Martirosian P, Boss A, Schraml C et al (2010) Magnetic resonance perfusion imaging without contrast media. Eur J Nucl Med Mol Imaging 37(Suppl 1):52–64CrossRef
31.
Zurück zum Zitat Martirosian P, Klose U, Mader I et al (2004) FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 51:353–361CrossRefPubMed Martirosian P, Klose U, Mader I et al (2004) FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 51:353–361CrossRefPubMed
32.
Zurück zum Zitat Mcdonald JS, Mcdonald RJ, Comin J et al (2013) Frequency of acute kidney injury following intravenous contrast medium administration: a systematic review and meta-analysis. Radiology 267:119–128CrossRefPubMed Mcdonald JS, Mcdonald RJ, Comin J et al (2013) Frequency of acute kidney injury following intravenous contrast medium administration: a systematic review and meta-analysis. Radiology 267:119–128CrossRefPubMed
33.
Zurück zum Zitat Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744PubMed Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744PubMed
34.
Zurück zum Zitat Mendichovszky IA, Cutajar M, Gordon I (2009) Reproducibility of the aortic input function (AIF) derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the kidneys in a volunteer study. Eur J Radiol 71:576–581CrossRefPubMed Mendichovszky IA, Cutajar M, Gordon I (2009) Reproducibility of the aortic input function (AIF) derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the kidneys in a volunteer study. Eur J Radiol 71:576–581CrossRefPubMed
35.
Zurück zum Zitat Merrem AD, Zollner FG, Reich M et al (2013) A variational approach to image registration in dynamic contrast-enhanced MRI of the human kidney. Magn Reson Imaging 31:771–777CrossRefPubMed Merrem AD, Zollner FG, Reich M et al (2013) A variational approach to image registration in dynamic contrast-enhanced MRI of the human kidney. Magn Reson Imaging 31:771–777CrossRefPubMed
36.
Zurück zum Zitat Michaely HJ, Thomsen HS, Reiser MF et al (2007) Nephrogenic systemic fibrosis (NSF) – implications for radiology. Radiologe 47:785–793CrossRefPubMed Michaely HJ, Thomsen HS, Reiser MF et al (2007) Nephrogenic systemic fibrosis (NSF) – implications for radiology. Radiologe 47:785–793CrossRefPubMed
37.
Zurück zum Zitat Norman JT, Stidwill R, Singer M et al (2003) Angiotensin II blockade augments renal cortical microvascular pO2 indicating a novel, potentially renoprotective action. Nephron Physiol 94:p39–46CrossRefPubMed Norman JT, Stidwill R, Singer M et al (2003) Angiotensin II blockade augments renal cortical microvascular pO2 indicating a novel, potentially renoprotective action. Nephron Physiol 94:p39–46CrossRefPubMed
38.
Zurück zum Zitat Notohamiprodjo M, Sourbron S, Staehler M et al (2010) Measuring perfusion and permeability in renal cell carcinoma with dynamic contrast-enhanced MRI: a pilot study. J Magn Reson Imaging 31:490–501CrossRefPubMed Notohamiprodjo M, Sourbron S, Staehler M et al (2010) Measuring perfusion and permeability in renal cell carcinoma with dynamic contrast-enhanced MRI: a pilot study. J Magn Reson Imaging 31:490–501CrossRefPubMed
39.
Zurück zum Zitat O’Connor JP, Jackson A, Asselin MC et al (2008) Quantitative imaging biomarkers in the clinical development of targeted therapeutics: current and future perspectives. Lancet Oncol 9:766–776CrossRefPubMed O’Connor JP, Jackson A, Asselin MC et al (2008) Quantitative imaging biomarkers in the clinical development of targeted therapeutics: current and future perspectives. Lancet Oncol 9:766–776CrossRefPubMed
40.
Zurück zum Zitat O’Connor JP, Tofts PS, Miles KA et al (2011) Dynamic contrast-enhanced imaging techniques: CT and MRI. Br J Radiol 84(Spec No 2):112–120CrossRef O’Connor JP, Tofts PS, Miles KA et al (2011) Dynamic contrast-enhanced imaging techniques: CT and MRI. Br J Radiol 84(Spec No 2):112–120CrossRef
41.
Zurück zum Zitat Ohno Y, Koyama H, Nogami M et al (2008) Dynamic perfusion MRI: capability for evaluation of disease severity and progression of pulmonary arterial hypertension in patients with connective tissue disease. J Magn Reson Imaging 28:887–899CrossRefPubMed Ohno Y, Koyama H, Nogami M et al (2008) Dynamic perfusion MRI: capability for evaluation of disease severity and progression of pulmonary arterial hypertension in patients with connective tissue disease. J Magn Reson Imaging 28:887–899CrossRefPubMed
42.
Zurück zum Zitat Ostergaard L (2005) Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 22:710–717CrossRefPubMed Ostergaard L (2005) Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 22:710–717CrossRefPubMed
43.
Zurück zum Zitat Pallwein-Prettner L, Flory D, Rotter CR et al (2011) Assessment and characterisation of common renal masses with CT and MRI. Insights Imaging 2:543–556PubMedCentralCrossRefPubMed Pallwein-Prettner L, Flory D, Rotter CR et al (2011) Assessment and characterisation of common renal masses with CT and MRI. Insights Imaging 2:543–556PubMedCentralCrossRefPubMed
44.
Zurück zum Zitat Park S-H, Wang DJJ, Duong TQ (2013) Balanced steady state free precession for arterial spin labeling MRI: Initial experience for blood flow mapping in human brain, retina, and kidney. Magn Reson Imaging 31:1044–1050PubMedCentralCrossRefPubMed Park S-H, Wang DJJ, Duong TQ (2013) Balanced steady state free precession for arterial spin labeling MRI: Initial experience for blood flow mapping in human brain, retina, and kidney. Magn Reson Imaging 31:1044–1050PubMedCentralCrossRefPubMed
45.
Zurück zum Zitat Petersen ET, Mouridsen K, Golay X (2010) The QUaSaR reproducibility study, part II: results from a multi-center arterial spin labeling test – retest study. Neuroimage 49:104–113PubMedCentralCrossRefPubMed Petersen ET, Mouridsen K, Golay X (2010) The QUaSaR reproducibility study, part II: results from a multi-center arterial spin labeling test – retest study. Neuroimage 49:104–113PubMedCentralCrossRefPubMed
47.
Zurück zum Zitat Rischke HC, Schafer AO, Nestle U et al (2012) Detection of local recurrent prostate cancer after radical prostatectomy in terms of salvage radiotherapy using dynamic contrast enhanced-MRI without endorectal coil. Radiat Oncol 7:185PubMedCentralCrossRefPubMed Rischke HC, Schafer AO, Nestle U et al (2012) Detection of local recurrent prostate cancer after radical prostatectomy in terms of salvage radiotherapy using dynamic contrast enhanced-MRI without endorectal coil. Radiat Oncol 7:185PubMedCentralCrossRefPubMed
48.
Zurück zum Zitat Roberts DA, Rizi R, Lenkinski RE et al (1996) Magnetic resonance imaging of the brain: Blood partition coefficient for water: Application to spin-tagging measurement of perfusion. J Magn Reson Imaging 6:363–366CrossRefPubMed Roberts DA, Rizi R, Lenkinski RE et al (1996) Magnetic resonance imaging of the brain: Blood partition coefficient for water: Application to spin-tagging measurement of perfusion. J Magn Reson Imaging 6:363–366CrossRefPubMed
49.
Zurück zum Zitat Rosen MA, Schnall MD (2007) Dynamic contrast-enhanced magnetic resonance imaging for assessing tumor vascularity and vascular effects of targeted therapies in renal cell carcinoma. Clin Cancer Res 13:770s–776sCrossRefPubMed Rosen MA, Schnall MD (2007) Dynamic contrast-enhanced magnetic resonance imaging for assessing tumor vascularity and vascular effects of targeted therapies in renal cell carcinoma. Clin Cancer Res 13:770s–776sCrossRefPubMed
50.
Zurück zum Zitat Rossi C, Boss A, Artunc F et al (2009) Comprehensive assessment of renal function and vessel morphology in potential living kidney donors: an MRI-based approach. Invest Radiol 44:705–711CrossRefPubMed Rossi C, Boss A, Artunc F et al (2009) Comprehensive assessment of renal function and vessel morphology in potential living kidney donors: an MRI-based approach. Invest Radiol 44:705–711CrossRefPubMed
51.
Zurück zum Zitat Runge VM, Aoki S, Bradley WG Jr et al (2015) Magnetic resonance imaging and computed Tomography of the brain-50 years of innovation, with a focus on the future. Invest Radiol 50:551–556CrossRefPubMed Runge VM, Aoki S, Bradley WG Jr et al (2015) Magnetic resonance imaging and computed Tomography of the brain-50 years of innovation, with a focus on the future. Invest Radiol 50:551–556CrossRefPubMed
52.
Zurück zum Zitat Sertdemir M, Schoenberg SO, Sourbron S et al (2013) Interscanner comparison of dynamic contrast-enhanced MRI in prostate cancer: 1.5 versus 3 T MRI. Invest Radiol 48:92–97CrossRefPubMed Sertdemir M, Schoenberg SO, Sourbron S et al (2013) Interscanner comparison of dynamic contrast-enhanced MRI in prostate cancer: 1.5 versus 3 T MRI. Invest Radiol 48:92–97CrossRefPubMed
55.
Zurück zum Zitat Sourbron SP, Buckley DL (2013) Classic models for dynamic contrast-enhanced MRI. NMR Biomed 26:1004–1027CrossRefPubMed Sourbron SP, Buckley DL (2013) Classic models for dynamic contrast-enhanced MRI. NMR Biomed 26:1004–1027CrossRefPubMed
56.
Zurück zum Zitat Sourbron SP, Buckley DL (2012) Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Phys Med Biol 57:R1–33CrossRefPubMed Sourbron SP, Buckley DL (2012) Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Phys Med Biol 57:R1–33CrossRefPubMed
57.
Zurück zum Zitat Van Meurs KP, Newman KD, Anderson KD et al (1990) Effect of extracorporeal membrane oxygenation on survival of infants with congenital diaphragmatic hernia. J Pediatr 117:954–960CrossRefPubMed Van Meurs KP, Newman KD, Anderson KD et al (1990) Effect of extracorporeal membrane oxygenation on survival of infants with congenital diaphragmatic hernia. J Pediatr 117:954–960CrossRefPubMed
58.
Zurück zum Zitat Weidner M, Zöllner FG, Hagelstein C et al (2014) High temporal versus high spatial resolution in MR quantitative pulmonary perfusion imaging of two-year old children after congenital diaphragmatic hernia repair. Eur Radiol 24:2427–2434CrossRefPubMed Weidner M, Zöllner FG, Hagelstein C et al (2014) High temporal versus high spatial resolution in MR quantitative pulmonary perfusion imaging of two-year old children after congenital diaphragmatic hernia repair. Eur Radiol 24:2427–2434CrossRefPubMed
59.
Zurück zum Zitat Wentland AL, Sadowski EA, Djamali A et al (2009) Quantitative MR measures of intrarenal perfusion in the assessment of transplanted kidneys: initial experience. Acad Radiol 16:1077–1085PubMedCentralCrossRefPubMed Wentland AL, Sadowski EA, Djamali A et al (2009) Quantitative MR measures of intrarenal perfusion in the assessment of transplanted kidneys: initial experience. Acad Radiol 16:1077–1085PubMedCentralCrossRefPubMed
60.
Zurück zum Zitat Williams DS, Detre JA, Leigh JS et al (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA 89:212–216PubMedCentralCrossRefPubMed Williams DS, Detre JA, Leigh JS et al (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA 89:212–216PubMedCentralCrossRefPubMed
61.
Zurück zum Zitat Wong EC, Buxton RB, Frank LR (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10:237–249CrossRefPubMed Wong EC, Buxton RB, Frank LR (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10:237–249CrossRefPubMed
62.
Zurück zum Zitat Wong EC, Buxton RB, Frank LR (1998) Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 39:702–708CrossRefPubMed Wong EC, Buxton RB, Frank LR (1998) Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 39:702–708CrossRefPubMed
63.
Zurück zum Zitat Zimmer F, Zöllner FG, Hoeger S et al (2013) Quantitative renal perfusion measurements in a rat model of acute kidney injury at 3 T: testing inter- and intramethodical significance of ASL and DCE-MRI. PLoS One 8:e53849PubMedCentralCrossRefPubMed Zimmer F, Zöllner FG, Hoeger S et al (2013) Quantitative renal perfusion measurements in a rat model of acute kidney injury at 3 T: testing inter- and intramethodical significance of ASL and DCE-MRI. PLoS One 8:e53849PubMedCentralCrossRefPubMed
64.
Zurück zum Zitat Zöllner FG, Weisser G, Reich M et al (2013) UMMPerfusion: an open source software tool towards quantitative MRI perfusion analysis in clinical routine. J Digit Imaging 26:344–352PubMedCentralCrossRefPubMed Zöllner FG, Weisser G, Reich M et al (2013) UMMPerfusion: an open source software tool towards quantitative MRI perfusion analysis in clinical routine. J Digit Imaging 26:344–352PubMedCentralCrossRefPubMed
65.
Zurück zum Zitat Zöllner FG, Zahn K, Schaible T et al (2012) Quantitative pulmonary perfusion imaging at 3.0 T of 2-year-old children after congenital diaphragmatic hernia repair: initial results. Eur Radiol 22:2743–2749CrossRefPubMed Zöllner FG, Zahn K, Schaible T et al (2012) Quantitative pulmonary perfusion imaging at 3.0 T of 2-year-old children after congenital diaphragmatic hernia repair: initial results. Eur Radiol 22:2743–2749CrossRefPubMed
66.
Zurück zum Zitat Zun Z, Wong EC, Nayak KS (2009) Assessment of myocardial blood flow (MBF) in humans using arterial spin labeling (ASL): Feasibility and noise analysis. Mag Reson Med 62:975–983CrossRef Zun Z, Wong EC, Nayak KS (2009) Assessment of myocardial blood flow (MBF) in humans using arterial spin labeling (ASL): Feasibility and noise analysis. Mag Reson Med 62:975–983CrossRef
Metadaten
Titel
Quantitative Perfusionsbildgebung in der Magnetresonanztomographie
verfasst von
PD Dr. Ing. F. G. Zöllner
T. Gaa
F. Zimmer
M. M. Ong
P. Riffel
D. Hausmann
S. O. Schoenberg
M. Weis
Publikationsdatum
01.02.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Die Radiologie / Ausgabe 2/2016
Print ISSN: 2731-7048
Elektronische ISSN: 2731-7056
DOI
https://doi.org/10.1007/s00117-015-0068-4

Weitere Artikel der Ausgabe 2/2016

Der Radiologe 2/2016 Zur Ausgabe

Mitteilungen des Berufsverbandes der Deutschen Radiologen

Mitteilungen des Berufsverbandes der deutschen Radiologen

Informationstechnologie und Management

Wie mit "Big data" in der Radiologie umgehen?

Einführung zum Thema

Physiologie sichtbar

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.