Skip to main content
Erschienen in: Advances in Therapy 10/2023

Open Access 25.07.2023 | Original Research

Remimazolam Compared to Propofol for Total Intravenous Anesthesia with Remifentanil on the Recovery of Psychomotor Function: A Randomized Controlled Trial

verfasst von: Takahito Shimizu, Toshifumi Takasusuki, Shigeki Yamaguchi

Erschienen in: Advances in Therapy | Ausgabe 10/2023

Abstract

Introduction

This study aimed to compare remimazolam to propofol in psychomotor recovery after total intravenous anesthesia (TIVA) using the Trieger dot test.

Methods

Sixty-six patients who were scheduled to undergo endoscopic sinus surgery with American Society of Anesthesiologists (ASA) physical status I or II were randomly allocated to the remimazolam (group R) or propofol group (group P). In group R, all patients received flumazenil postoperatively. After discontinuation of anesthetic agents, the time to eye opening, response to verbal commands, extubation, and discharge from the operation room were measured. Psychomotor recovery was assessed using the Trieger dot test before induction and at 0, 30, 60, 90, 120, 150, and 180 min after anesthesia.

Results

The time to eye opening, response to verbal commands, extubation, and discharge from the operation room were significantly longer in group P compared to group R (group P: 9.8 ± 3.2 min, 11.5 ± 3.4 min, 12.7 ± 3.4 min, 18.1 ± 4.2 min; group R: 6.5 ± 2 min, 7.3 ± 2.6 min, 8.4 ± 2.9 min, 13.2 ± 3.2 min; respectively, p < 0.05). In the Trieger dot test, the number of dots missed was significantly increased in group R compared to group P at 30, 60, 90, and 120 min after discharge from the operation room (group R: 20.5 ± 9.3, 16 ± 8.8, 14.9 ± 11.1, 14.3 ± 10.8; group P: 14.6 ± 7.8, 10 ± 7.1, 8.7 ± 7.3, 7.3 ± 5.7; respectively, p < 0.05). The maximum distance of dots missed was significantly increased in group R compared to group P at 30 min after discharge from the operation room (group R: 3.9 ± 2.8; group P: 2.7 ± 1.6; p < 0.05).

Conclusion

Our results suggest that remimazolam with flumazenil leads to rapid recovery following anesthesia; however, it may cause delayed psychomotor decline.

Clinical Trial Registration

This trial is registered with the University Hospital Medical Information Network (registration number UMIN000044900).
Key Summary Points
Why carry out this study?
Remimazolam is a novel benzodiazepine that has a rapid onset and recovery with fewer adverse effects.
No comparison of remimazolam and propofol in psychomotor recovery from total intravenous anesthesia (TIVA) has been reported.
To clarify the efficacy and safety of remimazolam, we compared remimazolam with propofol for psychomotor recovery after TIVA using the Trieger dot test.
What was learned from the study?
Remimazolam with flumazenil resulted in faster recovery immediately after anesthesia compared to propofol.
In contrast, the psychomotor function of remimazolam 30–120 min after anesthesia was lower than that of propofol.
Our findings emphasize the need for careful observation for at least 2 h after remimazolam infusion.

Introduction

Remimazolam, an ultrashort-acting anesthetic agent, is an ester-based benzodiazepine with a high affinity to the binding site of γ-aminobutyric acid (GABA) receptor [13]. Remimazolam is metabolized by tissue esterases distributed throughout the body; therefore, the metabolite is independent of the liver and renal function [1]. Owing to its rapid onset, predictable recovery, and minimal hemodynamic instability, remimazolam is increasingly used for anesthesia [4, 5]. Several studies have demonstrated the efficacy and safety of remimazolam for general anesthesia and sedation [68]. Recently, this novel benzodiazepine was approved for general anesthesia in Japan [9]. It has been reported that psychomotor recovery after sedation with remimazolam and flumazenil was faster than that with midazolam [10].
Propofol, a short-acting intravenous anesthetic agent, is commonly used for sedation and general anesthesia owing to its rapid onset and emergence from anesthesia. Total intravenous anesthesia (TIVA) with propofol is one of the most common options because of its predictable recovery time, safety, and efficacy. In spinal surgery, TIVA with propofol is preferable to volatile anesthetics to avoid the attenuation of motor-evoked potential (MEP) monitoring [11]. Our previous work clarified that the combination of propofol and remifentanil achieved rapid and reliable recovery of psychomotor function compared with propofol–fentanyl after TIVA [12].
Remifentanil, ultrashort-acting μ-opioid receptor agonist, achieves predictable recovery in TIVA owing to its fast emergence from anesthesia. The elimination half-life of remifentanil metabolized by tissue and plasma nonspecific esterases is shorter compared to fentanyl which is metabolized by the liver [12, 13]. Thus, remifentanil could achieve a manageable TIVA, surprisingly. Similar to propofol, remimazolam is a novel TIVA option.
Although the efficacy and safety of remimazolam and propofol have been established, a comparison of these agents in terms of recovery remains to be elucidated. In fact, the effects of remimazolam and propofol on psychomotor recovery remain controversial. Further studies are needed to determine the safety and efficacy of these anesthetic agents during the perioperative period.
In the current study, we sought to compare the effects of remimazolam and propofol on psychomotor recovery 0–180 min after the discontinuation of general anesthesia using the Trieger dot test.

Methods

This study was approved by the Ethics Committee of the Dokkyo Medical University (R-49-3) and registered with the University Hospital Medical Information Network (UMIN, registration number UMIN000044900). All procedures were performed in accordance with the ethical standards of the Institutional and National Research Committee and the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. After written informed consent was obtained, 66 patients with American Society of Anesthesiologists (ASA) physical status I or II, aged 20–65 years, who were scheduled to undergo endoscopic sinus surgery were studied. Patients with cardiovascular, respiratory, hepatic, renal, or cerebrovascular diseases, body mass index (BMI) > 30 kg/m2, or history of allergy to any study drugs were excluded. Participants were randomly assigned to two groups: patients in group R (n = 33) received a continuous infusion of remimazolam, while those in group P (n = 33) received a continuous infusion of propofol. None of the patients received premedication.
In the operation room, standard monitoring of 12-lead electrocardiogram (ECG) signals (FDX-4521L; Fukuda Denshi Co. Ltd., Tokyo, Japan), noninvasive measurement of arterial blood pressure, pulse oximetry, and assessment of bispectral index, an index for measuring the depth of anesthesia (Bispectral Index™ Monitoring System; Medtronic, Minneapolis, MN, USA), were performed. After adequate preoxygenation, anesthesia was conducted with 0.5–1 μg/kg/min of remifentanil (a potent and short-acting opioid agonist), an effect-site target propofol concentration of 3–4 μg/ml propofol in group P or 12 mg/kg/h remimazolam in group R. Propofol was administrated using a target-controlled infusion (TCI) system (TE-SS830T; Terumo Medical Corp., Shibuya, Japan). After loss of consciousness, 0.6 mg/kg of rocuronium (a non-depolarizing neuromuscular blocking agent) was administered, followed by manual ventilation with 100% oxygen using a face mask. Tracheal intubation was performed by an experienced anesthesiologist using a video laryngoscope (McGRATH™ MAC Video Laryngoscope; Medtronic, Minneapolis, MN, USA). Anesthesia was maintained with remifentanil (0.25–0.5 μg/kg/min), air–oxygen mixture, 2–5 μg/ml effect-site target propofol concentration in group P or 1–2 mg/kg/h remimazolam in group R. The ventilator settings were adjusted to an end-tidal carbon dioxide tension (PETCO2) of 35–40 mmHg during the study. The anesthetics doses were adjusted to maintain BIS values between 40 and 60 during surgery. All patients received a continuous infusion of acetate Ringer’s solution at a rate of 5 ml/kg/h during the surgery. At the end of surgery, all patients were given 20 mg/kg body weight of acetaminophen for analgesia.
After the operation, all intravenous anesthetics were immediately discontinued and then 4 mg/kg body weight of sugammadex was administered to reverse the neuromuscular blockade. In group R, all patients received 0.2–0.5 mg of flumazenil as an antidote after surgery. After discontinuation of the anesthetic agents, the time to eye opening, response to verbal commands, extubation, and discharge from the operation room were measured. In addition, to assess the recovery of psychomotor function following general anesthesia, a psychomotor function test known as the Trieger dot test was conducted prior to induction and at 0, 30, 60, 90, 120, 150, and 180 min after discharge from the operation room. This test consists in joining together a dotted line which was represented in the form of a figure. The number of dots missed (NDM), which represents the total number of dots unconnected, and maximum distance of dots missed (MDDM: millimeters), which represents the longest distance between the drawn line and missed dots, were evaluated.
The primary outcome of the present study was the quality of psychomotor recovery after infusion of remimazolam compared with propofol. Therefore, the primary endpoints of psychomotor recovery were defined as NDM and MDDM in Trieger dot test after anesthesia. The secondary endpoint of our study was the time to recovery from general anesthesia evaluated by eye opening, response to verbal commands, extubation, and discharge from the operation room after anesthesia. In addition, we evaluated the heart rate (HR), systolic blood pressure (sBP), diastolic blood pressure (dBP), and oxygen saturation (SpO2) as secondary endpoints.

Statistical Analyses

Statistical analysis was performed using Prism 6 (GraphPad, La Jolla, CA, USA). Data are expressed as mean ± standard deviation. Patient characteristics were analyzed using Student’s t test and Fisher’s exact test as appropriate. The time to eye opening, response to verbal command, extubation, discharge from the operation room, NDM, and MDDM were analyzed by two-way analysis of variance. When a significant overall effect was detected, Bonferroni’s post hoc test was conducted. In all analyses, the probability of detecting a significant difference was set at the 5% level (p < 0.05). On the basis of a previous study [12], a sample size of 25 subjects in each group was considered adequate to detect a difference of 12 mm in MDDM between the two groups at a power of 80%, with α = 0.05.

Results

Sixty-nine patients were screened and 66 were enrolled in the present study. However, two patients were excluded from this analysis as a result of postoperative delirium (Fig. 1).
Table 1 shows the patient characteristics for the present study. There were no significant differences in age, sex, ASA physical status, or BMI between the two groups. In this study, no significant difference was found in the duration of anesthesia or surgery between the two groups. No complication was observed in this study.
Table 1
Patient characteristics
 
Group P (n = 32)
Group R (n = 32)
Age (years)
44 .4 ± 10.1
43.5 ± 10.4
Gender (male/female)
22/10
22/10
BMI (kg/m2)
23.2 ± 3.3
23.3 ± 11.9
ASA physical status (I/II)
22/10
19/13
Medications
 Hypertension
3
2
 Diabetes mellitus
0
1
 Hyperuricemia
1
1
 Asthma
2
6
 Dyslipidemia
2
1
Duration of anesthesia (min)
178 ± 60
157 ± 42
Duration of surgery (min)
121 ± 57
107 ± 38
Data are presented as the means ± standard deviation
BMI body mass index, ASA American Society of Anesthesiologists physical status
Table 2 shows the hemodynamic variables before induction, before intubation, immediately after intubation, after extubation, and at discharge from the operation room. There were no significant differences between two groups in HR, sBP, dBP, and SpO2 throughout the present study. However, our findings indicated that the perioperative hemodynamic variables in group R tended to be more prominent in comparison to group P.
Table 2
Perioperative hemodynamic variables
 
Before induction
Before intubation
Immediately after intubation
After extubation
Discharge from operation room
HR (bpm)
 Group P
78.7 ± 16.8
70.1 ± 13
74 ± 11.3
61.1 ± 9
76.2 ± 11.2
 Group R
75 ± 17
76.2 ± 11.6
80.7 ± 12.6
62.5 ± 8.3
74.9 ± 11.6
sBP (mmHg)
 Group P
137.3 ± 22
100.5 ± 17.9
106.1 ± 19.5
90.6 ± 6.9
117.5 ± 17.2
 Group R
133.1 ± 16.7
110.3 ± 17.6
114.5 ± 23.8
95.3 ± 10.5
125.9 ± 18.2
dBP (mmHg)
 Group P
80.8 ± 13
58.6 ± 14.4
61.9 ± 13.9
50.6 ± 6.5
68.5 ± 12.3
 Group R
79.8 ± 10.3
65.5 ± 12.4
68.9 ± 16.9
54.6 ± 8.3
75.6 ± 13.3
SpO2 (%)
 Group P
99.2 ± 0.9
99.5 ± 0.9
99.6 ± 0.7
99.8 ± 0.5
99.7 ± 0.7
 Group R
99.3 ± 1.1
99.6 ± 0.6
99.4 ± 1
99.6 ± 0.7
99.7 ± 0.8
Data are presented as mean ± standard deviation
Group P patents received propofol, group R patients received remimazolam
HR heart rate, sBP systolic blood pressure, dBP diastolic blood pressure, SpO2 oxygen saturation
Table 3 shows the time to recovery from general anesthesia (eye opening, response to verbal command, extubation, and discharge from operation room) after discontinuation of anesthetic agents. The time to eye opening (group P: 9.8 ± 3.2 min; group R: 6.5 ± 2 min, p < 0.05), response to verbal commands (group P: 11.5 ± 3.4 min; group R: 7.3 ± 2.6 min, p < 0.05), extubation (group P: 12.7 ± 3.4 min; group R: 8.4 ± 2.9 min, p < 0.05), and discharge from the operation room (group P: 18.1 ± 4.2 min; group R: 13.2 ± 3.2 min, p < 0.05) were decreased in group R compared to group P.
Table 3
Time to eye opening, response to verbal command, extubation, and discharge from operation room after discontinuation of anesthetics
 
Eye opening (min)
Response to verbal command (min)
Extubation (min)
Discharge from the operation room (min)
Group P
9.8 ± 3.2
11.5 ± 3.4
12.7 ± 3.4
18.1 ± 4.2
Group R
6.5 ± 2*
7.3 ± 2.6*
8.4 ± 2.9*
13.2 ± 3.2*
Data are presented as the mean ± standard deviation
Group P patents received propofol, group R patients received remimazolam
*p < 0.05 versus group P
Table 4 shows the NMD and MDDM in the Trieger dot test before and after general anesthesia. The NMD in group R was significantly increased at 30 min (group P: 14.6 ± 7.8; group R: 20.5 ± 9.3, p < 0.05), 60 min (group P: 10 ± 7.1; group R: 16 ± 8.8, p < 0.05), 90 min (group P: 8.7 ± 7.3; group R: 14.9 ± 11.1, p < 0.05), and 120 min (group P: 7.3 ± 5.7; group R: 14.3 ± 10.8, p < 0.05) after discharge from the operation room compared to group P. Furthermore, the MDDM in group R was significantly increased at 30 min (group P: 2.7 ± 1.6 mm; group R: 3.9 ± 2.8 mm) after discharge from the operation room compared to group P.
Table 4
Number of dots missed (NMD) and maximum distance of dots missed (MDDM) before and after general anesthesia
 
T0
T1
T2
T3
T4
T5
T6
T7
NMD
 Group P
3.3 ± 3.2
24.5 ± 10.4
14.6 ± 7.8
10 ± 7.1
8.7 ± 7.3
7.3 ± 5.7
7.4 ± 7.2
6.7 ± 6.5
 Group R
4.5 ± 4.8
27.3 ± 8.7
20.5 ± 9.3*
16 ± 8.8*
14.9 ± 11.1*
14.3 ± 10.8*
11.9 ± 9.3
10.1 ± 8.3
MDDM (mm)
 Group P
0.9 ± 0.7
5.1 ± 3
2.7 ± 1.6
1.8 ± 0.7
1.9 ± 1.2
1.6 ± 1.1
1.5 ± 1.1
1.5 ± 1.2
 Group R
1.1 ± 0.7
5.8 ± 3.7
3.9 ± 2.8*
2.9 ± 1.5
2.3 ± 1.1
2.3 ± 1.5
2.0 ± 1.6
1.8 ± 1.1
Data are presented as the mean ± standard deviation
Group P patents received propofol, group R patients received remimazolam
T0 before induction, T1 0 min, T2 30 min, T3 60 min, T4 90 min, T5 120 min, T6 150 min, T7 180 min after discharge from the operation room
*p < 0.05 versus group P

Discussion

The combination of propofol and remifentanil has been an indispensable option for TIVA. Recently, remimazolam, a new benzodiazepine, in combination with flumazenil has garnered recognition for its ability to achieve efficient and safe anesthetic effect owing to its pharmacological characteristics. Remimazolam is recognized as an ultrashort-acting and rapid offset drug compared to midazolam [9, 10]. In addition, the quality of recovery assessed by QoR-15 on postoperative day 1 or 2 showed similar results between remimazolam and propofol [14]. However, in our study, although remimazolam with flumazenil resulted in rapid recovery compared to propofol, psychomotor recovery from remimazolam was inadequate compared to propofol 1–2 h after discharge from the operation room. In terms of recovery from anesthesia, anesthesiologists must pay special attention to delayed psychomotor decline after the use of remimazolam, especially with flumazenil.

Assessment of Psychomotor Function

The Trieger dot test has commonly been used to assess psychomotor function and is a widely recognized as a validated measure of anesthetic recovery [12, 15]. This objective measurement is thought to be more sensitive than other tests for assessing intermediate and late recovery of psychomotor function following general anesthesia [12]. In the previous study, to evaluate psychomotor recovery after remimazolam sedation with flumazenil, Chen et al. measured body sway, choice reaction test, saccadic eye movement, smooth pursuit eye movement, and word recall test [10]. The present study is the first to compare psychomotor recovery between remimazolam and propofol anesthesia using the Trieger dot test.

Comparison of Remimazolam and Propofol in Hemodynamic Variables

Hemodynamic stability during anesthesia is also a benefit of remimazolam. Typically, propofol suppresses hemodynamic changes during anesthesia compared to remimazolam. Several studies have reported that the incidence of hypotension was lower under remimazolam than under propofol anesthesia [6, 14, 1618]. In the present study, there were no statistically significant differences in perioperative hemodynamic variables including HR, sBP, dBP, and SpO2 between the two groups. However, a slight inhibitory effect on hemodynamic changes was detected in the propofol group, but not in the remimazolam group. In addition, there was no adverse cardiovascular event such as lethal arrhythmia or refractory hypotension in either group. Our findings are consistent with those of previous reports for the adverse hemodynamic events.

Comparison of Propofol and Remimazolam in Recovery from Anesthesia

Chen et al. showed that the effect of a single dose of midazolam on psychomotor function was much stronger than that of remimazolam [10]. However, they empathized that although rapid psychomotor recovery rapid psychomotor recovery could be achieved, the residual effect of remimazolam was likely to induce delayed psychomotor decline 2 h after infusion. They proposed that careful attention must be paid to psychomotor assessment for 2 h following remimazolam sedation. In the present study, the time to eye opening, response to verbal commands, extubation, and discharge from the operation room were shorter in group R than those in group P. In contrast, NMD at 30, 60, 90, and 120 min and MDDM at 30 min after discharge from the operation room were significantly increased in group R compared to group P. These results imply that recovery from remimazolam may be prolonged after discharge from the operation room rather than immediately after anesthesia. In terms of delayed psychomotor recovery from remimazolam, our results are consistent with the results reported by Chen et al. These results emphasize that anesthesiologists must pay special attention to delayed anesthetic recovery at least 2–3 h following remimazolam infusion.
Doi et al. reported a significant increase in recovery time as defined by eye opening, date of birth, extubation, and discharge from the operation room following remimazolam anesthesia at a dose of 6 and 12 mg/kg/h compared to propofol [6]. In their study, flumazenil was given when no awakening was observed within 30 min after the discontinuation of remimazolam. Remimazolam antagonized by flumazenil is commonly thought to produce more rapid and reliable recovery than propofol [8, 19]. A previous retrospective study showed that there was no significant difference in the incidence of extubation recall between the remimazolam–flumazenil and propofol groups [20]. However, several studies have reported the reappearance of the effect of remimazolam antagonized by flumazenil [2123]. To avoid re-sedation or respiratory depression, careful observation for at least 1–2 h is recommended after remimazolam anesthesia [22]. In our observation, flumazenil was administered to all patients; therefore, recovery in group R was facilitated immediately after the termination of agent compared to that in group P. However, a delayed psychomotor decline was observed in group R at 30–120 min after the discontinuation of remimazolam. Our findings emphasize the risk of residual effect of remimazolam for at least 2 h after anesthesia, especially with flumazenil.

Limitations

Our study has several limitations. First, the study conducted by Choi et al. compared the quality of recovery (QoR) between remimazolam and propofol anesthesia 1 or 2 days postoperatively [14]. They concluded that the QoR of remimazolam was non-inferior to that of propofol during this time period. However, our observation associated with psychomotor recovery was observed for 180 min following the general anesthesia. Consequently, our findings were unable to exclude the possibility of the remimazolam effect reappearing the day following anesthesia, particularly in cases involving high-dose remimazolam. Thus, a longer observation period for psychomotor recovery might be preferable.
Second, our results were evaluated solely using the Trieger dot test. There are several methods available to assess psychomotor function, such as the digit symbol substitution test and choice reaction test [10, 24]. Therefore, further methods for evaluating psychomotor recovery could have been used in our observation.
Third, all patients in our study were administered flumazenil for the reversal of the remimazolam. Basically, remimazolam is reversed by flumazenil in case of delayed recovery. In our results, immediate recovery (0–30 min after anesthesia), but not late recovery (30–120 min after anesthesia), from remimazolam was facilitated by flumazenil. In contrast, immediate recovery with propofol was prolonged; however, late recovery was superior compared to that of remimazolam. This discrepancy may be attributable to the administration of flumazenil. Careful observation is required when administering a large bolus injection of flumazenil to avoid reappearance of remimazolam’s effect after anesthesia [22]. Further studies without flumazenil should be conducted to clarify the safety and efficacy of remimazolam.

Conclusions

In the present study, TIVA with remimazolam and flumazenil resulted in faster recovery compared to TIVA with propofol. In contrast, remimazolam combined with flumazenil caused delayed psychomotor decline. Careful observation for a moderate to lasting residual effect of remimazolam is required following anesthesia, especially when antagonized by flumazenil.

Acknowledgements

We thank the participants of this study.

Author Contributions

Shigeki Yamaguchi made substantial contributions to the conception, design of the work and revision of the manuscript drafts. Toshifumi Takasusuki made substantial contributions to the data analysis and manuscript drafting. Takahito Shimizu made substantial contributions to data acquisition. All the authors have approved the submitted version of the manuscript and agreed to be accountable for any part of the work.

Funding

No funding or sponsorship was received for this study or publication of this article. The article processing charges were funded by the authors.

Medical Writing/Editorial Assistance

Writing assistance for the preparation of this article was provided by Editage (www.​editage.​jp). Financial support for this assistance was provided by the authors.

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethical Approval

This study was approved by the Ethics Committee of the Dokkyo Medical University (R-49-3) and registered with the University Hospital Medical Information Network (UMIN, registration number UMIN000044900). All procedures were performed in accordance with the ethical standards of the Institutional and National Research Committee and the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

Takahito Shimizu, Toshifumi Takasusuki and Shigeki Yamaguchi declare that they have no conflicts of interest.
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by-nc/​4.​0/​.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Schüttler J, Eisenried A, Lerch M, Fechner J, Jeleazcov C, Ihmsen H. Pharmacokinetics and pharmacodynamics of remimazolam (CNS 7056) after continuous infusion in healthy male volunteers: part I. Pharmacokinetics and clinical pharmacodynamics. Anesthesiology. 2020;132:636–51.CrossRefPubMed Schüttler J, Eisenried A, Lerch M, Fechner J, Jeleazcov C, Ihmsen H. Pharmacokinetics and pharmacodynamics of remimazolam (CNS 7056) after continuous infusion in healthy male volunteers: part I. Pharmacokinetics and clinical pharmacodynamics. Anesthesiology. 2020;132:636–51.CrossRefPubMed
2.
Zurück zum Zitat Kilpatrick GJ, McIntyre MS, Cox RF, et al. CNS 7056: a novel ultra-short-acting benzodiazepine. Anesthesiology. 2007;107:60–6.CrossRefPubMed Kilpatrick GJ, McIntyre MS, Cox RF, et al. CNS 7056: a novel ultra-short-acting benzodiazepine. Anesthesiology. 2007;107:60–6.CrossRefPubMed
3.
Zurück zum Zitat Rogers WK, McDowell TS. Remimazolam, a short-acting GABA(A) receptor agonist for intravenous sedation and/or anesthesia in day-case surgical and non-surgical procedures. IDrugs. 2010;13:929–37.PubMed Rogers WK, McDowell TS. Remimazolam, a short-acting GABA(A) receptor agonist for intravenous sedation and/or anesthesia in day-case surgical and non-surgical procedures. IDrugs. 2010;13:929–37.PubMed
4.
Zurück zum Zitat Doi M, Hirata N, Suzuki T, Morisaki H, Morimatsu H, Sakamoto A. Safety and efficacy of remimazolam in induction and maintenance of general anesthesia in high-risk surgical patients (ASA class III): results of a multicenter, randomized, double-blind, parallel-group comparative trial. J Anesth. 2020;34:491–501.CrossRefPubMed Doi M, Hirata N, Suzuki T, Morisaki H, Morimatsu H, Sakamoto A. Safety and efficacy of remimazolam in induction and maintenance of general anesthesia in high-risk surgical patients (ASA class III): results of a multicenter, randomized, double-blind, parallel-group comparative trial. J Anesth. 2020;34:491–501.CrossRefPubMed
5.
Zurück zum Zitat Sneyd JR, Gambus PL, Rigby-Jones AE. Current status of perioperative hypnotics, role of benzodiazepines, and the case for remimazolam: a narrative review. Br J Anaesth. 2021;127:41–55.CrossRefPubMed Sneyd JR, Gambus PL, Rigby-Jones AE. Current status of perioperative hypnotics, role of benzodiazepines, and the case for remimazolam: a narrative review. Br J Anaesth. 2021;127:41–55.CrossRefPubMed
6.
Zurück zum Zitat Doi M, Morita K, Takeda J, Sakamoto A, Yamakage M, Suzuki T. Efficacy and safety of remimazolam versus propofol for general anesthesia: a multicenter, single-blind, randomized, parallel-group, phase IIb/III trial. J Anesth. 2020;34:543–53.CrossRefPubMed Doi M, Morita K, Takeda J, Sakamoto A, Yamakage M, Suzuki T. Efficacy and safety of remimazolam versus propofol for general anesthesia: a multicenter, single-blind, randomized, parallel-group, phase IIb/III trial. J Anesth. 2020;34:543–53.CrossRefPubMed
7.
Zurück zum Zitat Yao Y, Guan J, Liu L, Fu B, Chen L, Zheng X. Discharge readiness after remimazolam versus propofol for colonoscopy: a randomised, double-blind trial. Eur J Anaesthesiol. 2022;39:911–7.CrossRefPubMed Yao Y, Guan J, Liu L, Fu B, Chen L, Zheng X. Discharge readiness after remimazolam versus propofol for colonoscopy: a randomised, double-blind trial. Eur J Anaesthesiol. 2022;39:911–7.CrossRefPubMed
8.
Zurück zum Zitat Lee HJ, Lee HB, Kim YJ, Cho HY, Kim WH, Seo JH. Comparison of the recovery profile of remimazolam with flumazenil and propofol anesthesia for open thyroidectomy. BMC Anesthesiol. 2023;23:147.CrossRefPubMedPubMedCentral Lee HJ, Lee HB, Kim YJ, Cho HY, Kim WH, Seo JH. Comparison of the recovery profile of remimazolam with flumazenil and propofol anesthesia for open thyroidectomy. BMC Anesthesiol. 2023;23:147.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Masui K. Remimazolam besilate, a benzodiazepine, has been approved for general anesthesia!! J Anesth. 2020;34:479–82.CrossRefPubMed Masui K. Remimazolam besilate, a benzodiazepine, has been approved for general anesthesia!! J Anesth. 2020;34:479–82.CrossRefPubMed
10.
Zurück zum Zitat Chen X, Sang N, Song K, et al. Psychomotor recovery following remimazolam-induced sedation and the effectiveness of flumazenil as an antidote. Clin Ther. 2020;42:614–24.CrossRefPubMed Chen X, Sang N, Song K, et al. Psychomotor recovery following remimazolam-induced sedation and the effectiveness of flumazenil as an antidote. Clin Ther. 2020;42:614–24.CrossRefPubMed
11.
Zurück zum Zitat Shida Y, Shida C, Hiratsuka N, Kaji K, Ogata J. High-frequency stimulation restored motor-evoked potentials to the baseline level in the upper extremities but not in the lower extremities under sevoflurane anesthesia in spine surgery. J Neurosurg Anesthesiol. 2012;24:113–20.CrossRefPubMed Shida Y, Shida C, Hiratsuka N, Kaji K, Ogata J. High-frequency stimulation restored motor-evoked potentials to the baseline level in the upper extremities but not in the lower extremities under sevoflurane anesthesia in spine surgery. J Neurosurg Anesthesiol. 2012;24:113–20.CrossRefPubMed
12.
Zurück zum Zitat Takayama A, Yamaguchi S, Ishikawa K, et al. Recovery of psychomotor function after total intravenous anesthesia with remifentanil-propofol or fentanyl-propofol. J Anesth. 2012;26:34–8.CrossRefPubMed Takayama A, Yamaguchi S, Ishikawa K, et al. Recovery of psychomotor function after total intravenous anesthesia with remifentanil-propofol or fentanyl-propofol. J Anesth. 2012;26:34–8.CrossRefPubMed
13.
Zurück zum Zitat Coskun D, Celebi H, Karaca G, Karabiyik L. Remifentanil versus fentanyl compared in a target-controlled infusion of propofol anesthesia: quality of anesthesia and recovery profile. J Anesth. 2010;24:373–9.CrossRefPubMed Coskun D, Celebi H, Karaca G, Karabiyik L. Remifentanil versus fentanyl compared in a target-controlled infusion of propofol anesthesia: quality of anesthesia and recovery profile. J Anesth. 2010;24:373–9.CrossRefPubMed
14.
Zurück zum Zitat Choi JY, Lee HS, Kim JY, et al. Comparison of remimazolam-based and propofol-based total intravenous anesthesia on postoperative quality of recovery: a randomized non-inferiority trial. J Clin Anesth. 2022;82: 110955.CrossRefPubMed Choi JY, Lee HS, Kim JY, et al. Comparison of remimazolam-based and propofol-based total intravenous anesthesia on postoperative quality of recovery: a randomized non-inferiority trial. J Clin Anesth. 2022;82: 110955.CrossRefPubMed
15.
Zurück zum Zitat Mishra SK, Chandrasekaran A, Parida S, Senthilnathan M, Bidkar PU, Gupta SL. Time course of psychomotor recovery after intravenous dexmedetomidine infusion as a part of balanced anaesthetic technique: a randomised, double-blind study. Indian J Anaesth. 2019;63:623–8.CrossRefPubMedPubMedCentral Mishra SK, Chandrasekaran A, Parida S, Senthilnathan M, Bidkar PU, Gupta SL. Time course of psychomotor recovery after intravenous dexmedetomidine infusion as a part of balanced anaesthetic technique: a randomised, double-blind study. Indian J Anaesth. 2019;63:623–8.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Dai G, Pei L, Duan F, et al. Safety and efficacy of remimazolam compared with propofol in induction of general anesthesia. Minerva Anestesiol. 2021;87:1073–9.CrossRefPubMed Dai G, Pei L, Duan F, et al. Safety and efficacy of remimazolam compared with propofol in induction of general anesthesia. Minerva Anestesiol. 2021;87:1073–9.CrossRefPubMed
17.
Zurück zum Zitat Chen S, Wang J, Xu X, Zhang J, et al. The efficacy and safety of remimazolam tosylate versus propofol in patients undergoing colonoscopy: a multicentered, randomized, positive-controlled, phase III clinical trial. Am J Transl Res. 2020;12:4594–603.PubMedPubMedCentral Chen S, Wang J, Xu X, Zhang J, et al. The efficacy and safety of remimazolam tosylate versus propofol in patients undergoing colonoscopy: a multicentered, randomized, positive-controlled, phase III clinical trial. Am J Transl Res. 2020;12:4594–603.PubMedPubMedCentral
18.
Zurück zum Zitat Fan S, Zhu Y, Sui C, Li Q, Jiang W, Zhang L. Remimazolam compared to propofol during hysteroscopy: a safety and efficacy analysis. Pain Ther. 202312(3):695–706. Fan S, Zhu Y, Sui C, Li Q, Jiang W, Zhang L. Remimazolam compared to propofol during hysteroscopy: a safety and efficacy analysis. Pain Ther. 202312(3):695–706.
19.
Zurück zum Zitat Pan Y, Chen M, Gu F, et al. Comparison of remimazolam-flumazenil versus propofol for rigid bronchoscopy: a prospective randomized controlled trial. J Clin Med. 2022;12:257.CrossRefPubMedPubMedCentral Pan Y, Chen M, Gu F, et al. Comparison of remimazolam-flumazenil versus propofol for rigid bronchoscopy: a prospective randomized controlled trial. J Clin Med. 2022;12:257.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Sato T, Mimuro S, Kurita T, et al. Recall of extubation after remimazolam anesthesia with flumazenil antagonism during emergence: a retrospective clinical study. J Anesth. 2022;36:688–92.CrossRefPubMed Sato T, Mimuro S, Kurita T, et al. Recall of extubation after remimazolam anesthesia with flumazenil antagonism during emergence: a retrospective clinical study. J Anesth. 2022;36:688–92.CrossRefPubMed
21.
Zurück zum Zitat Yamamoto T, Kurabe M, Kamiya Y. Re-sleeping after reversal of remimazolam by flumazenil. J Anesth. 2021;35:322.CrossRefPubMed Yamamoto T, Kurabe M, Kamiya Y. Re-sleeping after reversal of remimazolam by flumazenil. J Anesth. 2021;35:322.CrossRefPubMed
22.
Zurück zum Zitat Masui K. Caution!! Reappearance of remimazolam effect after a flumazenil bolus: a larger bolus of flumazenil and a lower total remimazolam clearance are higher risks. J Anesth. 2023;37:1–5.CrossRefPubMed Masui K. Caution!! Reappearance of remimazolam effect after a flumazenil bolus: a larger bolus of flumazenil and a lower total remimazolam clearance are higher risks. J Anesth. 2023;37:1–5.CrossRefPubMed
23.
Zurück zum Zitat Takemori T, Oyama Y, Makino T, Hidaka S, Kitano T. Long-term delayed emergence after remimazolam-based general anesthesia: a case report. JA Clin Rep. 2022;8:86.CrossRefPubMedPubMedCentral Takemori T, Oyama Y, Makino T, Hidaka S, Kitano T. Long-term delayed emergence after remimazolam-based general anesthesia: a case report. JA Clin Rep. 2022;8:86.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Parida S, Badhe AS. Comparison of cognitive, ambulatory, and psychomotor recovery profiles after day care anesthesia with propofol and sevoflurane. J Anesth. 2014;28:833–8.CrossRefPubMed Parida S, Badhe AS. Comparison of cognitive, ambulatory, and psychomotor recovery profiles after day care anesthesia with propofol and sevoflurane. J Anesth. 2014;28:833–8.CrossRefPubMed
Metadaten
Titel
Remimazolam Compared to Propofol for Total Intravenous Anesthesia with Remifentanil on the Recovery of Psychomotor Function: A Randomized Controlled Trial
verfasst von
Takahito Shimizu
Toshifumi Takasusuki
Shigeki Yamaguchi
Publikationsdatum
25.07.2023
Verlag
Springer Healthcare
Erschienen in
Advances in Therapy / Ausgabe 10/2023
Print ISSN: 0741-238X
Elektronische ISSN: 1865-8652
DOI
https://doi.org/10.1007/s12325-023-02615-w

Weitere Artikel der Ausgabe 10/2023

Advances in Therapy 10/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.