Skip to main content
Erschienen in: BMC Medicine 1/2023

Open Access 01.12.2023 | Research article

Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry

verfasst von: Zhiyi Chen, Bowen Hu, Xuerong Liu, Benjamin Becker, Simon B. Eickhoff, Kuan Miao, Xingmei Gu, Yancheng Tang, Xin Dai, Chao Li, Artemiy Leonov, Zhibing Xiao, Zhengzhi Feng, Ji Chen, Hu Chuan-Peng

Erschienen in: BMC Medicine | Ausgabe 1/2023

Abstract

Background

The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation.

Methods

Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses.

Results

A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β =  − 2.75, p < .001, R2adj = 0.40; r =  − .84, 95% CI: − .41 to − .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0–87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2–56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9–90.8%)/availability (80.88% of models, 95% CI: 77.3–84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance.

Conclusions

Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Begleitmaterial
Additional file 1: Figure S1-S8 and Table S1-S25. FigS1. Research pipelines for data acquisition. FigS2. PRISMA 2020 flow diagram for the current study. FigS3. Trends in ML-based diagnostic prediction for psychiatric diseases by neural features. FigS4. Mental health disorders as the portion of total disease burden at 2019. FigS5. Geospatial model for sampling population within China, Germanyand U.K. FigS6. Distribution of methodological details. FigS7. Model performance across algorithm, tookit, cross-validation, sample sizeand skewness. FigS8. Model performance across validations, trajectories, psychiatric categories, journal impacts, scanning technology/modalityand institutes/datasets. TabS1. Curve fitting results for exponential function model. TabS2. Journals counts for papers aiming at neuropsychiatric diagnostic prediction. TabS3. Counts for contributors’ sources for these papers. TabS4. Summary for sample population for these papers in the world. TabS5. Summary for sample population for these papers in the U.S. TabS6. Summary for sample population for these papers in the China. TabS7. Summary for sample population for these papers in the Germany. TabS8. Summary for sample population for these papers in the U.K. TabS9. Sampling inequalities for globe and countries/regions. TabS10. Sampling inequalities for continents. TabS11. Sampling inequalities and national development index. TabS12. Sample size during recent decade for all the studies. TabS13. Sample size during recent decade for studies using self-recruiting sample. TabS14. Sample size during recent decade for studies using open dataset. TabS15. Sample size during recent three decades in the current study. TabS16. Summary for what modelswere built for neuropsychiatric diagnostic prediction in existing studies. TabS17. Summary for what cross-validationschemes were used to estimate model performance. TabS18. Summary for feature selection methods in existing studies. TabS19. Summary for what neural featureswere used in existing studies. TabS20. Summary for what pre-processing methods were used in existing studies. TabS21. Trends for the ratio of using open dataset on training ML models. TabS22. Results for comparison between SVM and DL classifiers on model performance. TabS23. Results for comparison between external validation CVCV) and otherson model performance. TabS24. Results for correlation between time and quality scores. TabS25. Study quality across psychiatric category.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12916-023-02941-4.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
Acc
Accuracy
ADHD
Attention deficit/hyperactivity disorder
ARIMA
Autoregressive integrated moving average
ASD
Autism spectrum disorder
BP
Bipolar disorder
CV
Cross-validation
DALYs
Disability-adjusted life-years
GAM
Generalized additive model
GBD
Global Burden of Disease
GDP
Gross Domestic Product
GEE
Total Government Expenditure on public Education
HC
Healthy control
HDI
Human Development Index
LEDC (MEDC)
Less (more) economic developed countries
LOOCV
Leave-one-out cross-validation
LSTM
Long short-term memory
MDD
Major depressive disorder
MHDB
Mental health disease burden
ML
Machine learning
OSF
Open Science Framework
R & D
Research and Development expenditure
ROB
Risk of bias
SZ
Schizophrenia
UHIC
High-income countries
WB
World Bank
WEIRD
Western, Educated, Industrialized, Rich, and Democratic
YLDs
Years lived with disability

Background

Machine learning (ML) models have been extensively utilized for classifying patients with mental illness to aid in clinical decision-making [1, 2]. By building machine learning models that are trained from neuroimaging-based features, the diagnostic decision could be more accurate and reliable with the aid of these objective and high-dimensional biomarkers [3, 4]. Furthermore, given the multivariate nature of brain features, machine learning techniques could capture the whole neural pattern across high-volume dependent voxels for revealing pathophysiological signatures of these disorders, while individualized prediction of machine learning models in the neuroimaging-based ML models also facilitates to address the increasing needs of precision psychiatry [5, 6]. Despite considerable efforts devoted to this end, the translation of machine learning classification for diagnostic and treatment recommendation into clinical practice remains challenging [7]. This is partly due to the poor generalizability of particular these neuroimaging-based classifiers, which are often optimized within a specific sample to incur failure of generalizing to diagnose unseen patients in new samples [810]. Although these classifiers can be trained to achieve a desirably high accuracy in a specific cohort, they are not representative of a more general population across medical centers, geographic regions, socioeconomic statuses, and ethnic groups [11, 12]. Moreover, persisting concerns over generalizability imply potential sampling biases despite the substantially increased size of data over recent decades [13].
As promising noninvasive, in vivo techniques (e.g., magnetic resonance imaging, MRI; electroencephalogram, EEG; positron emission computed tomography, PET), they provide unique opportunities to assess brain structure, function, and metabolic anomalies for revealing the pathophysiological signatures of these psychiatric disorders as intermediate phenotype, and hence fueled the enthusiasm in these machine learning diagnostic models [9, 14]. In addition, with the huge developments of big-data sharing initiatives (e.g., UK Biobank, Alzheimer’s Disease Neuroimaging Initiative), the diagnostic studies utilizing neuroimaging-based methods for classifying psychiatric conditions have seen a remarkable proliferation at an unprecedented speed over the recent decades [9, 15]. Despite these technical merits and promising research insights, these approaches are nonetheless cost, somewhat non-scalable, and are mostly not readily available or accessible in low-income countries and regions, especially the high-field MRI and PET for neural system mapping. In this vein, probing into why and how the sampling bias and relevant factors impeded the generalizability could be a potent avenue prompting translations of these neuroimaging-based machine learning models into clinical actions. However, comprehensive knowledge about the degree of such sampling issues and what relevant factors incur poor generalizability in these models is still scarce.
The importance of replication in generalizing scientific conclusions has been increasingly stressed, and a “replication crisis” has been discussed for several decades within or beyond psychological science: multiple experimental findings fail to be replicated and generalized across populations and contexts [16, 17]. One possible underlying reason may be that the available data was primarily and predominantly drawn from WEIRD (western, educated, industrialized, rich, and democratic) societies, which mirrors a typical sampling bias [18, 19]. Specifically, in 2008, 96% studies on human behavior relied on samples from WEIRD counties, with the remaining 82% of global population being largely ignored [20, 21]. Recently, we have conducted a systematic appraisal for neuroimaging-based machine learning models in the psychiatric diagnosis by using PTOBAST (Prediction model Risk Of Bias ASsessment Tool) criterion. Results demonstrated that 83.1% of these models are at high risk of bias (ROB), and further indicate a biased distribution of sampled populations [22]. Despite these descriptive evidences, there have been no quantitative analyses conducted to clearly illustrate the extent of sampling biases at a global or regional level [22]. And what’s more, the long-lasting discussion regarding the association between the regional economic level and these sampling biases remains uncertain, and requires reliable statistical evidence for clarification [22, 23]. Examining the status quo of sampling biases is particularly important for psychiatric neuroimaging-based classifiers as generalizability is critical for translating models into clinical actions [23, 24]. Patient groups, compared with non-clinical or healthy entities, are far more heterogeneous due to high inter-individual variability in psychopathology [25, 26]. This is affected not only by genetics, but environment, a broad sense covering socioeconomic status, family susceptibility, and living environment [27, 28]. Therefore, developing a generally applicable model remains challenging, as the issues raised by sampling biases may further compound poor generalizability in psychiatric classification experiments.
Apart from the generalization failures due to sampling bias, there are other pitfalls to cause overfitting as the results of heedless or intended analysis optimization. Overfitting accompanied by accuracy inflation in machine learning models refers that the results are only valid within the data used for optimization but can hardly generalize to other data drawn from the same distribution [29, 30]. In support of this notion, a recent large-scale methodological overview indicated that 87% of machine learning models for clinical prediction exhibited a high risk of bias (ROB) for overfitting, particularly in the domain of psychiatric classification [31]. In addition, variants of methodological parameters that may cause overfitting have been repeatedly discussed in prior review papers: sample-size limitation, in-sample validation, overhyping, data leakage, and especially “double-dipping” cross-validation (CV) methods [32, 33]. The cross-validation procedure is to evaluate the classification performance of the ML model by splitting the whole sample into an independent training set and testing set [32, 34]. Nevertheless, improper CV schemes have been found to overestimate model performance by “double-dipping” dependence or data leakage, which is a main source of incurring overfitting [8]. Besides, a recent review on the application of machine learning for gaining neurobiological and nosological insights in psychiatry underscored the need for cautious interpretation of accuracy in machine learning models [35]. That is, the analytic procedures to obtain reliable model performance are even more critical. However, a comprehensive review that systematically determines these methodological issues in prior studies of psychiatric machine learning classification is currently lacking, and how data/model availability allows for replication analysis to ensure generalization remains unclear. Thus, conducting a meta-research review concerning this topic would facilitate the characterization of the shortcomings and limitations in these current models. Moreover, developing a proof-of-concept assessment tool integrating these issues would facilitate the establishment of a favorable psychiatric machine learning eco-system.
To systematically access the generalizability issues, we conducted a pre-registered meta-research review of current studies that applied neuroimaging-based machine learning models to diagnose psychiatric populations. A total of 476 studies screened from PubMed (n total = 41, 980) over the recent three decades (Jan 1990–July 2021) were included (see Additional file 1: Fig. S1-S2). First, geospatial mapping of the distribution patterns of the samples used in prior literature was depicted to illustrate the sampling biases. Furthermore, capitalizing on the sampling Gini model with the Dagum-Gini algorithm, we quantified the global and area-wide sampling inequality by taking both sampling biases and geospatial patterns into account. The underlying factors of these sampling inequalities were further explored, focusing on economic, social developmental, educational developmental gaps, and psychiatric disorder burdens, with a generalized additive model (GAM). Next, we focused on issues of poor generalizability by extending our examination to methodological issues that caused overfitting in previous psychiatric machine learning studies, which facilitated to uncover potential pitfalls that may undermine generalizability. Finally, we utilized the results of our meta-research review to propose a 5-star standardized rating system for assessing psychiatric machine learning quality considering five domains: sample representativeness, cross-validation method, validation scheme for generalization assessment, report transparency, and data/model availability. Associations of study quality scores with publication year, psychiatric category, and model performance were then established.

Methods

The proposal and protocol for the current study have been pre-registered at Open Science Framework to endorse transparency.

Search strategy for literature

We searched eligible literature in accordance with PRISMA 2020 statement (Preferred Reporting Items for Systematic reviews and Meta-Analyses, see Additional file 1: Fig. S2). We retrieved literature at the PubMed database, with the following predefined criterion: (1) published from 1990 to 2021 (Jul); (2) peer-reviewed English-written article in journals or in conferences; (3) building machine learning models for diagnosis (classification) towards psychiatric disorders with neuroimaging-based biomarkers. By using Boolean codes and DSM classifications, we retrieved a total of 41,980 records from forty-eight 2nd level psychiatric categories. All records were input into Endnote X9 software for initial inspection and further underwent duplicate removal by using self-made code in Excel suits. Eligible papers were screened strictly following the inclusion and exclusion criteria detailed underneath. Furthermore, to obviate missing eligible records, we hand-inspected the reference list for the newest articles (2021).
We implemented a three-stage validation to ensure the correctness of all the processes. Stage 1: one reviewer was required to perform all the works (e.g., literature searching, data extraction, and data coding) by standard pipeline. Stage 2: a completely independent reviewer was asked to conduct all the works mentioned above for cross-check validation. Stage 3: another independent senior reviewer was designated to check the disparities of results between Stage 1 and Stage 2. If there were incongruences in records, the third reviewers should redo this process independently to determine which one was correct.

Inclusion and exclusion

We included studies by the following criteria: (1) machine learning models were built to diagnose (classify) psychiatric patients (defined by DSM-5) from healthy control by neuroimaging-based biomarkers; (2) the ground-truth definition for patients was in accordance with clinical diagnoses performed by qualified staffs (e.g., clinical psychiatrists, DSM-5 or ICD-10); (3) fundamental information was given, such as bibliometric information, classifier, model performance, and sample size for both the training set and testing set. More details can be found in Additional file 1: Fig. S1.
We excluded studies that provided no original machine learning models and non-peer-reviewed results, including reviews, abstract reports, meta-analyses, perspectives, comments, and pre-printing papers. Furthermore, studies would be ruled out if they build models by non-machine learning algorithms or reported model performance with non-quantitative metrics. In addition, researches training machine learning models by non-neuroimaging-based features (e.g., genetics and blood markers) or in nonhuman participants were excluded in the current study. As aforementioned, we also discarded eligible studies if the patients’ group had not yet been diagnosed by qualified institutes or medical staff. Finally, studies aimed at non-diagnostic prediction (e.g., prognostic prediction and regressive prediction) were removed for formal analysis.

Data extraction and coding

To ensure transparency and reproducibility, we extracted and coded data by referring to guidelines, including PRISMA [36], CHARMS checklist [37] (CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modeling Studies), and TRIPOD [38] (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) statement. As mentioned above, the three-stage validation was adopted here to ensure the correctness of these data. We coded eligible studies from two parts, with one for metainformation (e.g., publication year, affiliation, and countries for first author and journals) and another one for the scientific contexts of machine learning models (e.g., sample population, model performance, toolkit, feature selection methods, data availability, and sample size). Full contexts on data extraction and coding can be found in Additional file 1: Fig. S1.

Data resources

Less (more) economic developed countries (LEDC and MEDC) were defined by using the United Nations Development Programme (UNDP) criteria and International Monetary Fund (IMF, 2020) classification [39, 40]. Following that, a total of 34 countries or regions have been classified as MEDC, such as the USA, Germany, the UK, Japan, and Korea. Data for national development metrics derived from World Bank (WB)-World Development Indicators (2021), including Gross Domestic Product (GDP), Human Development Index (HDI), total government expenditure on public education (GEE), and research and development expenditure (R & D). In addition, we extracted data recording mental health disease burden (MHDB) and prevalence of psychiatric diseases from the Global Burden of Disease Study 2019 (GBD 2019) and the Global Health Data Exchange (GHDx) database. Finally, we obtained metrics for evaluating journal impacts by Journal Citation Reports of Clarivate ™ (2020).

Geospatial models

We built a global geospatial distribution model by packages of R, including the “ggplot2” and “maptools”. The global geospatial map was defined by 251 countries or regions, which was validated by EasyShu suits. Furthermore, the geospatial maps for the USA, Germany, and the UK have been built by public dataset (CSDN communities). In addition, the geospatial pattern of China was built by the EasyShu software 3.2.2 for interactive visualization. Given the overlapping dataset, the global map visualizing the results of this geospatial model in the present study may be highly similar (but not equal) to the one in our previous work [22].

Sampling inequality coefficient

To quantify sampling bias and geospatial pattern for sampled population, we estimated sampling inequality based on the Dagum-Gini algorithm [41]. We estimated the Gini coefficient with Dagum-Gini algorithm by fitting multiple Lorenz curves, with absolutely high values for high sampling inequality. Specifically, we defined a relatively total sample size into each grid cell (e.g., each state in a country or each country in the world) based on extracted data in these eligible studies. Furthermore, the sub-modules were set by economic classification (i.e., MEDC and LEDC). Lastly, the Dagum-Gini model was used to decompose contribution from module-between variance, module-between-net variance, and intensity of transvariation. In this vein, we could estimate the Gini coefficient by adjusting the geospatial pattern and relative economic gap for a given economic entity, which improved statistical rigors by controlling unexpected variances. To validate the robustness of the Gini coefficient, we also calculated the Theil index based on the information entropy algorithm.

Case–control skewness

We calculated case–control skewness to estimate the extent to which the sample size between patients and the healthy control (HC) group was unbalanced, with a high value for high case–control skewness. We estimated the ratio of the number of patients to HC when the sample size in the patient group was larger than the HC group and vice versa, which was used as a metric to quantify the case–control skewness.

Statistics

To examine the monotonic increasing trends for time-series data, we capitalized on the non-parametric Mann–Kendall Trend by using the R package [42]. Furthermore, we built both ARIMA (autoregressive integrated moving average) model and LSTM (long short-term memory) model to perform time-series prediction for the incremental trends of the number of relevant studies during the future decade, which were implemented by Deep Learning Toolbox embedded in MATLAB 2020b (MathWorks ® Inc.). Both models were trained by data split from 90% in the whole dataset and were tested in the remaining 10% dataset. Notably, we tested this model with real-world data using the actual number of relevant studies at the end of 2021 (Dec. 30) (see Fig. 1b).
Given the failure in fulfilling the prerequisites of parametric estimation, the Spearman rank model was defaulted for correlation analysis in the current study. Also, the parametric models for validating these correlations have been built as well. Furthermore, the 95% confidence interval (CI) has been estimated by using Bootstrapping process at n = 1,000. Equivalent Bayesian analytic models have been constructed as well for providing additional statistical evidence. We used the Jeffreys-Zellner-Siow Bayes factor (BF) with prior Cauchy distribution (r = 0.34), with BF > 3 for strong evidence. To examine the non-linear associations of these variables of interest, we have built the generalized additive model (GAM) with natural shape-free spline functions by R package (“mgcv”). To obviate overfitting, the shape-free splines (i.e., smooth function) were used in these models. Finally, metrics of model performance (i.e., classification accuracy) for each study were precision-weighted rather than the original ones as reported.

Checklist for quantitative assessment on quality

We evaluated study quality in terms of the following five facets that were integrated from these meta-analytic findings: sampling representativeness (item 1: sample size and sites), model performance estimation (item 2: CV scheme), model generalizability (item 3: external validation), reporting transparency (item 4: reports for model performance) and model reproducibility (item 5: data/model availability). By ExpertScape™ rank and peer recommendations, we attempted to reach out to peer experts in multidisciplinary domains to examine the validity of this checklist, including data/computer science, psychiatry, neuroscience, psychology, clinical science, and open science. To this end, we have received concerns or advice for item classification and scoring criteria from three independent experts, and have performed four rounds of revision to form a final 5-star rating system called “Neuroimaging-based Machine Learning Model Assessment Checklist for Psychiatry” (N-ML-MAP-P). Three-stage validation was used to ensure assessment quality as well. Scores for one study would be reevaluated by a third independent scorer once the absolute difference between two scorers was larger than 2 points.

Results

General information

Four hundred and seventy-six studies with 118,137 participants from the 41,980 papers were eligible in this meta-research review (see Methods). These studies covered 66.67% (14/21) psychiatric disorders defined by the DSM-5 classification [43]. Diagnostic machine learning classifiers were mostly for schizophrenia (SZ, 24.57%, 117/476), autism spectrum disorder (ASD, 20.79%, 99/476), and attention deficit/hyperactivity disorder (ADHD, 17.85%, 85/476). To probe whether such research interests converged with the healthcare needs, we examined the association between the total number of machine learning studies concerning each psychiatric disorder and their prevalence/disease burdens (Data source: Global Health Data Exchange, GHDx) [44, 45]. Our findings indicated that there was no significant association between the number of studies related to different psychiatric disorders and their real-world prevalence (rho =  − 0.24, p = 0.47; BF01 = 1.4, moderate evidence strength for supporting the null hypothesis). Furthermore, we found no significant association between the number of these studies for psychiatric disorders and corresponding DALYs (i.e., disability-adjusted life-years)/YLDs (i.e., years lived with disability) that reflected disease burden (DALYs, rho =  − 0.05, p = 0.89; BF01 = 2.5; YLDs, rho =  − 0.06, p = 0.89; BF01 = 2.6, moderate evidence strength for null association). Based on World Bank (WB) and International Monetary Fund (IMF 2021) classification, populations sampled in these studies were from 39 upper-middle-income to high-income countries, leaving population from the remaining 84.46% (212/251) countries in the globe unenrolled. In addition, 59.45% (283/476) of these studies used domestically-collected samples, while 31.10% (148/476) reused open-access datasets (e.g., ABIDE and ADHD-200).
The total number of psychiatric machine learning studies for diagnostic classification on psychiatric disorders increased markedly in the past 30 years (z = 5.81, p = 6.41 × 10 −9, Cohen d = 1.82, Mann-Kendell test) (see Fig. 1a and Additional file 1: Fig. S3). Based on time-series prediction models, we predicted a persistent increment for the number of studies pursuing brain imaging-based diagnostic classification for psychiatric disorders in the future decade (e.g., k = 229.65 in 2030, 95% CI: 106.85–352.44) (see Fig. 1b and the “ Methods” section).
Despite the accelerated increase in the number of psychiatric machine learning studies, the increase rate for different psychiatric disorders was found to be different: the number of existing studies on SZ, ASD, ADHD, major depression disorder (MDD), and bipolar disorder (BP) is significantly larger than that on other high-disease-burden categories (e.g., eating disorder and intellectual disability) (see Fig. 1c). To quantify the increment pattern for different psychiatric categories, we capitalized on increment curve models. We found that increase speeds for machine learning models regarding neuropsychiatric diagnoses towards SZ (b = 2.40, 95% CI: 2.05–2.74, p < 0.01) and ASD (b = 2.64, 95% CI: 2.25–3.02, p < 0.01) were significantly faster than others (see Additional file 1: Fig. S3 and Tab. S1).
Interestingly, a quite number of first authors of these studies (46.42%, 221/476) seemed to be trained in computer and data science instead of psychiatry or neuroscience (see Fig. 1d). Institutes from China, the USA, Canada, Korea, and the UK contributed mostly for the total number of these machine learning studies (see Fig. 1e). Moreover, by adjusting the total publications per year, we found that these studies were mostly published in journals with a special scope on neuroimaging, such as Human Brain Mapping and Neuroimaging: Clinical (see Fig. 1f and Additional file 1: Tab. S2-S3).

Sampling bias and sampling inequality

Geospatial pattern of sampling bias

Geospatial maps were generated to visualize the distribution of the sampled populations (i.e., the number of participants). We found that the sample populations covered only the minority upper-middle-income and high-income countries (UHIC) worldwide (n UHIC countries = 32; 12.74%). Even in UHIC, across-country imbalance in sample population was striking (total sample size: n Chinese = 14,869, n Americans = 12,024, n Germans = 4, 330; see Fig. 2a and Additional file 1: Tab. S4). Moreover, we found a likewise prominent within-country imbalance of sample populations (see Fig. 2b, Additional file 1: Tab. S5-S8 and Additional file 1: Fig. S4-S5). Furthermore, as for continents-based classification, populations of these machine learning models were largely enrolled from Asia (44.67%, adjusted by total population) and North America (26.76%, adjusted by total population). Notably, in the current meta-research review, no machine learning models were observed to train classifiers by samples in Africa despite its large population.
We examined whether the size of the sample population in these models could be determined by the national economic level. Results showed a strikingly positive association between nation-wide GDP (Gross Domestic Product, Data source: IMF 2021) and total sample size all over the globe (r = 0.65, 95% CI: 0.40–0.81, conditions-adjusted, p < 0.001; BF10 = 1.10 × 103, Strong evidence) (see Fig. 3a). Supporting that, such association was found within China (r = 0.47, 95% CI: 0.02–0.76, p < 0.05, conditions-adjusted; BF10 = 1.93, moderate evidence) and the USA (r = 0.47, 95% CI: 0.10–0.73, p < 0.05, conditions-adjusted; BF10 = 3.72, Strong evidence), respectively (see Fig. 3b–c).

Sampling inequality

To quantitatively evaluate such sampling bias, the new concept, sampling inequality, was introduced, which reflects both the sample-size gap and the geospatial bias for the sampled populations reported in existing psychiatric machine learning studies. We used sampling Gini coefficient (G, ranged from 0 to 1.0) based on the Dagum-Gini algorithm, to quantify the degree of sampling bias (see Methods). We found severe sampling inequality in samples of prior psychiatric machine learning studies (G = 0.81, p < 0.01, permutation test, see Fig. 3d). Furthermore, based on IMF classification, we grouped global countries into More Economically Developed Country (MEDC) bloc and Less Economically Developed Country (LEDC) bloc and found a significant difference in the sampling inequality between them: sampling Gini coefficient in LEDC was threefold (G LEDC = 0.94, G MEDC = 0.33, p < 0.01, permutation test) higher than that in MEDC. In addition, we also examined within-country sampling inequality. Results showed a weak sampling inequality in China (G = 0.47) and the USA (G = 0.58), but severe inequality in Germany (G = 0.78), the UK (G = 0.87), Spain (G = 0.91), and Iran (G = 0.92) (see Fig. 3d and Additional file 1: Tab. S9). Furthermore, we found a relatively lower sampling inequality in Europe compared with other continents (G Europe = 0.63; see Fig. 3e and Additional file 1: Tab. S10-S11). Notably, a significantly positive association between these sampling Gini coefficients and averaged classification accuracy was uncovered (r = 0.60, p = 0.04, one-tailed; permutation test at n = 10,000), which possibly implied potential inflated estimates for model performance because of such sampling inequality.
To examine whether sampling inequality was further increased by economic gap, that was, individuals (patients) living in richer countries (areas) were more likely to be recruited in building rich-areas-machine learning-specific models, a generalized additive model (GAM) with natural shape-free spline function was constructed. Interestingly, the GDP of these countries allows for an accurate prediction of the sampling inequality values (β =  − 2.75, S.E = 0.85, t = 4.75, p < 0.001, R 2 adj = 0.40; r =  − 0.84, 95% CI: − 0.41 to − 0.97, p < 0.01; BF10 = 13.57, strong posterior evidence), with higher national income for weaker sampling inequality. The apparent presence of sampling bias and high sampling economic inequality for the reviewed psychiatric machine learning studies may resonate with generalization failure that was widely concerned in the field.

Methodological considerations on generalizability

Sample size, validation, technical shifting, and case–control skewness

We extended the investigations of sampling bias and sampling inequality to an analysis of other methodological facets that may likely lead to overfitting and hence magnify the generalization errors. A significant correlation was found between the sample size in psychiatric machine learning studies and publication year in the last three decades (r (total) = 0.75, 95% CI: 0.22–0.93, p = 0.013; BF10 = 5.83, Strong evidence) (see Fig. 4a and Additional file 1: Tab. S12-S14). Despite improvement over time, we observed a strikingly biased distribution skewing to a small sample size (n < 200) in these machine learning models (73.10%, 348/476) (see Fig. 4b and Additional file 1: Tab. S15).
In addition, we found a prominently positive association between the ratio of using k-fold cross-validation (CV) scheme and publication year in recent decades (r = 0.82, 95% CI: 0.40–0.95 p < 0.01; BF10 = 15.80, Strong evidence) (see Additional file 1: Tab. S16-S17). As repeated recommendations by didactic technical papers [8, 10, 34, 46], adopting a k-fold CV to validate model performance could outperform popular LOOCV methods in terms of model variance and biases. We thus examined model performance between them by precision-weighted method [47] that could adjust the effects of sample size and between-study heterogeneity. Results showed that model performance estimated by LOOCV was prominently higher than k-fold CV (Acc LOOCV = 80.35%, Acc k-fold = 76.66%, precision-adjusted, w = 20,752, p < 0.001, Cohen d = 0.31; BF10 = 2289, strong evidence) (see Fig. 4c). Details for other methodological considerations can be found at Additional file 1: Tab. S18-22.
As for independent-sample validation, we found a significantly positive association between the ratio of validating model performance in the independent sample (site) and publication year in recent decades (r = 0.88, 95% CI: 0.63–0.97 p < 0.01; BF10 = 234.93, Strong evidence). Nevertheless, the majority of these machine learning studies (84.24%, 401/476) still lacked validation for model generalizability in the independent sample(s). Furthermore, we found that the classification performance of these models tested in the independent samples was more “conservative” than those tested in the internal samples (Acc independent-sample validation = 72.71%, Acc others = 77.75%, precision-adjusted, w = 3,041, p < 0.001, Cohen d = 0.32; BF10 = 29.43, Strong evidence) (see Fig. 4d and Additional file 1: Tab. S23). To directly test the impact of sampling bias on model generalizability, we compared the model performance between cross-country samples (i.e., training model in a sample from one country and testing model in a sample from other countries) and within-country (i.e., training and testing model in sample within the same countries) sample. Results showed that model performance was more “conservative” in the cross-country sample than in the within-country sample (Acc cross-country sample = 72.83%, Acc within-control sample = 82.69%, precision-adjusted, w = 2,008, p < 0.001, Cohen d = 0.54; BF10 = 150.90, Strong evidence; see Fig. 4e).
Furthermore, we specifically examined the shift of mainstream neuroimaging modalities and features of these models in recent decades. Results showed that the (functional) MRI was still the mainstream neuroimaging technique to build these models over the last three decades (i.e., averaged 73.70% of these models for (functional) MRI, 21.57% for EEG/ERP, 2.69% for fNIRs, 2.02% for MEG and 0.21% for PET). Despite that, the increasing trend of using multi-modalities in training these neuroimaging-based ML models was observed, from 3.22% to 19.19% of these models over time. In addition, with the developments of ML techniques, the ratio of using deep learning models or complicated parameterized models to “shallow learning models” was increasing during recent decades, particularly after 2019 (i.e., 0% in 2012, 10.40% in 2016, and 32.32% in 2020). As for the strategy of feature selection, we found an increase in the applications of algorithmic techniques than of pre-engineered selections in building these models (i.e., 0% before 2012, and averaged 30.90% after 2012). Nevertheless, no changes were found for the shift of paradigm from a single-snapshot case–control cohort to repetitive scanning of the same participants in these models. While the shifting of main neuroimaging modalities, model complexity, and feature selection strategy was observed over time, we found no prominent trends of model performance (i.e., precision-weighted accuracy) over time (Accuracy: 84.43%, 95% CI: 81.84–87.88% at 2011; 84.38%, 95% CI: 80.79–87.86% at 2015; 84.78%, 95% CI: 82.82–87.49% at 2020). Full results for these findings can be found in Additional file 1: Fig. S6-S8.
Finally, by calculating the standardized case–control ratio (see the “Methods” section), we observed a case–control skewness (i.e., the number of patients is larger than healthy control, and vice versa) in a quarter of all the included studies (25.37%, 121/476) (see Fig. 4f). The case–control skewness was significantly (but weakly) associated with the reported classification accuracy, which may imply inflated accuracy due to the imbalanced case–control distribution in the data (r = 0.15, 95% CI: 0.04–0.27, p < 0.05; BF10 = 2.04, moderate evidence).

Technical transparency and reproducibility

We further determined whether existing studies provided sufficiently transparent reports to evaluate potential overfitting and reproducibility. We found that only one fifth of them (23.94%, 114/476) fulfilled the minimum requirements for reporting model results (i.e. balanced accuracy, sensitivity, specificity, and area under curve) by the criterion as proposed by Poldrack [8, 48] (see Fig. 5a).
As for the model reproducibility, only 12.25% (58/476) of studies shared trained classifiers (full-length codes). Furthermore, only 19.12% (91/476) studies claimed to provide available original data. Notably, we manually checked the validity of these resources as these studies stated, one-by-one, but found that only a small portion of trained classifiers (32.27%, 19/58) or data (15.38%, 14/91) were actually available/accessible (see Fig. 5b). Thus, incomplete reports for model results and poor technical reproducibility may be one of the sources to hamper the assessment of generalizability, and hence, the “generalization crisis” remains.

Five-star quality rating system

To promote the establishment of an unbiased, fair, and generalizable diagnostic model, we proposed a 5-star quality rating system called “Neuroimaging-based Machine Learning Model Assessments Checklist for Psychiatry (N-ML-MAP-P)” by integrating these meta-research findings aforementioned and up-to-date guidelines that provided by multidisciplinary experts (see Methods). This rating system incorporated five elements, including sample representativeness, CV methods, independent-sample validations, reports for model performance, and data/model availability (see Fig. 6a).
Based on this N-ML-MAP-P rating system, we found that overall quality scores for these models have increased consistently over the last decade (r = 0.77, 95% CI: 0.25–0.99, p < 0.01; BF10 = 7.04, strong evidence), demonstrating that study quality for machine learning models on psychiatric diagnosis has been increasingly improved (see Fig. 6b). In addition, we also examined study quality for each item and revealed that ratings for sample size, CV methods, independent validation, and reporting transparency have been gradually improved (see Additional file 1: Tab. S24). However, we found no prominent increase in quality scores on technical (data and model) availability (see Additional file 1: Tab. S25). Furthermore, we found a considerably strong positive correlation between the number of disorder-specific studies and their quality scores (r = 0.69, 95% CI: 0.13–0.88, p < 0.05; BF10 = 4.10, strong evidence), with relatively high quality for machine learning studies concerning SZ, ASD, and ADHD.
Despite the increase, the overall quality scores remained relatively low in the vast majority of these models (see Fig. 6c–d). Intriguingly, we found a weak but statistically significant association between journal impact factors/journal citation indicator (JIF/JCI) and the scores of model quality rated by N-ML-MAP-P assessment (r (JIF) = 0.18, 95% CI: 0.08–0.30, p < 0.001; BF10 = 41.90, strong evidence; r (JCI) = 0.15, 95% CI: 0.06–0.25, p < 0.01; BF10 = 8.60, strong evidence) (see Fig. 6e). Furthermore, we also observed a weakly negative association between the JIF/JCI and model performance (r =  − 0.19, 95% CI: − 0.10 to − 0.28, p < 0.001; BF10 = 4697.67, strong evidence) (see Fig. 6f).
In summary, our purpose-built N-ML-MAP-P system for quantitatively assessing the quality of these models revealed prominent improvements for them over time, possibly indicating that efforts made by scientific communities [8, 10, 49] to address overfitting issues in diagnostic machine learning models for psychiatric conditions may be effective. However, existing machine learning studies may still face several challenges, e.g., low overall quality and poor technical reproducibility, which still characterize a majority of these studies. A full list of these models can be found in Additional file 2 [50510].

Discussion

We conducted a pre-registered meta-research review and quantitative appraisal to clarify generalizability and even quality in existing machine learning models on neuroimaging-based psychiatric diagnosis (k = 476) from insights into sampling issues, methodological flaws, and technical availability/transparency. By doing so, we quantified a severe sampling economic inequality in existing machine learning models. By further determining methodological issues, we found that sample-size limitation, improper CV methods, lack of independent-sample validation, and case–control skewness still contributed to an inflation of model performance. Furthermore, we found a poor technical availability/transparency which may in turn critically hamper mechanisms to examine generalizability for these models. Based on these findings, we developed a checklist to quantitatively assess the quality of existing machine learning models. We found that despite increasing improvement, the overall quality of the vast majority of these machine learning models was still low (88.68% models were rated at low quality in existing literature). Taken together, the results indicated that ameliorating sampling inequality and improving the model quality may facilitate to build of unbiased and generalizable classifiers in future clinical practices.
One critical finding that warrants further discussion is the severe global sampling inequality in existing machine learning models. Despite rapid proliferation, we found that the samples were predominately recruited from upper-middle-income and high-income countries (444/476 models, 93.28%). Also, we observed regional sampling inequalities, with the Gini coefficient in LEDC being 3-fold higher than that in MEDC. To make matters worse, both sampling inequalities were found to be enlarged by regional economic gaps. Despite supporting the descriptive observation to previous studies [22, 35, 511], the present study provided unique statistical evidence to clearly reveal the severity of sampling bias of these extant models in the globe or across countries (regions), which advanced our knowledge to make the sampling bias quantitatively comparable rather previously conceptional concern. Beyond that, the predictive role of national (regional) economic level on these sampling biases has been quantitatively verified, possibly indicating a sampling economic inequality in the neuroimaging-based ML-aid diagnosis. For instance, in China, machine learning models were predominately trained by samples from mid-eastern Chinese with high incomes, whereas there was no evidence to validate whether these trained machine learning models could be generalized for western Chinese with lower incomes. Notably, it is the same case with predictive models, recent works have revealed generalization failure for cross-ethnicity/race samples in neuroimaging-based predictive models [512, 513]. Compared to previous studies using qualitative inferences or conclusions [514, 515], we provided preliminary evidence to quantify the extent to which sampling inequality impacted model generalizability, this result may imply how much sampling inequality should be limited to built generalizable neuroimaging-based diagnostic classifiers. As a didactic example recently, Marek and colleagues (2022) have provided a quantitatively empirical evidence that thousands of subjects are needed to attain reliable brain-behavior associations, although the intensive discussions or concerns for the high overfitting in neuroimaging-based models with small sample sizes have been debated for a long-lasting time [10, 34, 46, 516]. Thus, by quantitatively revealing the association of sampling issues to inflated classification accuracy, the present study may provide valuable insights into how to increase sampling equality enough to achieve good model generalizability in future empirical studies. To tackle this issue, diversifying sample representation (i.e., racial balance or socioeconomic balance) in neuroimaging-based predictive models has been increasingly advocated [517, 518]. That is, existing “population-specific models” trained with less or even no samples in LEDC and Africa practically questioned their generalizability across intersectional populations. More importantly, besides common sense for the disadvantages of global economic gaps in science development, “leaving the poor ones out” in training machine learning models may not only render poor generalizability to psychiatric diagnostic models but also exacerbate global inequalities in clinical healthcare. Relating to this consideration, future studies could explore whether and how economic gaps contribute to biases in clinically diagnostic measures, such as neuroimaging-based precision diagnosis in high-income countries, as opposed to more subjective symptom-dependent diagnosis in low-income countries. This investigation could further our understanding of how economic disparities impact the inequalities in the development and implementation of diagnostic basis. Nonetheless, another insightful viewpoint worthy to note was that an overly board emphasis on generalizability may impede clinical applications of these machine learning models in specific medical systems (e.g., healthcare) [519, 520], with high generalizability at the expense of optimal model performance within specific cohorts. In other words, despite poor geospatial or socioeconomic generalizability, these machine learning models posing high performance within specific contexts (e.g., machine learning model trained by data in the A hospital could accurately predict patients within A hospital rather than other ones) may be still reliable into a given clinical practice.
Another factor contributing to poor generalizability was rooted in methodological issues. We found that, with consistent efforts made by scientific communities [8, 521], the ratio of using k-fold CV in estimating model performance gradually increased during recent decades, which may partly mirror effective controls for overestimation on diagnostic accuracy that was caused by flawed CV scheme [23, 34]. However, the LOOCV was still used widely (40.33%) in recent decades, which may overfit models compared to those using k-fold CV (precision-weighted classification Acc level-one-subject-one CV, 80.35%; Acc k-fold CV, 76.66%, p < 0.001). Thus, although the repeated technical recommendations and calls may be effective in changing our practices to rectify model overfitting, this issue has not been fully addressed to date [522, 523]. Compared to the CV method, testing model performance in external (independent) samples could provide more accurate estimates for interpretability and generalizability [524, 525]. Nevertheless, only 15.76% models were validated in the independent sample (s). More importantly, we observed that model performance may be highly overestimated in within-country independent samples compared to cross-country ones (precision-weighted classification Acc cross-country, 72.83%; Acc within-country, 82.69%, p < 0.001). Thus, not only “independent-sample” validation but also the well-established “intersectional-population-cross” validation is demanded to strengthen generalizability in future studies [526]. Moreover, few machine learning models (< 5%) provided adequate technical availability, which diluted our confidence for the generalizability and reproducibility of these models, especially in the “big data” era [527]. On balance, we found that methodological flaws of these machine learning models were increasingly ameliorated to prompt model generalizability in recent decades, but sample limitation, improper CV methods, lack of “cross-population” independent-sample validation, and poor technical availability still exposed these models to high risks of overfitting.
In the current study, we proposed a quantitative framework for evaluating the quality of these models, covering sample, CV, independent-sample validation, transparency, and technical availability. We found that the overall quality of these models increasingly improved over time. As aforementioned, some didactic methodological papers [8, 9, 23] have considerably contributed to prompting the scientific communities to rectify these methodological flaws in machine learning models. Furthermore, reporting benchmarks or guidelines were also developed to increase the transparency of information for accurately evaluating model performance in recent years [38, 528]. However, despite encouraging improvements, the low-quality machine learning models seem to still dominate this field, as we observed in the current study that single-site samples and poor data/model availability remained largely unchanged [15]. Together, the findings may imply that existing machine learning models are not as solid as claimed in terms of generalizability and reproducibility in clinical practices in their current form. It is noteworthy that the high-quality models that were rated in the current study have not yet been tested for generalizability. Thus, testing the generalizability or reproducibility of these models from originally trained samples to different populations (e.g., countries, ethnics, income-levels) could be a more reliable and valid way to validate the generalizability in future studies.
To tackle these generalizability issues, here we recommended several practical tips. Beyond sample size, recruiting a diverse, economically-equal, case–control balanced, and representative sample is one of the best avenues to obviate sampling biases. Technically speaking, the cross-ethnicity/race or cross-country independent sample should be prepared for the generalizability test. At least, the nest k-fold CV method is clearly warranted. Moreover, we also recommend transparent and unfolded reports for model performance facilitating to take these models into clinical insights. In addition, improving the data/modal availability for these models is one of the ways to provide venues to validate clinical applicability. To conceptualize and streamline these recommendations, we have preliminary built the “Reporting guideline for neuroimaging-based machine learning studies for psychiatry” (RNIMP 2020) checklist and diagram (see Additional file 3: Tab. S1-2); this suit is developed by encapsulating the above tips and currently promising benchmarks [8, 23].
This study warrants several limitations. First, we narrowed the research scope into diagnosis but not all the categories were sampled evenly. Predictive machine learning models for psychiatric conditions included (at least) three forms of prediction: diagnosis (i.e., predicting the current psychiatric condition), prognosis (i.e., predicting outcome in future onsets), and prediction (i.e., predicting response or outcome for a given treatment) [529]. Second, this study may not cover all eligible data, especially in literature that was published in African areas or written in non-English languages, as data were screened from English-written peer-reviewed papers. Therefore, we stress that all the findings are grounded on these studies, instead of completely representing the real-world situation. Third, the current study did not probe into the model generalizability from biological insights, but focused on sampling bias and methodological issues only. Thus, it left room to be uncovered in future works. Fourth, we empirically inferred the academic training experiences of the first authors by their affiliation. However, such assumptions may not be solid. Extending these conclusions from this section to elsewhere should be more prudent. Fifthly, the present study has not thoroughly analyzed the factors that contribute to the changes in the methodological and technical underpinnings of machine learning models for psychiatric diagnosis. For instance, the increased sample size in these models over the last decades may be attributed to the improvements of imaging techniques/infrastructures, the developments of machine learning knowledge, and the decrease of data costs, which are not explored in the current study. In other words, future studies could reap huge fruits from delving into the specific roles of these factors in the advances of these models, particularly in sample size. Lastly, given that the neuroimaging-based signatures are not practically applicable for diagnosing all psychiatric conditions, the statistics for unbalanced developments and qualities across these DSM categories should be explained more prudently.

Conclusions

On balance, we provided meta-research evidence to quantitatively verify the sampling economic inequality in existing machine learning models for psychiatric diagnosis. Such biases may incur poor generalizability that impedes their clinical translations. Furthermore, we found that the methodological flaws have been increasingly ameliorated because of repeated efforts made by these technical papers and recommendations. Nonetheless, in the present study, we stretched views to find that these limitations including small sample size, flawed CV method (i.e., LOOCV), no independent-sample validation, case–control skewness, and poor technical availability still remained, and have demonstrated quantitative associations of such limitations to inflated model performance, which may hence indicate model overfitting. In addition, poor reporting transparency and technical availability were also observed as a hurdle to translate these models into real-world clinical actions. Finally, we extended to develop a 5-star rating system to provide a purpose-built and quantitative quality assessment of existing machine learning models and found that the overall quality of a vast majority of them may still be low. In conclusion, while these models showed a promising direction and well-established contributions in this field, it is suggested that enhancing sampling equality, methodological rigor, and technical availability/reproducibility may be helpful to build an unbiased, fair, and generalizable classifier in neuroimaging-based machine learning-aid diagnostics of psychiatric conditions.

Acknowledgements

We do thank Mr. Wei Li (Third Military Medical University), Miss. Rong Zhang (Southwest University), and Miss. Ting Xu (University of Electronic Science and Technology of China) for remarkable support on scientific and methodological advice, as well as truly appreciate Professor Tingyong Feng (Southwest University) for his support on infrastructures and digital resources.

Declarations

The IRB of the Third Military Medical University (TMMU) exempted full-length censors towards the current study because it is not involved original human or animal data.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Supplementary Information

Additional file 1: Figure S1-S8 and Table S1-S25. FigS1. Research pipelines for data acquisition. FigS2. PRISMA 2020 flow diagram for the current study. FigS3. Trends in ML-based diagnostic prediction for psychiatric diseases by neural features. FigS4. Mental health disorders as the portion of total disease burden at 2019. FigS5. Geospatial model for sampling population within China, Germanyand U.K. FigS6. Distribution of methodological details. FigS7. Model performance across algorithm, tookit, cross-validation, sample sizeand skewness. FigS8. Model performance across validations, trajectories, psychiatric categories, journal impacts, scanning technology/modalityand institutes/datasets. TabS1. Curve fitting results for exponential function model. TabS2. Journals counts for papers aiming at neuropsychiatric diagnostic prediction. TabS3. Counts for contributors’ sources for these papers. TabS4. Summary for sample population for these papers in the world. TabS5. Summary for sample population for these papers in the U.S. TabS6. Summary for sample population for these papers in the China. TabS7. Summary for sample population for these papers in the Germany. TabS8. Summary for sample population for these papers in the U.K. TabS9. Sampling inequalities for globe and countries/regions. TabS10. Sampling inequalities for continents. TabS11. Sampling inequalities and national development index. TabS12. Sample size during recent decade for all the studies. TabS13. Sample size during recent decade for studies using self-recruiting sample. TabS14. Sample size during recent decade for studies using open dataset. TabS15. Sample size during recent three decades in the current study. TabS16. Summary for what modelswere built for neuropsychiatric diagnostic prediction in existing studies. TabS17. Summary for what cross-validationschemes were used to estimate model performance. TabS18. Summary for feature selection methods in existing studies. TabS19. Summary for what neural featureswere used in existing studies. TabS20. Summary for what pre-processing methods were used in existing studies. TabS21. Trends for the ratio of using open dataset on training ML models. TabS22. Results for comparison between SVM and DL classifiers on model performance. TabS23. Results for comparison between external validation CVCV) and otherson model performance. TabS24. Results for correlation between time and quality scores. TabS25. Study quality across psychiatric category.
Literatur
1.
Zurück zum Zitat Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349(6245):255–60.PubMedCrossRef Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349(6245):255–60.PubMedCrossRef
3.
Zurück zum Zitat Walter M, Alizadeh S, Jamalabadi H, Lueken U, Dannlowski U, Walter H, Olbrich S, Colic L, Kambeitz J, Koutsouleris N, et al. Translational machine learning for psychiatric neuroimaging. Prog Neuropsychopharmacol Biol Psychiatry. 2019;91:113–21.PubMedCrossRef Walter M, Alizadeh S, Jamalabadi H, Lueken U, Dannlowski U, Walter H, Olbrich S, Colic L, Kambeitz J, Koutsouleris N, et al. Translational machine learning for psychiatric neuroimaging. Prog Neuropsychopharmacol Biol Psychiatry. 2019;91:113–21.PubMedCrossRef
4.
Zurück zum Zitat Rutherford S. The promise of machine learning for psychiatry. Biol Psychiatry. 2020;88(11):e53–5.PubMedCrossRef Rutherford S. The promise of machine learning for psychiatry. Biol Psychiatry. 2020;88(11):e53–5.PubMedCrossRef
5.
Zurück zum Zitat Sui J, Jiang R, Bustillo J, Calhoun V. Neuroimaging-based individualized prediction of cognition and behavior for mental disorders and health: methods and promises. Biol Psychiatry. 2020;88(11):818–28.PubMedPubMedCentralCrossRef Sui J, Jiang R, Bustillo J, Calhoun V. Neuroimaging-based individualized prediction of cognition and behavior for mental disorders and health: methods and promises. Biol Psychiatry. 2020;88(11):818–28.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Bzdok D, Varoquaux G, Steyerberg EW. Prediction, not association, paves the road to precision medicine. JAMA Psychiat. 2021;78(2):127–8.CrossRef Bzdok D, Varoquaux G, Steyerberg EW. Prediction, not association, paves the road to precision medicine. JAMA Psychiat. 2021;78(2):127–8.CrossRef
7.
Zurück zum Zitat Vayena E, Blasimme A. A systemic approach to the oversight of machine learning clinical translation. Am J Bioeth. 2022;22(5):23–5.PubMedCrossRef Vayena E, Blasimme A. A systemic approach to the oversight of machine learning clinical translation. Am J Bioeth. 2022;22(5):23–5.PubMedCrossRef
8.
Zurück zum Zitat Poldrack RA, Huckins G, Varoquaux G. Establishment of best practices for evidence for prediction: a review. JAMA Psychiat. 2020;77(5):534–40.CrossRef Poldrack RA, Huckins G, Varoquaux G. Establishment of best practices for evidence for prediction: a review. JAMA Psychiat. 2020;77(5):534–40.CrossRef
9.
Zurück zum Zitat Nielsen AN, Barch DM, Petersen SE, Schlaggar BL, Greene DJ. Machine learning with neuroimaging: evaluating its applications in psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5(8):791–8.PubMed Nielsen AN, Barch DM, Petersen SE, Schlaggar BL, Greene DJ. Machine learning with neuroimaging: evaluating its applications in psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5(8):791–8.PubMed
10.
Zurück zum Zitat Varoquaux G, Raamana PR, Engemann DA, Hoyos-Idrobo A, Schwartz Y, Thirion B. Assessing and tuning brain decoders: cross-validation, caveats, and guidelines. Neuroimage. 2017;145(Pt B):166–79.PubMedCrossRef Varoquaux G, Raamana PR, Engemann DA, Hoyos-Idrobo A, Schwartz Y, Thirion B. Assessing and tuning brain decoders: cross-validation, caveats, and guidelines. Neuroimage. 2017;145(Pt B):166–79.PubMedCrossRef
11.
Zurück zum Zitat Dwyer DB, Falkai P, Koutsouleris N. Machine learning approaches for clinical psychology and psychiatry. Annu Rev Clin Psychol. 2018;14:91–118.PubMedCrossRef Dwyer DB, Falkai P, Koutsouleris N. Machine learning approaches for clinical psychology and psychiatry. Annu Rev Clin Psychol. 2018;14:91–118.PubMedCrossRef
12.
Zurück zum Zitat Mihalik A, Ferreira FS, Moutoussis M, Ziegler G, Adams RA, Rosa MJ, Prabhu G, de Oliveira L, Pereira M, Bullmore ET, et al. Multiple holdouts with stability: improving the generalizability of machine learning analyses of brain-behavior relationships. Biol Psychiatry. 2020;87(4):368–76.PubMedPubMedCentralCrossRef Mihalik A, Ferreira FS, Moutoussis M, Ziegler G, Adams RA, Rosa MJ, Prabhu G, de Oliveira L, Pereira M, Bullmore ET, et al. Multiple holdouts with stability: improving the generalizability of machine learning analyses of brain-behavior relationships. Biol Psychiatry. 2020;87(4):368–76.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Meehan AJ, Lewis SJ, Fazel S, Fusar-Poli P, Steyerberg EW, Stahl D, Danese A. Clinical prediction models in psychiatry: a systematic review of two decades of progress and challenges. Mol Psychiatry. 2022;27(6):2700–8.PubMedPubMedCentralCrossRef Meehan AJ, Lewis SJ, Fazel S, Fusar-Poli P, Steyerberg EW, Stahl D, Danese A. Clinical prediction models in psychiatry: a systematic review of two decades of progress and challenges. Mol Psychiatry. 2022;27(6):2700–8.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Yuan J, Ran X, Liu K, Yao C, Yao Y, Wu H, Liu Q. Machine learning applications on neuroimaging for diagnosis and prognosis of epilepsy: A review. J Neurosci Methods. 2022;368:109441.PubMedCrossRef Yuan J, Ran X, Liu K, Yao C, Yao Y, Wu H, Liu Q. Machine learning applications on neuroimaging for diagnosis and prognosis of epilepsy: A review. J Neurosci Methods. 2022;368:109441.PubMedCrossRef
15.
Zurück zum Zitat Davatzikos C. Machine learning in neuroimaging: Progress and challenges. Neuroimage. 2019;197:652–6.PubMedCrossRef Davatzikos C. Machine learning in neuroimaging: Progress and challenges. Neuroimage. 2019;197:652–6.PubMedCrossRef
16.
Zurück zum Zitat Shrout PE, Rodgers JL. Psychology, science, and knowledge construction: broadening perspectives from the replication crisis. Annu Rev Psychol. 2018;69:487–510.PubMedCrossRef Shrout PE, Rodgers JL. Psychology, science, and knowledge construction: broadening perspectives from the replication crisis. Annu Rev Psychol. 2018;69:487–510.PubMedCrossRef
17.
Zurück zum Zitat Maxwell SE, Lau MY, Howard GS. Is psychology suffering from a replication crisis? What does “failure to replicate” really mean? Am Psychol. 2015;70(6):487–98.PubMedCrossRef Maxwell SE, Lau MY, Howard GS. Is psychology suffering from a replication crisis? What does “failure to replicate” really mean? Am Psychol. 2015;70(6):487–98.PubMedCrossRef
18.
19.
Zurück zum Zitat Muthukrishna M, Bell AV, Henrich J, Curtin CM, Gedranovich A, McInerney J, Thue B. Beyond Western, Educated, Industrial, Rich, and Democratic (WEIRD) psychology: measuring and mapping scales of cultural and psychological distance. Psychol Sci. 2020;31(6):678–701.PubMedCrossRef Muthukrishna M, Bell AV, Henrich J, Curtin CM, Gedranovich A, McInerney J, Thue B. Beyond Western, Educated, Industrial, Rich, and Democratic (WEIRD) psychology: measuring and mapping scales of cultural and psychological distance. Psychol Sci. 2020;31(6):678–701.PubMedCrossRef
20.
Zurück zum Zitat Rad MS, Martingano AJ, Ginges J. Toward a psychology of Homo sapiens: making psychological science more representative of the human population. Proc Natl Acad Sci U S A. 2018;115(45):11401–5.PubMedPubMedCentralCrossRef Rad MS, Martingano AJ, Ginges J. Toward a psychology of Homo sapiens: making psychological science more representative of the human population. Proc Natl Acad Sci U S A. 2018;115(45):11401–5.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Arnett JJ. The neglected 95%: why American psychology needs to become less American. Am Psychol. 2008;63(7):602–14.PubMedCrossRef Arnett JJ. The neglected 95%: why American psychology needs to become less American. Am Psychol. 2008;63(7):602–14.PubMedCrossRef
22.
Zurück zum Zitat Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, et al. Evaluation of risk of bias in neuroimaging-based artificial intelligence models for psychiatric diagnosis: a systematic review. JAMA Netw Open. 2023;6(3):e231671.PubMedPubMedCentralCrossRef Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, et al. Evaluation of risk of bias in neuroimaging-based artificial intelligence models for psychiatric diagnosis: a systematic review. JAMA Netw Open. 2023;6(3):e231671.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Cearns M, Hahn T, Baune BT. Recommendations and future directions for supervised machine learning in psychiatry. Transl Psychiatry. 2019;9(1):271.PubMedPubMedCentralCrossRef Cearns M, Hahn T, Baune BT. Recommendations and future directions for supervised machine learning in psychiatry. Transl Psychiatry. 2019;9(1):271.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Tiwari P, Verma R. The pursuit of generalizability to enable clinical translation of radiomics. Radiol Artif Intell. 2021;3(1):e200227.PubMedCrossRef Tiwari P, Verma R. The pursuit of generalizability to enable clinical translation of radiomics. Radiol Artif Intell. 2021;3(1):e200227.PubMedCrossRef
25.
Zurück zum Zitat Wolfers T, Doan NT, Kaufmann T, Alnæs D, Moberget T, Agartz I, Buitelaar JK, Ueland T, Melle I, Franke B, et al. Mapping the heterogeneous phenotype of schizophrenia and bipolar disorder using normative models. JAMA Psychiat. 2018;75(11):1146–55.CrossRef Wolfers T, Doan NT, Kaufmann T, Alnæs D, Moberget T, Agartz I, Buitelaar JK, Ueland T, Melle I, Franke B, et al. Mapping the heterogeneous phenotype of schizophrenia and bipolar disorder using normative models. JAMA Psychiat. 2018;75(11):1146–55.CrossRef
26.
Zurück zum Zitat Schultebraucks K, Choi KW, Galatzer-Levy IR, Bonanno GA. Discriminating heterogeneous trajectories of resilience and depression after major life stressors using polygenic scores. JAMA Psychiat. 2021;78(7):744–52.CrossRef Schultebraucks K, Choi KW, Galatzer-Levy IR, Bonanno GA. Discriminating heterogeneous trajectories of resilience and depression after major life stressors using polygenic scores. JAMA Psychiat. 2021;78(7):744–52.CrossRef
27.
Zurück zum Zitat Lee HB, Lyketsos CG. Depression in Alzheimer’s disease: heterogeneity and related issues. Biol Psychiatry. 2003;54(3):353–62.PubMedCrossRef Lee HB, Lyketsos CG. Depression in Alzheimer’s disease: heterogeneity and related issues. Biol Psychiatry. 2003;54(3):353–62.PubMedCrossRef
28.
Zurück zum Zitat Arguello PA, Gogos JA. Genetic and cognitive windows into circuit mechanisms of psychiatric disease. Trends Neurosci. 2012;35(1):3–13.PubMedCrossRef Arguello PA, Gogos JA. Genetic and cognitive windows into circuit mechanisms of psychiatric disease. Trends Neurosci. 2012;35(1):3–13.PubMedCrossRef
29.
Zurück zum Zitat Ying X. An overview of overfitting and its solutions. J Phys: Conf Ser. 2019;1168(2):022022. Ying X. An overview of overfitting and its solutions. J Phys: Conf Ser. 2019;1168(2):022022.
30.
Zurück zum Zitat Peng Y, Nagata MH. An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data. Chaos, Solitons Fractals. 2020;139:110055.PubMedCrossRef Peng Y, Nagata MH. An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data. Chaos, Solitons Fractals. 2020;139:110055.PubMedCrossRef
31.
Zurück zum Zitat Andaur Navarro CL, Damen JAA, Takada T, Nijman SWJ, Dhiman P, Ma J, Collins GS, Bajpai R, Riley RD, Moons KGM, et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. BMJ. 2021;375:n2281.PubMedPubMedCentralCrossRef Andaur Navarro CL, Damen JAA, Takada T, Nijman SWJ, Dhiman P, Ma J, Collins GS, Bajpai R, Riley RD, Moons KGM, et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. BMJ. 2021;375:n2281.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Hosseini M, Powell M, Collins J, Callahan-Flintoft C, Jones W, Bowman H, Wyble B. I tried a bunch of things: the dangers of unexpected overfitting in classification of brain data. Neurosci Biobehav Rev. 2020;119:456–67.PubMedCrossRef Hosseini M, Powell M, Collins J, Callahan-Flintoft C, Jones W, Bowman H, Wyble B. I tried a bunch of things: the dangers of unexpected overfitting in classification of brain data. Neurosci Biobehav Rev. 2020;119:456–67.PubMedCrossRef
33.
Zurück zum Zitat Varoquaux G, Cheplygina V. Machine learning for medical imaging: methodological failures and recommendations for the future. NPJ Digit Med. 2022;5(1):48.PubMedPubMedCentralCrossRef Varoquaux G, Cheplygina V. Machine learning for medical imaging: methodological failures and recommendations for the future. NPJ Digit Med. 2022;5(1):48.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Varoquaux G. Cross-validation failure: small sample sizes lead to large error bars. Neuroimage. 2018;180(Pt A):68–77.PubMedCrossRef Varoquaux G. Cross-validation failure: small sample sizes lead to large error bars. Neuroimage. 2018;180(Pt A):68–77.PubMedCrossRef
35.
Zurück zum Zitat Chen J, Patil KR, Yeo BTT, Eickhoff SB. Leveraging machine learning for gaining neurobiological and nosological insights in psychiatric research. Biol Psychiatry. 2023;93(1):18–28.PubMedCrossRef Chen J, Patil KR, Yeo BTT, Eickhoff SB. Leveraging machine learning for gaining neurobiological and nosological insights in psychiatric research. Biol Psychiatry. 2023;93(1):18–28.PubMedCrossRef
36.
Zurück zum Zitat Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.PubMedPubMedCentralCrossRef Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Moons KG, de Groot JA, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, Reitsma JB, Collins GS. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med. 2014;11(10):e1001744.PubMedPubMedCentralCrossRef Moons KG, de Groot JA, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, Reitsma JB, Collins GS. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med. 2014;11(10):e1001744.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594.PubMedCrossRef Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594.PubMedCrossRef
41.
Zurück zum Zitat Dagum C. A new approach to the decomposition of the Gini income inequality ratio. Empir Econ. 1997;22:515–31.CrossRef Dagum C. A new approach to the decomposition of the Gini income inequality ratio. Empir Econ. 1997;22:515–31.CrossRef
42.
Zurück zum Zitat Hamed KH, Ramachandra Rao A. A modified Mann-Kendall trend test for autocorrelated data. J Hydrol. 1998;204(1):182–96.CrossRef Hamed KH, Ramachandra Rao A. A modified Mann-Kendall trend test for autocorrelated data. J Hydrol. 1998;204(1):182–96.CrossRef
43.
Zurück zum Zitat Battle DE. Diagnostic and Statistical Manual of Mental Disorders (DSM). CoDAS. 2013;25(2):191–2.PubMed Battle DE. Diagnostic and Statistical Manual of Mental Disorders (DSM). CoDAS. 2013;25(2):191–2.PubMed
44.
Zurück zum Zitat Huang Y, Wang Y, Wang H, Liu Z, Yu X, Yan J, Yu Y, Kou C, Xu X, Lu J, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study. Lancet Psychiatry. 2019;6(3):211–24.PubMedCrossRef Huang Y, Wang Y, Wang H, Liu Z, Yu X, Yan J, Yu Y, Kou C, Xu X, Lu J, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study. Lancet Psychiatry. 2019;6(3):211–24.PubMedCrossRef
45.
Zurück zum Zitat Ormel J, VonKorff M. Reducing common mental disorder prevalence in populations. JAMA Psychiat. 2021;78(4):359–60.CrossRef Ormel J, VonKorff M. Reducing common mental disorder prevalence in populations. JAMA Psychiat. 2021;78(4):359–60.CrossRef
46.
Zurück zum Zitat Flint C, Cearns M, Opel N, Redlich R, Mehler DMA, Emden D, Winter NR, Leenings R, Eickhoff SB, Kircher T, et al. Systematic misestimation of machine learning performance in neuroimaging studies of depression. Neuropsychopharmacology. 2021;46(8):1510–7.PubMedPubMedCentralCrossRef Flint C, Cearns M, Opel N, Redlich R, Mehler DMA, Emden D, Winter NR, Leenings R, Eickhoff SB, Kircher T, et al. Systematic misestimation of machine learning performance in neuroimaging studies of depression. Neuropsychopharmacology. 2021;46(8):1510–7.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Woo CW, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci. 2017;20(3):365–77.PubMedPubMedCentralCrossRef Woo CW, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci. 2017;20(3):365–77.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Collins GS, Dhiman P, Andaur Navarro CL, Ma J, Hooft L, Reitsma JB, Logullo P, Beam AL, Peng L, Van Calster B, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open. 2021;11(7):e048008.PubMedPubMedCentralCrossRef Collins GS, Dhiman P, Andaur Navarro CL, Ma J, Hooft L, Reitsma JB, Logullo P, Beam AL, Peng L, Van Calster B, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open. 2021;11(7):e048008.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Poldrack RA, Baker CI, Durnez J, Gorgolewski KJ, Matthews PM, Munafò MR, Nichols TE, Poline JB, Vul E, Yarkoni T. Scanning the horizon: towards transparent and reproducible neuroimaging research. Nat Rev Neurosci. 2017;18(2):115–26.PubMedPubMedCentralCrossRef Poldrack RA, Baker CI, Durnez J, Gorgolewski KJ, Matthews PM, Munafò MR, Nichols TE, Poline JB, Vul E, Yarkoni T. Scanning the horizon: towards transparent and reproducible neuroimaging research. Nat Rev Neurosci. 2017;18(2):115–26.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Knoth IS, Lajnef T, Rigoulot S, Lacourse K, Vannasing P, Michaud JL, Jacquemont S, Major P, Jerbi K, Lippé S. Auditory repetition suppression alterations in relation to cognitive functioning in fragile X syndrome: a combined EEG and machine learning approach. J Neurodev Disord. 2018;10(1):4.PubMedPubMedCentralCrossRef Knoth IS, Lajnef T, Rigoulot S, Lacourse K, Vannasing P, Michaud JL, Jacquemont S, Major P, Jerbi K, Lippé S. Auditory repetition suppression alterations in relation to cognitive functioning in fragile X syndrome: a combined EEG and machine learning approach. J Neurodev Disord. 2018;10(1):4.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Pedersen M, Curwood EK, Archer JS, Abbott DF, Jackson GD. Brain regions with abnormal network properties in severe epilepsy of Lennox-Gastaut phenotype: multivariate analysis of task-free fMRI. Epilepsia. 2015;56(11):1767–73.PubMedCrossRef Pedersen M, Curwood EK, Archer JS, Abbott DF, Jackson GD. Brain regions with abnormal network properties in severe epilepsy of Lennox-Gastaut phenotype: multivariate analysis of task-free fMRI. Epilepsia. 2015;56(11):1767–73.PubMedCrossRef
52.
Zurück zum Zitat Wang Y, Yuan L, Shi J, Greve A, Ye J, Toga AW, Reiss AL, Thompson PM. Applying tensor-based morphometry to parametric surfaces can improve MRI-based disease diagnosis. Neuroimage. 2013;74:209–30.PubMedCrossRef Wang Y, Yuan L, Shi J, Greve A, Ye J, Toga AW, Reiss AL, Thompson PM. Applying tensor-based morphometry to parametric surfaces can improve MRI-based disease diagnosis. Neuroimage. 2013;74:209–30.PubMedCrossRef
53.
Zurück zum Zitat Hoeft F, Walter E, Lightbody AA, Hazlett HC, Chang C, Piven J, Reiss AL. Neuroanatomical differences in toddler boys with fragile x syndrome and idiopathic autism. Arch Gen Psychiatry. 2011;68(3):295–305.PubMedCrossRef Hoeft F, Walter E, Lightbody AA, Hazlett HC, Chang C, Piven J, Reiss AL. Neuroanatomical differences in toddler boys with fragile x syndrome and idiopathic autism. Arch Gen Psychiatry. 2011;68(3):295–305.PubMedCrossRef
54.
Zurück zum Zitat Parisot S, Ktena SI, Ferrante E, Lee M, Guerrero R, Glocker B, Rueckert D. Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med Image Anal. 2018;48:117–30.PubMedCrossRef Parisot S, Ktena SI, Ferrante E, Lee M, Guerrero R, Glocker B, Rueckert D. Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med Image Anal. 2018;48:117–30.PubMedCrossRef
55.
Zurück zum Zitat Matlis S, Boric K, Chu CJ, Kramer MA. Robust disruptions in electroencephalogram cortical oscillations and large-scale functional networks in autism. BMC Neurol. 2015;15:97.PubMedPubMedCentralCrossRef Matlis S, Boric K, Chu CJ, Kramer MA. Robust disruptions in electroencephalogram cortical oscillations and large-scale functional networks in autism. BMC Neurol. 2015;15:97.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Ingalhalikar M, Parker D, Bloy L, Roberts TP, Verma R. Diffusion based abnormality markers of pathology: toward learned diagnostic prediction of ASD. Neuroimage. 2011;57(3):918–27.PubMedCrossRef Ingalhalikar M, Parker D, Bloy L, Roberts TP, Verma R. Diffusion based abnormality markers of pathology: toward learned diagnostic prediction of ASD. Neuroimage. 2011;57(3):918–27.PubMedCrossRef
57.
Zurück zum Zitat Shahamat H, Saniee Abadeh M. Brain MRI analysis using a deep learning based evolutionary approach. Neural Netw. 2020;126:218–34.PubMedCrossRef Shahamat H, Saniee Abadeh M. Brain MRI analysis using a deep learning based evolutionary approach. Neural Netw. 2020;126:218–34.PubMedCrossRef
58.
Zurück zum Zitat Bajestani GS, Behrooz M, Khani AG, Nouri-Baygi M, Mollaei A. Diagnosis of autism spectrum disorder based on complex network features. Comput Methods Programs Biomed. 2019;177:277–83.PubMedCrossRef Bajestani GS, Behrooz M, Khani AG, Nouri-Baygi M, Mollaei A. Diagnosis of autism spectrum disorder based on complex network features. Comput Methods Programs Biomed. 2019;177:277–83.PubMedCrossRef
59.
Zurück zum Zitat Lanka P, Rangaprakash D, Dretsch MN, Katz JS, Denney TS Jr, Deshpande G. Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets. Brain Imaging Behav. 2020;14(6):2378–416.PubMedPubMedCentralCrossRef Lanka P, Rangaprakash D, Dretsch MN, Katz JS, Denney TS Jr, Deshpande G. Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets. Brain Imaging Behav. 2020;14(6):2378–416.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Zhang L, Wang XH, Li L. Diagnosing autism spectrum disorder using brain entropy: a fast entropy method. Comput Methods Programs Biomed. 2020;190:105240.PubMedCrossRef Zhang L, Wang XH, Li L. Diagnosing autism spectrum disorder using brain entropy: a fast entropy method. Comput Methods Programs Biomed. 2020;190:105240.PubMedCrossRef
61.
Zurück zum Zitat Rakić M, Cabezas M, Kushibar K, Oliver A, Lladó X. Improving the detection of autism spectrum disorder by combining structural and functional MRI information. NeuroImage Clin. 2020;25:102181.PubMedPubMedCentralCrossRef Rakić M, Cabezas M, Kushibar K, Oliver A, Lladó X. Improving the detection of autism spectrum disorder by combining structural and functional MRI information. NeuroImage Clin. 2020;25:102181.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Ahmadlou M, Adeli H, Adeli A. Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder. J Clin Neurophysiol. 2010;27(5):328–33.PubMedCrossRef Ahmadlou M, Adeli H, Adeli A. Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder. J Clin Neurophysiol. 2010;27(5):328–33.PubMedCrossRef
63.
Zurück zum Zitat Libero LE, DeRamus TP, Lahti AC, Deshpande G, Kana RK. Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates. Cortex. 2015;66:46–59.PubMedPubMedCentralCrossRef Libero LE, DeRamus TP, Lahti AC, Deshpande G, Kana RK. Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates. Cortex. 2015;66:46–59.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Pham TH, Vicnesh J, Wei JKE, Oh SL, Arunkumar N, Abdulhay EW, Ciaccio EJ, Acharya UR. Autism Spectrum Disorder Diagnostic System Using HOS Bispectrum with EEG Signals. Int J Environ Res Public Health. 2020;17(3):971.PubMedPubMedCentralCrossRef Pham TH, Vicnesh J, Wei JKE, Oh SL, Arunkumar N, Abdulhay EW, Ciaccio EJ, Acharya UR. Autism Spectrum Disorder Diagnostic System Using HOS Bispectrum with EEG Signals. Int J Environ Res Public Health. 2020;17(3):971.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Graa O, Rekik I. Multi-view learning-based data proliferator for boosting classification using highly imbalanced classes. J Neurosci Methods. 2019;327:108344.PubMedCrossRef Graa O, Rekik I. Multi-view learning-based data proliferator for boosting classification using highly imbalanced classes. J Neurosci Methods. 2019;327:108344.PubMedCrossRef
66.
Zurück zum Zitat Ingalhalikar M, Smith AR, Bloy L, Gur R, Roberts TP, Verma R. Identifying sub-populations via unsupervised cluster analysis on multi-edge similarity graphs. Med Image Comput Comput Assist Interv. 2012;15(Pt 2):254–61.PubMedPubMedCentral Ingalhalikar M, Smith AR, Bloy L, Gur R, Roberts TP, Verma R. Identifying sub-populations via unsupervised cluster analysis on multi-edge similarity graphs. Med Image Comput Comput Assist Interv. 2012;15(Pt 2):254–61.PubMedPubMedCentral
67.
Zurück zum Zitat Khosla M, Jamison K, Kuceyeski A, Sabuncu MR. Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction. Neuroimage. 2019;199:651–62.PubMedCrossRef Khosla M, Jamison K, Kuceyeski A, Sabuncu MR. Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction. Neuroimage. 2019;199:651–62.PubMedCrossRef
68.
Zurück zum Zitat Li H, Parikh NA, He L. A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes. Front Neurosci. 2018;12:491.PubMedPubMedCentralCrossRef Li H, Parikh NA, He L. A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes. Front Neurosci. 2018;12:491.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Sen B, Borle NC, Greiner R, Brown MRG. A general prediction model for the detection of ADHD and Autism using structural and functional MRI. PLoS One. 2018;13(4):e0194856.PubMedPubMedCentralCrossRef Sen B, Borle NC, Greiner R, Brown MRG. A general prediction model for the detection of ADHD and Autism using structural and functional MRI. PLoS One. 2018;13(4):e0194856.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Xu L, Hua Q, Yu J, Li J. Classification of autism spectrum disorder based on sample entropy of spontaneous functional near infra-red spectroscopy signal. Clin Neurophysiol. 2020;131(6):1365–74.PubMedCrossRef Xu L, Hua Q, Yu J, Li J. Classification of autism spectrum disorder based on sample entropy of spontaneous functional near infra-red spectroscopy signal. Clin Neurophysiol. 2020;131(6):1365–74.PubMedCrossRef
71.
Zurück zum Zitat Ma X, Wang XH, Li L. Identifying individuals with autism spectrum disorder based on the principal components of whole-brain phase synchrony. Neurosci Lett. 2021;742:135519.PubMedCrossRef Ma X, Wang XH, Li L. Identifying individuals with autism spectrum disorder based on the principal components of whole-brain phase synchrony. Neurosci Lett. 2021;742:135519.PubMedCrossRef
72.
Zurück zum Zitat Rakhimberdina Z, Liu X, Murata AT. Population graph-based multi-model ensemble method for diagnosing autism spectrum disorder. Sensors (Basel). 2020;20(21):6001.PubMedCrossRef Rakhimberdina Z, Liu X, Murata AT. Population graph-based multi-model ensemble method for diagnosing autism spectrum disorder. Sensors (Basel). 2020;20(21):6001.PubMedCrossRef
73.
Zurück zum Zitat Tsiaras V, Simos PG, Rezaie R, Sheth BR, Garyfallidis E, Castillo EM, Papanicolaou AC. Extracting biomarkers of autism from MEG resting-state functional connectivity networks. Comput Biol Med. 2011;41(12):1166–77.PubMedCrossRef Tsiaras V, Simos PG, Rezaie R, Sheth BR, Garyfallidis E, Castillo EM, Papanicolaou AC. Extracting biomarkers of autism from MEG resting-state functional connectivity networks. Comput Biol Med. 2011;41(12):1166–77.PubMedCrossRef
74.
Zurück zum Zitat Wang H, Chen C, Fushing H. Extracting multiscale pattern information of fMRI based functional brain connectivity with application on classification of autism spectrum disorders. PLoS One. 2012;7(10):e45502.PubMedPubMedCentralCrossRef Wang H, Chen C, Fushing H. Extracting multiscale pattern information of fMRI based functional brain connectivity with application on classification of autism spectrum disorders. PLoS One. 2012;7(10):e45502.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Hu J, Cao L, Li T, Liao B, Dong S, Li P. Interpretable learning approaches in resting-state functional connectivity analysis: the case of autism spectrum disorder. Comput Math Methods Med. 2020;2020:1394830.PubMedPubMedCentralCrossRef Hu J, Cao L, Li T, Liao B, Dong S, Li P. Interpretable learning approaches in resting-state functional connectivity analysis: the case of autism spectrum disorder. Comput Math Methods Med. 2020;2020:1394830.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Jung M, Tu Y, Park J, Jorgenson K, Lang C, Song W, Kong J. Surface-based shared and distinct resting functional connectivity in attention-deficit hyperactivity disorder and autism spectrum disorder. Br J Psychiatry. 2019;214(6):339–44.PubMedPubMedCentralCrossRef Jung M, Tu Y, Park J, Jorgenson K, Lang C, Song W, Kong J. Surface-based shared and distinct resting functional connectivity in attention-deficit hyperactivity disorder and autism spectrum disorder. Br J Psychiatry. 2019;214(6):339–44.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F. Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage Clinical. 2018;17:16–23.PubMedCrossRef Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F. Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage Clinical. 2018;17:16–23.PubMedCrossRef
78.
Zurück zum Zitat Bhaumik R, Pradhan A, Das S, Bhaumik DK. Predicting autism spectrum disorder using domain-adaptive cross-site evaluation. Neuroinformatics. 2018;16(2):197–205.PubMedCrossRef Bhaumik R, Pradhan A, Das S, Bhaumik DK. Predicting autism spectrum disorder using domain-adaptive cross-site evaluation. Neuroinformatics. 2018;16(2):197–205.PubMedCrossRef
79.
Zurück zum Zitat Wang L, Wee CY, Tang X, Yap PT, Shen D. Multi-task feature selection via supervised canonical graph matching for diagnosis of autism spectrum disorder. Brain Imaging Behav. 2016;10(1):33–40.PubMedPubMedCentralCrossRef Wang L, Wee CY, Tang X, Yap PT, Shen D. Multi-task feature selection via supervised canonical graph matching for diagnosis of autism spectrum disorder. Brain Imaging Behav. 2016;10(1):33–40.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Ecker C, Rocha-Rego V, Johnston P, Mourao-Miranda J, Marquand A, Daly EM, Brammer MJ, Murphy C, Murphy DG. Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. Neuroimage. 2010;49(1):44–56.PubMedCrossRef Ecker C, Rocha-Rego V, Johnston P, Mourao-Miranda J, Marquand A, Daly EM, Brammer MJ, Murphy C, Murphy DG. Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. Neuroimage. 2010;49(1):44–56.PubMedCrossRef
81.
Zurück zum Zitat Payabvash S, Palacios EM, Owen JP, Wang MB, Tavassoli T, Gerdes M, Brandes-Aitken A, Cuneo D, Marco EJ, Mukherjee P. White matter connectome edge density in children with autism spectrum disorders: potential imaging biomarkers using machine-learning models. Brain Connect. 2019;9(2):209–20.PubMedPubMedCentralCrossRef Payabvash S, Palacios EM, Owen JP, Wang MB, Tavassoli T, Gerdes M, Brandes-Aitken A, Cuneo D, Marco EJ, Mukherjee P. White matter connectome edge density in children with autism spectrum disorders: potential imaging biomarkers using machine-learning models. Brain Connect. 2019;9(2):209–20.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Price T, Wee CY, Gao W, Shen D. Multiple-network classification of childhood autism using functional connectivity dynamics. Med Image Comput Comput Assist Interv. 2014;17(Pt 3):177–84.PubMed Price T, Wee CY, Gao W, Shen D. Multiple-network classification of childhood autism using functional connectivity dynamics. Med Image Comput Comput Assist Interv. 2014;17(Pt 3):177–84.PubMed
83.
Zurück zum Zitat Haweel R, Shalaby A, Mahmoud A, Seada N, Ghoniemy S, Ghazal M, Casanova MF, Barnes GN, El-Baz A. A robust DWT-CNN-based CAD system for early diagnosis of autism using task-based fMRI. Med Phys. 2021;48(5):2315–26.PubMedCrossRef Haweel R, Shalaby A, Mahmoud A, Seada N, Ghoniemy S, Ghazal M, Casanova MF, Barnes GN, El-Baz A. A robust DWT-CNN-based CAD system for early diagnosis of autism using task-based fMRI. Med Phys. 2021;48(5):2315–26.PubMedCrossRef
84.
Zurück zum Zitat Chen CP, Keown CL, Jahedi A, Nair A, Pflieger ME, Bailey BA, Müller RA. Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism. NeuroImage Clin. 2015;8:238–45.PubMedPubMedCentralCrossRef Chen CP, Keown CL, Jahedi A, Nair A, Pflieger ME, Bailey BA, Müller RA. Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism. NeuroImage Clin. 2015;8:238–45.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Anderson JS, Nielsen JA, Froehlich AL, DuBray MB, Druzgal TJ, Cariello AN, Cooperrider JR, Zielinski BA, Ravichandran C, Fletcher PT, et al. Functional connectivity magnetic resonance imaging classification of autism. Brain. 2011;134(Pt 12):3742–54.PubMedCrossRef Anderson JS, Nielsen JA, Froehlich AL, DuBray MB, Druzgal TJ, Cariello AN, Cooperrider JR, Zielinski BA, Ravichandran C, Fletcher PT, et al. Functional connectivity magnetic resonance imaging classification of autism. Brain. 2011;134(Pt 12):3742–54.PubMedCrossRef
86.
Zurück zum Zitat Uddin LQ, Supekar K, Lynch CJ, Khouzam A, Phillips J, Feinstein C, Ryali S, Menon V. Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiat. 2013;70(8):869–79.CrossRef Uddin LQ, Supekar K, Lynch CJ, Khouzam A, Phillips J, Feinstein C, Ryali S, Menon V. Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiat. 2013;70(8):869–79.CrossRef
87.
Zurück zum Zitat Nielsen JA, Zielinski BA, Fletcher PT, Alexander AL, Lange N, Bigler ED, Lainhart JE, Anderson JS. Multisite functional connectivity MRI classification of autism: ABIDE results. Front Hum Neurosci. 2013;7:599.PubMedPubMedCentralCrossRef Nielsen JA, Zielinski BA, Fletcher PT, Alexander AL, Lange N, Bigler ED, Lainhart JE, Anderson JS. Multisite functional connectivity MRI classification of autism: ABIDE results. Front Hum Neurosci. 2013;7:599.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Jahedi A, Nasamran CA, Faires B, Fan J, Müller RA. Distributed intrinsic functional connectivity patterns predict diagnostic status in Large Autism Cohort. Brain Connect. 2017;7(8):515–25.PubMedPubMedCentralCrossRef Jahedi A, Nasamran CA, Faires B, Fan J, Müller RA. Distributed intrinsic functional connectivity patterns predict diagnostic status in Large Autism Cohort. Brain Connect. 2017;7(8):515–25.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Retico A, Giuliano A, Tancredi R, Cosenza A, Apicella F, Narzisi A, Biagi L, Tosetti M, Muratori F, Calderoni S. The effect of gender on the neuroanatomy of children with autism spectrum disorders: a support vector machine case-control study. Mol Autism. 2016;7:5.PubMedPubMedCentralCrossRef Retico A, Giuliano A, Tancredi R, Cosenza A, Apicella F, Narzisi A, Biagi L, Tosetti M, Muratori F, Calderoni S. The effect of gender on the neuroanatomy of children with autism spectrum disorders: a support vector machine case-control study. Mol Autism. 2016;7:5.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Calderoni S, Retico A, Biagi L, Tancredi R, Muratori F, Tosetti M. Female children with autism spectrum disorder: an insight from mass-univariate and pattern classification analyses. Neuroimage. 2012;59(2):1013–22.PubMedCrossRef Calderoni S, Retico A, Biagi L, Tancredi R, Muratori F, Tosetti M. Female children with autism spectrum disorder: an insight from mass-univariate and pattern classification analyses. Neuroimage. 2012;59(2):1013–22.PubMedCrossRef
91.
Zurück zum Zitat Yamagata B, Itahashi T, Fujino J, Ohta H, Nakamura M, Kato N, Mimura M, Hashimoto RI, Aoki Y. Machine learning approach to identify a resting-state functional connectivity pattern serving as an endophenotype of autism spectrum disorder. Brain Imaging Behav. 2019;13(6):1689–98.PubMedCrossRef Yamagata B, Itahashi T, Fujino J, Ohta H, Nakamura M, Kato N, Mimura M, Hashimoto RI, Aoki Y. Machine learning approach to identify a resting-state functional connectivity pattern serving as an endophenotype of autism spectrum disorder. Brain Imaging Behav. 2019;13(6):1689–98.PubMedCrossRef
92.
Zurück zum Zitat Gori I, Giuliano A, Muratori F, Saviozzi I, Oliva P, Tancredi R, Cosenza A, Tosetti M, Calderoni S, Retico A. Gray matter alterations in young children with autism spectrum disorders: comparing morphometry at the voxel and regional level. J Neuroimaging. 2015;25(6):866–74.PubMedCrossRef Gori I, Giuliano A, Muratori F, Saviozzi I, Oliva P, Tancredi R, Cosenza A, Tosetti M, Calderoni S, Retico A. Gray matter alterations in young children with autism spectrum disorders: comparing morphometry at the voxel and regional level. J Neuroimaging. 2015;25(6):866–74.PubMedCrossRef
93.
Zurück zum Zitat Leming M, Górriz JM, Suckling J. Ensemble deep learning on large, mixed-site fMRI datasets in autism and other tasks. Int J Neural Syst. 2020;30(7):2050012.PubMedCrossRef Leming M, Górriz JM, Suckling J. Ensemble deep learning on large, mixed-site fMRI datasets in autism and other tasks. Int J Neural Syst. 2020;30(7):2050012.PubMedCrossRef
94.
Zurück zum Zitat Shen MD, Nordahl CW, Li DD, Lee A, Angkustsiri K, Emerson RW, Rogers SJ, Ozonoff S, Amaral DG. Extra-axial cerebrospinal fluid in high-risk and normal-risk children with autism aged 2–4 years: a case-control study. The lancet Psychiatry. 2018;5(11):895–904.PubMedPubMedCentralCrossRef Shen MD, Nordahl CW, Li DD, Lee A, Angkustsiri K, Emerson RW, Rogers SJ, Ozonoff S, Amaral DG. Extra-axial cerebrospinal fluid in high-risk and normal-risk children with autism aged 2–4 years: a case-control study. The lancet Psychiatry. 2018;5(11):895–904.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Grossi E, Olivieri C, Buscema M. Diagnosis of autism through EEG processed by advanced computational algorithms: a pilot study. Comput Methods Programs Biomed. 2017;142:73–9.PubMedCrossRef Grossi E, Olivieri C, Buscema M. Diagnosis of autism through EEG processed by advanced computational algorithms: a pilot study. Comput Methods Programs Biomed. 2017;142:73–9.PubMedCrossRef
96.
Zurück zum Zitat Gupta S, Rajapakse JC, Welsch RE. Ambivert degree identifies crucial brain functional hubs and improves detection of Alzheimer’s Disease and Autism Spectrum Disorder. NeuroImage Clinical. 2020;25:102186.PubMedPubMedCentralCrossRef Gupta S, Rajapakse JC, Welsch RE. Ambivert degree identifies crucial brain functional hubs and improves detection of Alzheimer’s Disease and Autism Spectrum Disorder. NeuroImage Clinical. 2020;25:102186.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Ghiassian S, Greiner R, Jin P, Brown MR. Using functional or structural magnetic resonance images and personal characteristic data to identify ADHD and Autism. PLoS One. 2016;11(12):e0166934.PubMedPubMedCentralCrossRef Ghiassian S, Greiner R, Jin P, Brown MR. Using functional or structural magnetic resonance images and personal characteristic data to identify ADHD and Autism. PLoS One. 2016;11(12):e0166934.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Zu C, Gao Y, Munsell B, Kim M, Peng Z, Cohen JR, Zhang D, Wu G. Identifying disease-related subnetwork connectome biomarkers by sparse hypergraph learning. Brain Imaging Behav. 2019;13(4):879–92.PubMedPubMedCentralCrossRef Zu C, Gao Y, Munsell B, Kim M, Peng Z, Cohen JR, Zhang D, Wu G. Identifying disease-related subnetwork connectome biomarkers by sparse hypergraph learning. Brain Imaging Behav. 2019;13(4):879–92.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Katuwal GJ, Baum SA, Cahill ND, Michael AM. Divide and Conquer: Sub-Grouping of ASD Improves ASD Detection Based on Brain Morphometry. PLoS One. 2016;11(4):e0153331.PubMedPubMedCentralCrossRef Katuwal GJ, Baum SA, Cahill ND, Michael AM. Divide and Conquer: Sub-Grouping of ASD Improves ASD Detection Based on Brain Morphometry. PLoS One. 2016;11(4):e0153331.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Li Q, Becker B, Jiang X, Zhao Z, Zhang Q, Yao S, Kendrick KM. Decreased interhemispheric functional connectivity rather than corpus callosum volume as a potential biomarker for autism spectrum disorder. Cortex. 2019;119:258–66.PubMedCrossRef Li Q, Becker B, Jiang X, Zhao Z, Zhang Q, Yao S, Kendrick KM. Decreased interhemispheric functional connectivity rather than corpus callosum volume as a potential biomarker for autism spectrum disorder. Cortex. 2019;119:258–66.PubMedCrossRef
101.
Zurück zum Zitat Dekhil O, Hajjdiab H, Shalaby A, Ali MT, Ayinde B, Switala A, Elshamekh A, Ghazal M, Keynton R, Barnes G, et al. Using resting state functional MRI to build a personalized autism diagnosis system. PLoS One. 2018;13(10):e0206351.PubMedPubMedCentralCrossRef Dekhil O, Hajjdiab H, Shalaby A, Ali MT, Ayinde B, Switala A, Elshamekh A, Ghazal M, Keynton R, Barnes G, et al. Using resting state functional MRI to build a personalized autism diagnosis system. PLoS One. 2018;13(10):e0206351.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Yamagata B, Itahashi T, Fujino J, Ohta H, Takashio O, Nakamura M, Kato N, Mimura M, Hashimoto RI, Aoki YY. Cortical surface architecture endophenotype and correlates of clinical diagnosis of autism spectrum disorder. Psychiatry Clin Neurosci. 2019;73(7):409–15.PubMedCrossRef Yamagata B, Itahashi T, Fujino J, Ohta H, Takashio O, Nakamura M, Kato N, Mimura M, Hashimoto RI, Aoki YY. Cortical surface architecture endophenotype and correlates of clinical diagnosis of autism spectrum disorder. Psychiatry Clin Neurosci. 2019;73(7):409–15.PubMedCrossRef
103.
Zurück zum Zitat Iidaka T. Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex. 2015;63:55–67.PubMedCrossRef Iidaka T. Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex. 2015;63:55–67.PubMedCrossRef
104.
Zurück zum Zitat Jamal W, Das S, Oprescu IA, Maharatna K, Apicella F, Sicca F. Classification of autism spectrum disorder using supervised learning of brain connectivity measures extracted from synchrostates. J Neural Eng. 2014;11(4):046019.PubMedCrossRef Jamal W, Das S, Oprescu IA, Maharatna K, Apicella F, Sicca F. Classification of autism spectrum disorder using supervised learning of brain connectivity measures extracted from synchrostates. J Neural Eng. 2014;11(4):046019.PubMedCrossRef
105.
Zurück zum Zitat Zhang F, Savadjiev P, Cai W, Song Y, Rathi Y, Tunç B, Parker D, Kapur T, Schultz RT, Makris N, et al. Whole brain white matter connectivity analysis using machine learning: an application to autism. Neuroimage. 2018;172:826–37.PubMedCrossRef Zhang F, Savadjiev P, Cai W, Song Y, Rathi Y, Tunç B, Parker D, Kapur T, Schultz RT, Makris N, et al. Whole brain white matter connectivity analysis using machine learning: an application to autism. Neuroimage. 2018;172:826–37.PubMedCrossRef
106.
Zurück zum Zitat Sujit SJ, Coronado I, Kamali A, Narayana PA, Gabr RE. Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks. J Magn Reson Imaging. 2019;50(4):1260–7.PubMedPubMedCentralCrossRef Sujit SJ, Coronado I, Kamali A, Narayana PA, Gabr RE. Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks. J Magn Reson Imaging. 2019;50(4):1260–7.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Huang H, Liu X, Jin Y, Lee SW, Wee CY, Shen D. Enhancing the representation of functional connectivity networks by fusing multi-view information for autism spectrum disorder diagnosis. Hum Brain Mapp. 2019;40(3):833–54.PubMedCrossRef Huang H, Liu X, Jin Y, Lee SW, Wee CY, Shen D. Enhancing the representation of functional connectivity networks by fusing multi-view information for autism spectrum disorder diagnosis. Hum Brain Mapp. 2019;40(3):833–54.PubMedCrossRef
108.
Zurück zum Zitat Eill A, Jahedi A, Gao Y, Kohli JS, Fong CH, Solders S, Carper RA, Valafar F, Bailey BA, Müller RA. Functional connectivities are more informative than anatomical variables in diagnostic classification of autism. Brain Connect. 2019;9(8):604–12.PubMedPubMedCentralCrossRef Eill A, Jahedi A, Gao Y, Kohli JS, Fong CH, Solders S, Carper RA, Valafar F, Bailey BA, Müller RA. Functional connectivities are more informative than anatomical variables in diagnostic classification of autism. Brain Connect. 2019;9(8):604–12.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Xiao X, Fang H, Wu J, Xiao C, Xiao T, Qian L, Liang F, Xiao Z, Chu KK, Ke X. Diagnostic model generated by MRI-derived brain features in toddlers with autism spectrum disorder. Autism Res. 2017;10(4):620–30.PubMedCrossRef Xiao X, Fang H, Wu J, Xiao C, Xiao T, Qian L, Liang F, Xiao Z, Chu KK, Ke X. Diagnostic model generated by MRI-derived brain features in toddlers with autism spectrum disorder. Autism Res. 2017;10(4):620–30.PubMedCrossRef
110.
111.
Zurück zum Zitat Ktena SI, Parisot S, Ferrante E, Rajchl M, Lee M, Glocker B, Rueckert D. Metric learning with spectral graph convolutions on brain connectivity networks. Neuroimage. 2018;169:431–42.PubMedCrossRef Ktena SI, Parisot S, Ferrante E, Rajchl M, Lee M, Glocker B, Rueckert D. Metric learning with spectral graph convolutions on brain connectivity networks. Neuroimage. 2018;169:431–42.PubMedCrossRef
112.
Zurück zum Zitat Aghdam MA, Sharifi A, Pedram MM. Diagnosis of autism spectrum disorders in young children based on resting-state functional magnetic resonance imaging data using convolutional neural networks. J Digit Imaging. 2019;32(6):899–918.PubMedPubMedCentralCrossRef Aghdam MA, Sharifi A, Pedram MM. Diagnosis of autism spectrum disorders in young children based on resting-state functional magnetic resonance imaging data using convolutional neural networks. J Digit Imaging. 2019;32(6):899–918.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Sadeghi M, Khosrowabadi R, Bakouie F, Mahdavi H, Eslahchi C, Pouretemad H. Screening of autism based on task-free fMRI using graph theoretical approach. Psychiatry Res Neuroimaging. 2017;263:48–56.PubMedCrossRef Sadeghi M, Khosrowabadi R, Bakouie F, Mahdavi H, Eslahchi C, Pouretemad H. Screening of autism based on task-free fMRI using graph theoretical approach. Psychiatry Res Neuroimaging. 2017;263:48–56.PubMedCrossRef
114.
Zurück zum Zitat Chaddad A, Desrosiers C, Hassan L, Tanougast C. Hippocampus and amygdala radiomic biomarkers for the study of autism spectrum disorder. BMC Neurosci. 2017;18(1):52.PubMedPubMedCentralCrossRef Chaddad A, Desrosiers C, Hassan L, Tanougast C. Hippocampus and amygdala radiomic biomarkers for the study of autism spectrum disorder. BMC Neurosci. 2017;18(1):52.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Djemal R, AlSharabi K, Ibrahim S, Alsuwailem A. EEG-based computer aided diagnosis of autism spectrum disorder using wavelet, entropy, and ANN. Biomed Res Int. 2017;2017:9816591.PubMedPubMedCentralCrossRef Djemal R, AlSharabi K, Ibrahim S, Alsuwailem A. EEG-based computer aided diagnosis of autism spectrum disorder using wavelet, entropy, and ANN. Biomed Res Int. 2017;2017:9816591.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Yahata N, Morimoto J, Hashimoto R, Lisi G, Shibata K, Kawakubo Y, Kuwabara H, Kuroda M, Yamada T, Megumi F, et al. A small number of abnormal brain connections predicts adult autism spectrum disorder. Nat Commun. 2016;7:11254.PubMedPubMedCentralCrossRef Yahata N, Morimoto J, Hashimoto R, Lisi G, Shibata K, Kawakubo Y, Kuwabara H, Kuroda M, Yamada T, Megumi F, et al. A small number of abnormal brain connections predicts adult autism spectrum disorder. Nat Commun. 2016;7:11254.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Heunis T, Aldrich C, Peters JM, Jeste SS, Sahin M, Scheffer C, de Vries PJ. Recurrence quantification analysis of resting state EEG signals in autism spectrum disorder - a systematic methodological exploration of technical and demographic confounders in the search for biomarkers. BMC Med. 2018;16(1):101.PubMedPubMedCentralCrossRef Heunis T, Aldrich C, Peters JM, Jeste SS, Sahin M, Scheffer C, de Vries PJ. Recurrence quantification analysis of resting state EEG signals in autism spectrum disorder - a systematic methodological exploration of technical and demographic confounders in the search for biomarkers. BMC Med. 2018;16(1):101.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Chen H, Duan X, Liu F, Lu F, Ma X, Zhang Y, Uddin LQ, Chen H. Multivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity–A multi-center study. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:1–9.PubMedCrossRef Chen H, Duan X, Liu F, Lu F, Ma X, Zhang Y, Uddin LQ, Chen H. Multivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity–A multi-center study. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:1–9.PubMedCrossRef
119.
Zurück zum Zitat Just MA, Cherkassky VL, Buchweitz A, Keller TA, Mitchell TM. Identifying autism from neural representations of social interactions: neurocognitive markers of autism. PLoS One. 2014;9(12):e113879.PubMedPubMedCentralCrossRef Just MA, Cherkassky VL, Buchweitz A, Keller TA, Mitchell TM. Identifying autism from neural representations of social interactions: neurocognitive markers of autism. PLoS One. 2014;9(12):e113879.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Akhavan Aghdam M, Sharifi A, Pedram MM. Combination of rs-fMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief network. J Digit Imaging. 2018;31(6):895–903.PubMedPubMedCentralCrossRef Akhavan Aghdam M, Sharifi A, Pedram MM. Combination of rs-fMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief network. J Digit Imaging. 2018;31(6):895–903.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Alturki FA, AlSharabi K, Abdurraqeeb AM, Aljalal M. EEG signal analysis for diagnosing neurological disorders using discrete wavelet transform and intelligent techniques. Sensors (Basel). 2020;20(9):2505.PubMedCrossRef Alturki FA, AlSharabi K, Abdurraqeeb AM, Aljalal M. EEG signal analysis for diagnosing neurological disorders using discrete wavelet transform and intelligent techniques. Sensors (Basel). 2020;20(9):2505.PubMedCrossRef
122.
Zurück zum Zitat Spiegel A, Mentch J, Haskins AJ, Robertson CE. Slower binocular rivalry in the autistic brain. Curr Biol. 2019;29(17):2948-2953.e2943.PubMedCrossRef Spiegel A, Mentch J, Haskins AJ, Robertson CE. Slower binocular rivalry in the autistic brain. Curr Biol. 2019;29(17):2948-2953.e2943.PubMedCrossRef
123.
Zurück zum Zitat Conti E, Retico A, Palumbo L, Spera G, Bosco P, Biagi L, Fiori S, Tosetti M, Cipriani P, Cioni G, et al. Autism spectrum disorder and childhood apraxia of speech: early language-related hallmarks across structural MRI study. J Pers Med. 2020;10(4):275.PubMedPubMedCentralCrossRef Conti E, Retico A, Palumbo L, Spera G, Bosco P, Biagi L, Fiori S, Tosetti M, Cipriani P, Cioni G, et al. Autism spectrum disorder and childhood apraxia of speech: early language-related hallmarks across structural MRI study. J Pers Med. 2020;10(4):275.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Bi XA, Liu Y, Jiang Q, Shu Q, Sun Q, Dai J. The diagnosis of autism spectrum disorder based on the random neural network cluster. Front Hum Neurosci. 2018;12:257.PubMedPubMedCentralCrossRef Bi XA, Liu Y, Jiang Q, Shu Q, Sun Q, Dai J. The diagnosis of autism spectrum disorder based on the random neural network cluster. Front Hum Neurosci. 2018;12:257.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Pollonini L, Patidar U, Situ N, Rezaie R, Papanicolaou AC, Zouridakis G. Functional connectivity networks in the autistic and healthy brain assessed using Granger causality. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1730–3.PubMed Pollonini L, Patidar U, Situ N, Rezaie R, Papanicolaou AC, Zouridakis G. Functional connectivity networks in the autistic and healthy brain assessed using Granger causality. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1730–3.PubMed
126.
Zurück zum Zitat Eldridge J, Lane AE, Belkin M, Dennis S. Robust features for the automatic identification of autism spectrum disorder in children. J Neurodev Disord. 2014;6(1):12.PubMedPubMedCentralCrossRef Eldridge J, Lane AE, Belkin M, Dennis S. Robust features for the automatic identification of autism spectrum disorder in children. J Neurodev Disord. 2014;6(1):12.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Khan NA, Waheeb SA, Riaz A, Shang X. A three-stage teacher, student neural networks and sequential feed forward selection-based feature selection approach for the classification of autism spectrum disorder. Brain Sci. 2020;10(10):754.PubMedPubMedCentralCrossRef Khan NA, Waheeb SA, Riaz A, Shang X. A three-stage teacher, student neural networks and sequential feed forward selection-based feature selection approach for the classification of autism spectrum disorder. Brain Sci. 2020;10(10):754.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Sherkatghanad Z, Akhondzadeh M, Salari S, Zomorodi-Moghadam M, Abdar M, Acharya UR, Khosrowabadi R, Salari V. Automated detection of autism spectrum disorder using a convolutional neural network. Front Neurosci. 2019;13:1325.PubMedCrossRef Sherkatghanad Z, Akhondzadeh M, Salari S, Zomorodi-Moghadam M, Abdar M, Acharya UR, Khosrowabadi R, Salari V. Automated detection of autism spectrum disorder using a convolutional neural network. Front Neurosci. 2019;13:1325.PubMedCrossRef
129.
Zurück zum Zitat Gao J, Chen M, Li Y, Gao Y, Li Y, Cai S, Wang J. Multisite autism spectrum disorder classification using convolutional neural network classifier and individual morphological brain networks. Front Neurosci. 2020;14:629630.PubMedCrossRef Gao J, Chen M, Li Y, Gao Y, Li Y, Cai S, Wang J. Multisite autism spectrum disorder classification using convolutional neural network classifier and individual morphological brain networks. Front Neurosci. 2020;14:629630.PubMedCrossRef
130.
Zurück zum Zitat Liu Y, Xu L, Li J, Yu J, Yu X. Attentional connectivity-based prediction of autism using heterogeneous rs-fMRI data from CC200 Atlas. Exp Neurobiol. 2020;29(1):27–37.PubMedPubMedCentralCrossRef Liu Y, Xu L, Li J, Yu J, Yu X. Attentional connectivity-based prediction of autism using heterogeneous rs-fMRI data from CC200 Atlas. Exp Neurobiol. 2020;29(1):27–37.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Yang M, Cao M, Chen Y, Chen Y, Fan G, Li C, Wang J, Liu T. Large-scale brain functional network integration for discrimination of autism using a 3-D Deep Learning Model. Front Hum Neurosci. 2021;15:687288.PubMedPubMedCentralCrossRef Yang M, Cao M, Chen Y, Chen Y, Fan G, Li C, Wang J, Liu T. Large-scale brain functional network integration for discrimination of autism using a 3-D Deep Learning Model. Front Hum Neurosci. 2021;15:687288.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Huang ZA, Zhu Z, Yau CH, Tan KC. Identifying autism spectrum disorder from resting-state fMRI using deep belief network. IEEE Trans Neural Netw Learn Syst. 2021;32(7):2847–61.PubMedCrossRef Huang ZA, Zhu Z, Yau CH, Tan KC. Identifying autism spectrum disorder from resting-state fMRI using deep belief network. IEEE Trans Neural Netw Learn Syst. 2021;32(7):2847–61.PubMedCrossRef
133.
Zurück zum Zitat Zhao J, Song J, Li X, Kang J. A study on EEG feature extraction and classification in autistic children based on singular spectrum analysis method. Brain Behav. 2020;10(12):e01721.PubMedPubMedCentralCrossRef Zhao J, Song J, Li X, Kang J. A study on EEG feature extraction and classification in autistic children based on singular spectrum analysis method. Brain Behav. 2020;10(12):e01721.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Almuqhim F, Saeed F. ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data. Front Comput Neurosci. 2021;15:654315.PubMedPubMedCentralCrossRef Almuqhim F, Saeed F. ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data. Front Comput Neurosci. 2021;15:654315.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Xu L, Sun Z, Xie J, Yu J, Li J, Wang J. Identification of autism spectrum disorder based on short-term spontaneous hemodynamic fluctuations using deep learning in a multi-layer neural network. Clin Neurophysiol. 2021;132(2):457–68.PubMedCrossRef Xu L, Sun Z, Xie J, Yu J, Li J, Wang J. Identification of autism spectrum disorder based on short-term spontaneous hemodynamic fluctuations using deep learning in a multi-layer neural network. Clin Neurophysiol. 2021;132(2):457–68.PubMedCrossRef
136.
Zurück zum Zitat Lu J, Kishida K, De Asis CJ, Lohrenz T, Deering DT, Beauchamp M, Montague PR. Single stimulus fMRI produces a neural individual difference measure for Autism Spectrum Disorder. Clin Psychol Sci. 2015;3(3):422–32.PubMedPubMedCentralCrossRef Lu J, Kishida K, De Asis CJ, Lohrenz T, Deering DT, Beauchamp M, Montague PR. Single stimulus fMRI produces a neural individual difference measure for Autism Spectrum Disorder. Clin Psychol Sci. 2015;3(3):422–32.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Ahmed MR, Zhang Y, Liu Y, Liao H. Single volume image generator and deep learning-based ASD classification. IEEE J Biomed Health Inform. 2020;24(11):3044–54.PubMedCrossRef Ahmed MR, Zhang Y, Liu Y, Liao H. Single volume image generator and deep learning-based ASD classification. IEEE J Biomed Health Inform. 2020;24(11):3044–54.PubMedCrossRef
138.
Zurück zum Zitat Xu L, Geng X, He X, Li J, Yu J. Prediction in autism by deep learning short-time spontaneous hemodynamic fluctuations. Front Neurosci. 2019;13:1120.PubMedPubMedCentralCrossRef Xu L, Geng X, He X, Li J, Yu J. Prediction in autism by deep learning short-time spontaneous hemodynamic fluctuations. Front Neurosci. 2019;13:1120.PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Wee CY, Wang L, Shi F, Yap PT, Shen D. Diagnosis of autism spectrum disorders using regional and interregional morphological features. Hum Brain Mapp. 2014;35(7):3414–30.PubMedCrossRef Wee CY, Wang L, Shi F, Yap PT, Shen D. Diagnosis of autism spectrum disorders using regional and interregional morphological features. Hum Brain Mapp. 2014;35(7):3414–30.PubMedCrossRef
140.
Zurück zum Zitat Sewani H, Kashef R. An autoencoder-based deep learning classifier for efficient diagnosis of autism. Children (Basel, Switzerland). 2020;7(10):182.PubMed Sewani H, Kashef R. An autoencoder-based deep learning classifier for efficient diagnosis of autism. Children (Basel, Switzerland). 2020;7(10):182.PubMed
141.
Zurück zum Zitat Shi C, Xin X, Zhang J. Domain adaptation using a three-way decision improves the identification of autism patients from multisite fMRI data. Brain Sci. 2021;11(5):603.PubMedPubMedCentralCrossRef Shi C, Xin X, Zhang J. Domain adaptation using a three-way decision improves the identification of autism patients from multisite fMRI data. Brain Sci. 2021;11(5):603.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Kazeminejad A, Sotero RC. The importance of anti-correlations in graph theory based classification of autism spectrum disorder. Front Neurosci. 2020;14:676.PubMedPubMedCentralCrossRef Kazeminejad A, Sotero RC. The importance of anti-correlations in graph theory based classification of autism spectrum disorder. Front Neurosci. 2020;14:676.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Yin W, Mostafa S, Wu FX. Diagnosis of autism spectrum disorder based on functional brain networks with deep learning. J Comput Biol. 2021;28(2):146–65.PubMedCrossRef Yin W, Mostafa S, Wu FX. Diagnosis of autism spectrum disorder based on functional brain networks with deep learning. J Comput Biol. 2021;28(2):146–65.PubMedCrossRef
144.
Zurück zum Zitat Jiao Y, Chen R, Ke X, Chu K, Lu Z, Herskovits EH. Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage. 2010;50(2):589–99.PubMedCrossRef Jiao Y, Chen R, Ke X, Chu K, Lu Z, Herskovits EH. Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage. 2010;50(2):589–99.PubMedCrossRef
145.
Zurück zum Zitat Murdaugh DL, Shinkareva SV, Deshpande HR, Wang J, Pennick MR, Kana RK. Differential deactivation during mentalizing and classification of autism based on default mode network connectivity. PLoS One. 2012;7(11):e50064.PubMedPubMedCentralCrossRef Murdaugh DL, Shinkareva SV, Deshpande HR, Wang J, Pennick MR, Kana RK. Differential deactivation during mentalizing and classification of autism based on default mode network connectivity. PLoS One. 2012;7(11):e50064.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Song Y, Epalle TM, Lu H. Characterizing and predicting autism spectrum disorder by performing resting-state functional network community pattern analysis. Front Hum Neurosci. 2019;13:203.PubMedPubMedCentralCrossRef Song Y, Epalle TM, Lu H. Characterizing and predicting autism spectrum disorder by performing resting-state functional network community pattern analysis. Front Hum Neurosci. 2019;13:203.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Irimia A, Lei X, Torgerson CM, Jacokes ZJ, Abe S, Van Horn JD. Support vector machines, multidimensional scaling and magnetic resonance imaging reveal structural brain abnormalities associated with the interaction between autism spectrum disorder and sex. Front Comput Neurosci. 2018;12:93.PubMedPubMedCentralCrossRef Irimia A, Lei X, Torgerson CM, Jacokes ZJ, Abe S, Van Horn JD. Support vector machines, multidimensional scaling and magnetic resonance imaging reveal structural brain abnormalities associated with the interaction between autism spectrum disorder and sex. Front Comput Neurosci. 2018;12:93.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Eslami T, Mirjalili V, Fong A, Laird AR, Saeed F. ASD-DiagNet: a hybrid learning approach for detection of autism spectrum disorder using fMRI data. Front Neuroinform. 2019;13:70.PubMedPubMedCentralCrossRef Eslami T, Mirjalili V, Fong A, Laird AR, Saeed F. ASD-DiagNet: a hybrid learning approach for detection of autism spectrum disorder using fMRI data. Front Neuroinform. 2019;13:70.PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Sarovic D, Hadjikhani N, Schneiderman J, Lundström S, Gillberg C. Autism classified by magnetic resonance imaging: a pilot study of a potential diagnostic tool. Int J Methods Psychiatr Res. 2020;29(4):1–18.PubMedCrossRef Sarovic D, Hadjikhani N, Schneiderman J, Lundström S, Gillberg C. Autism classified by magnetic resonance imaging: a pilot study of a potential diagnostic tool. Int J Methods Psychiatr Res. 2020;29(4):1–18.PubMedCrossRef
150.
Zurück zum Zitat Kazeminejad A, Sotero RC. Topological properties of resting-state fMRI functional networks improve machine learning-based autism classification. Front Neurosci. 2018;12:1018.PubMedCrossRef Kazeminejad A, Sotero RC. Topological properties of resting-state fMRI functional networks improve machine learning-based autism classification. Front Neurosci. 2018;12:1018.PubMedCrossRef
151.
Zurück zum Zitat Guo X, Dominick KC, Minai AA, Li H, Erickson CA, Lu LJ. Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Front Neurosci. 2017;11:460.PubMedPubMedCentralCrossRef Guo X, Dominick KC, Minai AA, Li H, Erickson CA, Lu LJ. Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Front Neurosci. 2017;11:460.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Thomas RM, Gallo S, Cerliani L, Zhutovsky P, El-Gazzar A, van Wingen G. Classifying autism spectrum disorder using the temporal statistics of resting-state functional MRI data with 3D convolutional neural networks. Front Psych. 2020;11:440.CrossRef Thomas RM, Gallo S, Cerliani L, Zhutovsky P, El-Gazzar A, van Wingen G. Classifying autism spectrum disorder using the temporal statistics of resting-state functional MRI data with 3D convolutional neural networks. Front Psych. 2020;11:440.CrossRef
153.
Zurück zum Zitat Chen H, Chen W, Song Y, Sun L, Li X. EEG characteristics of children with attention-deficit/hyperactivity disorder. Neuroscience. 2019;406:444–56.PubMedCrossRef Chen H, Chen W, Song Y, Sun L, Li X. EEG characteristics of children with attention-deficit/hyperactivity disorder. Neuroscience. 2019;406:444–56.PubMedCrossRef
154.
Zurück zum Zitat Guo X, Yao D, Cao Q, Liu L, Zhao Q, Li H, Huang F, Wang Y, Qian Q, Wang Y, et al. Shared and distinct resting functional connectivity in children and adults with attention-deficit/hyperactivity disorder. Transl Psychiatry. 2020;10(1):65.PubMedPubMedCentralCrossRef Guo X, Yao D, Cao Q, Liu L, Zhao Q, Li H, Huang F, Wang Y, Qian Q, Wang Y, et al. Shared and distinct resting functional connectivity in children and adults with attention-deficit/hyperactivity disorder. Transl Psychiatry. 2020;10(1):65.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Müller A, Vetsch S, Pershin I, Candrian G, Baschera GM, Kropotov JD, Kasper J, Rehim HA, Eich D. EEG/ERP-based biomarker/neuroalgorithms in adults with ADHD: Development, reliability, and application in clinical practice. World J Biol Psychiatry. 2020;21(3):172–82.PubMedCrossRef Müller A, Vetsch S, Pershin I, Candrian G, Baschera GM, Kropotov JD, Kasper J, Rehim HA, Eich D. EEG/ERP-based biomarker/neuroalgorithms in adults with ADHD: Development, reliability, and application in clinical practice. World J Biol Psychiatry. 2020;21(3):172–82.PubMedCrossRef
156.
Zurück zum Zitat Gao MS, Tsai FS, Lee CC. Learning a phenotypic-attribute attentional brain connectivity embedding for ADHD Classification using rs-fMRI. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:5472–5.PubMed Gao MS, Tsai FS, Lee CC. Learning a phenotypic-attribute attentional brain connectivity embedding for ADHD Classification using rs-fMRI. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:5472–5.PubMed
157.
Zurück zum Zitat Chen Y, Tang Y, Wang C, Liu X, Zhao L, Wang Z. ADHD classification by dual subspace learning using resting-state functional connectivity. Artif Intell Med. 2020;103:101786.PubMedCrossRef Chen Y, Tang Y, Wang C, Liu X, Zhao L, Wang Z. ADHD classification by dual subspace learning using resting-state functional connectivity. Artif Intell Med. 2020;103:101786.PubMedCrossRef
158.
Zurück zum Zitat Muthuraman M, Moliadze V, Boecher L, Siemann J, Freitag CM, Groppa S, Siniatchkin M. Multimodal alterations of directed connectivity profiles in patients with attention-deficit/hyperactivity disorders. Sci Rep. 2019;9(1):20028.PubMedPubMedCentralCrossRef Muthuraman M, Moliadze V, Boecher L, Siemann J, Freitag CM, Groppa S, Siniatchkin M. Multimodal alterations of directed connectivity profiles in patients with attention-deficit/hyperactivity disorders. Sci Rep. 2019;9(1):20028.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat McNorgan C, Judson C, Handzlik D, Holden JG. Linking ADHD and behavioral assessment through identification of shared diagnostic task-based functional connections. Front Physiol. 2020;11:583005.PubMedPubMedCentralCrossRef McNorgan C, Judson C, Handzlik D, Holden JG. Linking ADHD and behavioral assessment through identification of shared diagnostic task-based functional connections. Front Physiol. 2020;11:583005.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Vahid A, Bluschke A, Roessner V, Stober S, Beste C. Deep learning based on event-related EEG differentiates children with ADHD from Healthy Controls. J Clin Med. 2019;8(7):1055.PubMedPubMedCentralCrossRef Vahid A, Bluschke A, Roessner V, Stober S, Beste C. Deep learning based on event-related EEG differentiates children with ADHD from Healthy Controls. J Clin Med. 2019;8(7):1055.PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Riaz A, Asad M, Alonso E, Slabaugh G. DeepFMRI: End-to-end deep learning for functional connectivity and classification of ADHD using fMRI. J Neurosci Methods. 2020;335:108506.PubMedCrossRef Riaz A, Asad M, Alonso E, Slabaugh G. DeepFMRI: End-to-end deep learning for functional connectivity and classification of ADHD using fMRI. J Neurosci Methods. 2020;335:108506.PubMedCrossRef
162.
Zurück zum Zitat Rostami M, Farashi S, Khosrowabadi R, Pouretemad H. Discrimination of ADHD subtypes using decision tree on behavioral, neuropsychological, and neural markers. Basic Clin Neurosci. 2020;11(3):359–67.PubMedPubMedCentral Rostami M, Farashi S, Khosrowabadi R, Pouretemad H. Discrimination of ADHD subtypes using decision tree on behavioral, neuropsychological, and neural markers. Basic Clin Neurosci. 2020;11(3):359–67.PubMedPubMedCentral
163.
Zurück zum Zitat Kiiski H, Rueda-Delgado LM, Bennett M, Knight R, Rai L, Roddy D, Grogan K, Bramham J, Kelly C, Whelan R. Functional EEG connectivity is a neuromarker for adult attention deficit hyperactivity disorder symptoms. Clin Neurophysiol. 2020;131(1):330–42.PubMedCrossRef Kiiski H, Rueda-Delgado LM, Bennett M, Knight R, Rai L, Roddy D, Grogan K, Bramham J, Kelly C, Whelan R. Functional EEG connectivity is a neuromarker for adult attention deficit hyperactivity disorder symptoms. Clin Neurophysiol. 2020;131(1):330–42.PubMedCrossRef
164.
Zurück zum Zitat Tang Y, Wang C, Chen Y, Sun N, Jiang A, Wang Z. Identifying ADHD individuals from resting-state functional connectivity using subspace clustering and binary hypothesis testing. J Atten Disord. 2021;25(5):736–48.PubMedCrossRef Tang Y, Wang C, Chen Y, Sun N, Jiang A, Wang Z. Identifying ADHD individuals from resting-state functional connectivity using subspace clustering and binary hypothesis testing. J Atten Disord. 2021;25(5):736–48.PubMedCrossRef
165.
Zurück zum Zitat Sun Y, Zhao L, Lan Z, Jia XZ, Xue SW. Differentiating boys with ADHD from those with typical development based on whole-brain functional connections using a machine learning approach. Neuropsychiatr Dis Treat. 2020;16:691–702.PubMedPubMedCentralCrossRef Sun Y, Zhao L, Lan Z, Jia XZ, Xue SW. Differentiating boys with ADHD from those with typical development based on whole-brain functional connections using a machine learning approach. Neuropsychiatr Dis Treat. 2020;16:691–702.PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Sidhu G. Locally linear embedding and fMRI feature selection in psychiatric classification. IEEE J Transl Eng Health Med. 2019;7:2200211.PubMedCrossRef Sidhu G. Locally linear embedding and fMRI feature selection in psychiatric classification. IEEE J Transl Eng Health Med. 2019;7:2200211.PubMedCrossRef
167.
Zurück zum Zitat Riaz A, Asad M, Alonso E, Slabaugh G. Fusion of fMRI and non-imaging data for ADHD classification. Comput Med Imaging Graph. 2018;65:115–28.PubMedCrossRef Riaz A, Asad M, Alonso E, Slabaugh G. Fusion of fMRI and non-imaging data for ADHD classification. Comput Med Imaging Graph. 2018;65:115–28.PubMedCrossRef
168.
Zurück zum Zitat Kaur S, Singh S, Arun P, Kaur D, Bajaj M. Phase Space Reconstruction of EEG Signals for Classification of ADHD and Control Adults. Clin EEG Neurosci. 2020;51(2):102–13.PubMedCrossRef Kaur S, Singh S, Arun P, Kaur D, Bajaj M. Phase Space Reconstruction of EEG Signals for Classification of ADHD and Control Adults. Clin EEG Neurosci. 2020;51(2):102–13.PubMedCrossRef
169.
Zurück zum Zitat Chen M, Li H, Wang J, Dillman JR, Parikh NA, He L. A multichannel deep neural network model analyzing multiscale functional brain connectome data for attention deficit hyperactivity disorder detection. Radiol Artif Intell. 2019;2(1):e190012.PubMedPubMedCentralCrossRef Chen M, Li H, Wang J, Dillman JR, Parikh NA, He L. A multichannel deep neural network model analyzing multiscale functional brain connectome data for attention deficit hyperactivity disorder detection. Radiol Artif Intell. 2019;2(1):e190012.PubMedPubMedCentralCrossRef
170.
Zurück zum Zitat Sutoko S, Monden Y, Tokuda T, Ikeda T, Nagashima M, Funane T, Sato H, Kiguchi M, Maki A, Yamagata T, et al. Exploring attentive task-based connectivity for screening attention deficit/hyperactivity disorder children: a functional near-infrared spectroscopy study. Neurophotonics. 2019;6(4):045013.PubMedPubMedCentralCrossRef Sutoko S, Monden Y, Tokuda T, Ikeda T, Nagashima M, Funane T, Sato H, Kiguchi M, Maki A, Yamagata T, et al. Exploring attentive task-based connectivity for screening attention deficit/hyperactivity disorder children: a functional near-infrared spectroscopy study. Neurophotonics. 2019;6(4):045013.PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Luo Y, Alvarez TL, Halperin JM, Li X. Multimodal neuroimaging-based prediction of adult outcomes in childhood-onset ADHD using ensemble learning techniques. NeuroImage Clin. 2020;26:102238.PubMedPubMedCentralCrossRef Luo Y, Alvarez TL, Halperin JM, Li X. Multimodal neuroimaging-based prediction of adult outcomes in childhood-onset ADHD using ensemble learning techniques. NeuroImage Clin. 2020;26:102238.PubMedPubMedCentralCrossRef
172.
Zurück zum Zitat Wang XH, Jiao Y, Li L. Diagnostic model for attention-deficit hyperactivity disorder based on interregional morphological connectivity. Neurosci Lett. 2018;685:30–4.PubMedCrossRef Wang XH, Jiao Y, Li L. Diagnostic model for attention-deficit hyperactivity disorder based on interregional morphological connectivity. Neurosci Lett. 2018;685:30–4.PubMedCrossRef
173.
Zurück zum Zitat Peng X, Lin P, Zhang T, Wang J. Extreme learning machine-based classification of ADHD using brain structural MRI data. PLoS One. 2013;8(11):e79476.PubMedPubMedCentralCrossRef Peng X, Lin P, Zhang T, Wang J. Extreme learning machine-based classification of ADHD using brain structural MRI data. PLoS One. 2013;8(11):e79476.PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat Yasumura A, Omori M, Fukuda A, Takahashi J, Yasumura Y, Nakagawa E, Koike T, Yamashita Y, Miyajima T, Koeda T, et al. Applied machine learning method to predict children with ADHD using prefrontal cortex activity: a multicenter study in Japan. J Atten Disord. 2020;24(14):2012–20.PubMedCrossRef Yasumura A, Omori M, Fukuda A, Takahashi J, Yasumura Y, Nakagawa E, Koike T, Yamashita Y, Miyajima T, Koeda T, et al. Applied machine learning method to predict children with ADHD using prefrontal cortex activity: a multicenter study in Japan. J Atten Disord. 2020;24(14):2012–20.PubMedCrossRef
175.
Zurück zum Zitat Qureshi MNI, Oh J, Min B, Jo HJ, Lee B. Multi-modal, multi-measure, and multi-class discrimination of ADHD with hierarchical feature extraction and extreme learning machine using structural and functional brain MRI. Front Hum Neurosci. 2017;11:157.PubMedPubMedCentral Qureshi MNI, Oh J, Min B, Jo HJ, Lee B. Multi-modal, multi-measure, and multi-class discrimination of ADHD with hierarchical feature extraction and extreme learning machine using structural and functional brain MRI. Front Hum Neurosci. 2017;11:157.PubMedPubMedCentral
176.
Zurück zum Zitat Biederman J, Hammerness P, Sadeh B, Peremen Z, Amit A, Or-Ly H, Stern Y, Reches A, Geva A, Faraone SV. Diagnostic utility of brain activity flow patterns analysis in attention deficit hyperactivity disorder. Psychol Med. 2017;47(7):1259–70.PubMedCrossRef Biederman J, Hammerness P, Sadeh B, Peremen Z, Amit A, Or-Ly H, Stern Y, Reches A, Geva A, Faraone SV. Diagnostic utility of brain activity flow patterns analysis in attention deficit hyperactivity disorder. Psychol Med. 2017;47(7):1259–70.PubMedCrossRef
177.
Zurück zum Zitat Gehricke JG, Kruggel F, Thampipop T, Alejo SD, Tatos E, Fallon J, Muftuler LT. The brain anatomy of attention-deficit/hyperactivity disorder in young adults - a magnetic resonance imaging study. PLoS One. 2017;12(4):e0175433.PubMedPubMedCentralCrossRef Gehricke JG, Kruggel F, Thampipop T, Alejo SD, Tatos E, Fallon J, Muftuler LT. The brain anatomy of attention-deficit/hyperactivity disorder in young adults - a magnetic resonance imaging study. PLoS One. 2017;12(4):e0175433.PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Sato JR, Hoexter MQ, Fujita A, Rohde LA. Evaluation of pattern recognition and feature extraction methods in ADHD prediction. Front Syst Neurosci. 2012;6:68.PubMedPubMedCentralCrossRef Sato JR, Hoexter MQ, Fujita A, Rohde LA. Evaluation of pattern recognition and feature extraction methods in ADHD prediction. Front Syst Neurosci. 2012;6:68.PubMedPubMedCentralCrossRef
179.
Zurück zum Zitat Iannaccone R, Hauser TU, Ball J, Brandeis D, Walitza S, Brem S. Classifying adolescent attention-deficit/hyperactivity disorder (ADHD) based on functional and structural imaging. Eur Child Adolesc Psychiatry. 2015;24(10):1279–89.PubMedCrossRef Iannaccone R, Hauser TU, Ball J, Brandeis D, Walitza S, Brem S. Classifying adolescent attention-deficit/hyperactivity disorder (ADHD) based on functional and structural imaging. Eur Child Adolesc Psychiatry. 2015;24(10):1279–89.PubMedCrossRef
180.
Zurück zum Zitat Gu Y, Miao S, Han J, Liang Z, Ouyang G, Yang J, Li X. Identifying ADHD children using hemodynamic responses during a working memory task measured by functional near-infrared spectroscopy. J Neural Eng. 2018;15(3):035005.PubMedCrossRef Gu Y, Miao S, Han J, Liang Z, Ouyang G, Yang J, Li X. Identifying ADHD children using hemodynamic responses during a working memory task measured by functional near-infrared spectroscopy. J Neural Eng. 2018;15(3):035005.PubMedCrossRef
181.
Zurück zum Zitat Du J, Wang L, Jie B, Zhang D. Network-based classification of ADHD patients using discriminative subnetwork selection and graph kernel PCA. Comput Med Imaging Graph. 2016;52:82–8.PubMedCrossRef Du J, Wang L, Jie B, Zhang D. Network-based classification of ADHD patients using discriminative subnetwork selection and graph kernel PCA. Comput Med Imaging Graph. 2016;52:82–8.PubMedCrossRef
182.
Zurück zum Zitat Wang XH, Jiao Y, Li L. Identifying individuals with attention deficit hyperactivity disorder based on temporal variability of dynamic functional connectivity. Sci Rep. 2018;8(1):11789.PubMedPubMedCentralCrossRef Wang XH, Jiao Y, Li L. Identifying individuals with attention deficit hyperactivity disorder based on temporal variability of dynamic functional connectivity. Sci Rep. 2018;8(1):11789.PubMedPubMedCentralCrossRef
183.
Zurück zum Zitat Hart H, Chantiluke K, Cubillo AI, Smith AB, Simmons A, Brammer MJ, Marquand AF, Rubia K. Pattern classification of response inhibition in ADHD: toward the development of neurobiological markers for ADHD. Hum Brain Mapp. 2014;35(7):3083–94.PubMedCrossRef Hart H, Chantiluke K, Cubillo AI, Smith AB, Simmons A, Brammer MJ, Marquand AF, Rubia K. Pattern classification of response inhibition in ADHD: toward the development of neurobiological markers for ADHD. Hum Brain Mapp. 2014;35(7):3083–94.PubMedCrossRef
184.
185.
Zurück zum Zitat Liu S, Zhao L, Wang X, Xin Q, Zhao J, Guttery DS, Zhang YD. Deep spatio-temporal representation and ensemble classification for attention deficit/hyperactivity disorder. IEEE Trans Neural Syst Rehabil Eng. 2021;29:1–10.PubMedCrossRef Liu S, Zhao L, Wang X, Xin Q, Zhao J, Guttery DS, Zhang YD. Deep spatio-temporal representation and ensemble classification for attention deficit/hyperactivity disorder. IEEE Trans Neural Syst Rehabil Eng. 2021;29:1–10.PubMedCrossRef
186.
Zurück zum Zitat Wang X, Jiao Y, Tang T, Wang H, Lu Z. Altered regional homogeneity patterns in adults with attention-deficit hyperactivity disorder. Eur J Radiol. 2013;82(9):1552–7.PubMedCrossRef Wang X, Jiao Y, Tang T, Wang H, Lu Z. Altered regional homogeneity patterns in adults with attention-deficit hyperactivity disorder. Eur J Radiol. 2013;82(9):1552–7.PubMedCrossRef
187.
Zurück zum Zitat Sidhu GS, Asgarian N, Greiner R, Brown MR. Kernel Principal Component Analysis for dimensionality reduction in fMRI-based diagnosis of ADHD. Front Syst Neurosci. 2012;6:74.PubMedPubMedCentralCrossRef Sidhu GS, Asgarian N, Greiner R, Brown MR. Kernel Principal Component Analysis for dimensionality reduction in fMRI-based diagnosis of ADHD. Front Syst Neurosci. 2012;6:74.PubMedPubMedCentralCrossRef
188.
Zurück zum Zitat Liechti MD, Valko L, Müller UC, Döhnert M, Drechsler R, Steinhausen HC, Brandeis D. Diagnostic value of resting electroencephalogram in attention-deficit/hyperactivity disorder across the lifespan. Brain Topogr. 2013;26(1):135–51.PubMedCrossRef Liechti MD, Valko L, Müller UC, Döhnert M, Drechsler R, Steinhausen HC, Brandeis D. Diagnostic value of resting electroencephalogram in attention-deficit/hyperactivity disorder across the lifespan. Brain Topogr. 2013;26(1):135–51.PubMedCrossRef
189.
Zurück zum Zitat Zhu CZ, Zang YF, Cao QJ, Yan CG, He Y, Jiang TZ, Sui MQ, Wang YF. Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. Neuroimage. 2008;40(1):110–20.PubMedCrossRef Zhu CZ, Zang YF, Cao QJ, Yan CG, He Y, Jiang TZ, Sui MQ, Wang YF. Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. Neuroimage. 2008;40(1):110–20.PubMedCrossRef
191.
Zurück zum Zitat Johnston BA, Mwangi B, Matthews K, Coghill D, Konrad K, Steele JD. Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification. Hum Brain Mapp. 2014;35(10):5179–89.PubMedPubMedCentralCrossRef Johnston BA, Mwangi B, Matthews K, Coghill D, Konrad K, Steele JD. Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification. Hum Brain Mapp. 2014;35(10):5179–89.PubMedPubMedCentralCrossRef
192.
Zurück zum Zitat Aradhya AMS, Subbaraju V, Sundaram S, Sundararajan N. Regularized Spatial Filtering Method (R-SFM) for detection of Attention Deficit Hyperactivity Disorder (ADHD) from resting-state functional Magnetic Resonance Imaging (rs-fMRI). Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:5541–4.PubMed Aradhya AMS, Subbaraju V, Sundaram S, Sundararajan N. Regularized Spatial Filtering Method (R-SFM) for detection of Attention Deficit Hyperactivity Disorder (ADHD) from resting-state functional Magnetic Resonance Imaging (rs-fMRI). Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:5541–4.PubMed
194.
Zurück zum Zitat Smith JL, Johnstone SJ, Barry RJ. Aiding diagnosis of attention-deficit/hyperactivity disorder and its subtypes: discriminant function analysis of event-related potential data. J Child Psychol Psychiatry. 2003;44(7):1067–75.PubMedCrossRef Smith JL, Johnstone SJ, Barry RJ. Aiding diagnosis of attention-deficit/hyperactivity disorder and its subtypes: discriminant function analysis of event-related potential data. J Child Psychol Psychiatry. 2003;44(7):1067–75.PubMedCrossRef
195.
Zurück zum Zitat dos Santos SA, Biazoli Junior CE, Comfort WE, Rohde LA, Sato JR. Abnormal functional resting-state networks in ADHD: graph theory and pattern recognition analysis of fMRI data. Biomed Res Int. 2014;2014:380531. dos Santos SA, Biazoli Junior CE, Comfort WE, Rohde LA, Sato JR. Abnormal functional resting-state networks in ADHD: graph theory and pattern recognition analysis of fMRI data. Biomed Res Int. 2014;2014:380531.
196.
Zurück zum Zitat Sun H, Chen Y, Huang Q, Lui S, Huang X, Shi Y, Xu X, Sweeney JA, Gong Q. Psychoradiologic utility of MR imaging for diagnosis of attention deficit hyperactivity disorder: a radiomics analysis. Radiology. 2018;287(2):620–30.PubMedCrossRef Sun H, Chen Y, Huang Q, Lui S, Huang X, Shi Y, Xu X, Sweeney JA, Gong Q. Psychoradiologic utility of MR imaging for diagnosis of attention deficit hyperactivity disorder: a radiomics analysis. Radiology. 2018;287(2):620–30.PubMedCrossRef
197.
Zurück zum Zitat Mueller A, Candrian G, Kropotov JD, Ponomarev VA, Baschera GM. Classification of ADHD patients on the basis of independent ERP components using a machine learning system. Nonlinear Biomed Phys. 2010;4 Suppl 1(Suppl 1):S1.PubMedCrossRef Mueller A, Candrian G, Kropotov JD, Ponomarev VA, Baschera GM. Classification of ADHD patients on the basis of independent ERP components using a machine learning system. Nonlinear Biomed Phys. 2010;4 Suppl 1(Suppl 1):S1.PubMedCrossRef
198.
Zurück zum Zitat Cheng W, Ji X, Zhang J, Feng J. Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques. Front Syst Neurosci. 2012;6:58.PubMedPubMedCentralCrossRef Cheng W, Ji X, Zhang J, Feng J. Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques. Front Syst Neurosci. 2012;6:58.PubMedPubMedCentralCrossRef
199.
Zurück zum Zitat Ahmadlou M, Adeli H. Wavelet-synchronization methodology: a new approach for EEG-based diagnosis of ADHD. Clin EEG Neurosci. 2010;41(1):1–10.PubMedCrossRef Ahmadlou M, Adeli H. Wavelet-synchronization methodology: a new approach for EEG-based diagnosis of ADHD. Clin EEG Neurosci. 2010;41(1):1–10.PubMedCrossRef
200.
Zurück zum Zitat Abibullaev B, An J. Decision support algorithm for diagnosis of ADHD using electroencephalograms. J Med Syst. 2012;36(4):2675–88.PubMedCrossRef Abibullaev B, An J. Decision support algorithm for diagnosis of ADHD using electroencephalograms. J Med Syst. 2012;36(4):2675–88.PubMedCrossRef
201.
Zurück zum Zitat Colby JB, Rudie JD, Brown JA, Douglas PK, Cohen MS, Shehzad Z. Insights into multimodal imaging classification of ADHD. Front Syst Neurosci. 2012;6:59.PubMedPubMedCentralCrossRef Colby JB, Rudie JD, Brown JA, Douglas PK, Cohen MS, Shehzad Z. Insights into multimodal imaging classification of ADHD. Front Syst Neurosci. 2012;6:59.PubMedPubMedCentralCrossRef
202.
Zurück zum Zitat Mueller A, Candrian G, Grane VA, Kropotov JD, Ponomarev VA, Baschera GM. Discriminating between ADHD adults and controls using independent ERP components and a support vector machine: a validation study. Nonlinear Biomed Phys. 2011;5:5.PubMedPubMedCentralCrossRef Mueller A, Candrian G, Grane VA, Kropotov JD, Ponomarev VA, Baschera GM. Discriminating between ADHD adults and controls using independent ERP components and a support vector machine: a validation study. Nonlinear Biomed Phys. 2011;5:5.PubMedPubMedCentralCrossRef
203.
Zurück zum Zitat Yu D. Additional brain functional network in adults with attention-deficit/hyperactivity disorder: a phase synchrony analysis. PLoS One. 2013;8(1):e54516.PubMedPubMedCentralCrossRef Yu D. Additional brain functional network in adults with attention-deficit/hyperactivity disorder: a phase synchrony analysis. PLoS One. 2013;8(1):e54516.PubMedPubMedCentralCrossRef
204.
Zurück zum Zitat Poil SS, Bollmann S, Ghisleni C, O’Gorman RL, Klaver P, Ball J, Eich-Höchli D, Brandeis D, Michels L. Age dependent electroencephalographic changes in attention-deficit/hyperactivity disorder (ADHD). Clin Neurophysiol. 2014;125(8):1626–38.PubMedCrossRef Poil SS, Bollmann S, Ghisleni C, O’Gorman RL, Klaver P, Ball J, Eich-Höchli D, Brandeis D, Michels L. Age dependent electroencephalographic changes in attention-deficit/hyperactivity disorder (ADHD). Clin Neurophysiol. 2014;125(8):1626–38.PubMedCrossRef
205.
Zurück zum Zitat Qureshi MN, Min B, Jo HJ, Lee B. Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: structural MRI study. PLoS One. 2016;11(8):e0160697.PubMedPubMedCentralCrossRef Qureshi MN, Min B, Jo HJ, Lee B. Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: structural MRI study. PLoS One. 2016;11(8):e0160697.PubMedPubMedCentralCrossRef
206.
Zurück zum Zitat Hart H, Marquand AF, Smith A, Cubillo A, Simmons A, Brammer M, Rubia K. Predictive neurofunctional markers of attention-deficit/hyperactivity disorder based on pattern classification of temporal processing. J Am Acad Child Adolesc Psychiatry. 2014;53(5):569-578.e561.PubMedCrossRef Hart H, Marquand AF, Smith A, Cubillo A, Simmons A, Brammer M, Rubia K. Predictive neurofunctional markers of attention-deficit/hyperactivity disorder based on pattern classification of temporal processing. J Am Acad Child Adolesc Psychiatry. 2014;53(5):569-578.e561.PubMedCrossRef
207.
Zurück zum Zitat Qureshi MN, Boreom L. Classification of ADHD subgroup with recursive feature elimination for structural brain MRI. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:5929–32.PubMed Qureshi MN, Boreom L. Classification of ADHD subgroup with recursive feature elimination for structural brain MRI. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:5929–32.PubMed
208.
Zurück zum Zitat Deshpande G, Wang P, Rangaprakash D, Wilamowski B. Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data. IEEE Trans Cybern. 2015;45(12):2668–79.PubMedCrossRef Deshpande G, Wang P, Rangaprakash D, Wilamowski B. Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data. IEEE Trans Cybern. 2015;45(12):2668–79.PubMedCrossRef
209.
Zurück zum Zitat Hammer R, Cooke GE, Stein MA, Booth JR. Functional neuroimaging of visuospatial working memory tasks enables accurate detection of attention deficit and hyperactivity disorder. NeuroImage Clin. 2015;9:244–52.PubMedPubMedCentralCrossRef Hammer R, Cooke GE, Stein MA, Booth JR. Functional neuroimaging of visuospatial working memory tasks enables accurate detection of attention deficit and hyperactivity disorder. NeuroImage Clin. 2015;9:244–52.PubMedPubMedCentralCrossRef
210.
Zurück zum Zitat Moghaddari M, Lighvan MZ, Danishvar S. Diagnose ADHD disorder in children using convolutional neural network based on continuous mental task EEG. Comput Methods Programs Biomed. 2020;197:105738.PubMedCrossRef Moghaddari M, Lighvan MZ, Danishvar S. Diagnose ADHD disorder in children using convolutional neural network based on continuous mental task EEG. Comput Methods Programs Biomed. 2020;197:105738.PubMedCrossRef
211.
Zurück zum Zitat Pereda E, García-Torres M, Melián-Batista B, Mañas S, Méndez L, González JJ. The blessing of dimensionality: feature selection outperforms functional connectivity-based feature transformation to classify ADHD subjects from EEG patterns of phase synchronisation. PLoS One. 2018;13(8):e0201660.PubMedPubMedCentralCrossRef Pereda E, García-Torres M, Melián-Batista B, Mañas S, Méndez L, González JJ. The blessing of dimensionality: feature selection outperforms functional connectivity-based feature transformation to classify ADHD subjects from EEG patterns of phase synchronisation. PLoS One. 2018;13(8):e0201660.PubMedPubMedCentralCrossRef
212.
Zurück zum Zitat Lim L, Marquand A, Cubillo AA, Smith AB, Chantiluke K, Simmons A, Mehta M, Rubia K. Disorder-specific predictive classification of adolescents with attention deficit hyperactivity disorder (ADHD) relative to autism using structural magnetic resonance imaging. PLoS One. 2013;8(5):e63660.PubMedPubMedCentralCrossRef Lim L, Marquand A, Cubillo AA, Smith AB, Chantiluke K, Simmons A, Mehta M, Rubia K. Disorder-specific predictive classification of adolescents with attention deficit hyperactivity disorder (ADHD) relative to autism using structural magnetic resonance imaging. PLoS One. 2013;8(5):e63660.PubMedPubMedCentralCrossRef
213.
Zurück zum Zitat Öztoprak H, Toycan M, Alp YK, Arıkan O, Doğutepe E, Karakaş S. Machine-based classification of ADHD and nonADHD participants using time/frequency features of event-related neuroelectric activity. Clin Neurophysiol. 2017;128(12):2400–10.PubMedCrossRef Öztoprak H, Toycan M, Alp YK, Arıkan O, Doğutepe E, Karakaş S. Machine-based classification of ADHD and nonADHD participants using time/frequency features of event-related neuroelectric activity. Clin Neurophysiol. 2017;128(12):2400–10.PubMedCrossRef
214.
Zurück zum Zitat Tor HT, Ooi CP, Lim-Ashworth NS, Wei JKE, Jahmunah V, Oh SL, Acharya UR, Fung DSS. Automated detection of conduct disorder and attention deficit hyperactivity disorder using decomposition and nonlinear techniques with EEG signals. Comput Methods Programs Biomed. 2021;200:105941.PubMedCrossRef Tor HT, Ooi CP, Lim-Ashworth NS, Wei JKE, Jahmunah V, Oh SL, Acharya UR, Fung DSS. Automated detection of conduct disorder and attention deficit hyperactivity disorder using decomposition and nonlinear techniques with EEG signals. Comput Methods Programs Biomed. 2021;200:105941.PubMedCrossRef
215.
Zurück zum Zitat Tosun M. Effects of spectral features of EEG signals recorded with different channels and recording statuses on ADHD classification with deep learning. Phys Eng Sci Med. 2021;44(3):693–702.PubMedCrossRef Tosun M. Effects of spectral features of EEG signals recorded with different channels and recording statuses on ADHD classification with deep learning. Phys Eng Sci Med. 2021;44(3):693–702.PubMedCrossRef
216.
Zurück zum Zitat Johnstone SJ, Parrish L, Jiang H, Zhang DW, Williams V, Li S. Aiding diagnosis of childhood attention-deficit/hyperactivity disorder of the inattentive presentation: Discriminant function analysis of multi-domain measures including EEG. Biol Psychol. 2021;161:108080.PubMedCrossRef Johnstone SJ, Parrish L, Jiang H, Zhang DW, Williams V, Li S. Aiding diagnosis of childhood attention-deficit/hyperactivity disorder of the inattentive presentation: Discriminant function analysis of multi-domain measures including EEG. Biol Psychol. 2021;161:108080.PubMedCrossRef
218.
Zurück zum Zitat Yoo JH, Kim JI, Kim BN, Jeong B. Exploring characteristic features of attention-deficit/hyperactivity disorder: findings from multi-modal MRI and candidate genetic data. Brain Imaging Behav. 2020;14(6):2132–47.PubMedCrossRef Yoo JH, Kim JI, Kim BN, Jeong B. Exploring characteristic features of attention-deficit/hyperactivity disorder: findings from multi-modal MRI and candidate genetic data. Brain Imaging Behav. 2020;14(6):2132–47.PubMedCrossRef
219.
Zurück zum Zitat Tenev A, Markovska-Simoska S, Kocarev L, Pop-Jordanov J, Müller A, Candrian G. Machine learning approach for classification of ADHD adults. Int J Psychophysiol. 2014;93(1):162–6.PubMedCrossRef Tenev A, Markovska-Simoska S, Kocarev L, Pop-Jordanov J, Müller A, Candrian G. Machine learning approach for classification of ADHD adults. Int J Psychophysiol. 2014;93(1):162–6.PubMedCrossRef
220.
Zurück zum Zitat Rezaeezadeh M, Shamekhi S, Shamsi M. Attention deficit hyperactivity disorder diagnosis using non-linear univariate and multivariate EEG measurements: a preliminary study. Phys Eng Sci Med. 2020;43(2):577–92.PubMedCrossRef Rezaeezadeh M, Shamekhi S, Shamsi M. Attention deficit hyperactivity disorder diagnosis using non-linear univariate and multivariate EEG measurements: a preliminary study. Phys Eng Sci Med. 2020;43(2):577–92.PubMedCrossRef
221.
Zurück zum Zitat Crippa A, Salvatore C, Molteni E, Mauri M, Salandi A, Trabattoni S, Agostoni C, Molteni M, Nobile M, Castiglioni I. The utility of a computerized algorithm based on a multi-domain profile of measures for the diagnosis of attention deficit/hyperactivity disorder. Front Psych. 2017;8:189.CrossRef Crippa A, Salvatore C, Molteni E, Mauri M, Salandi A, Trabattoni S, Agostoni C, Molteni M, Nobile M, Castiglioni I. The utility of a computerized algorithm based on a multi-domain profile of measures for the diagnosis of attention deficit/hyperactivity disorder. Front Psych. 2017;8:189.CrossRef
222.
Zurück zum Zitat Ishii-Takahashi A, Takizawa R, Nishimura Y, Kawakubo Y, Kuwabara H, Matsubayashi J, Hamada K, Okuhata S, Yahata N, Igarashi T, et al. Prefrontal activation during inhibitory control measured by near-infrared spectroscopy for differentiating between autism spectrum disorders and attention deficit hyperactivity disorder in adults. NeuroImage Clin. 2014;4:53–63.PubMedCrossRef Ishii-Takahashi A, Takizawa R, Nishimura Y, Kawakubo Y, Kuwabara H, Matsubayashi J, Hamada K, Okuhata S, Yahata N, Igarashi T, et al. Prefrontal activation during inhibitory control measured by near-infrared spectroscopy for differentiating between autism spectrum disorders and attention deficit hyperactivity disorder in adults. NeuroImage Clin. 2014;4:53–63.PubMedCrossRef
223.
Zurück zum Zitat Zhang T, Li C, Li P, Peng Y, Kang X, Jiang C, Li F, Zhu X, Yao D, Biswal B, et al. Separated Channel Attention Convolutional Neural Network (SC-CNN-Attention) to Identify ADHD in Multi-Site Rs-fMRI Dataset. Entropy (Basel, Switzerland). 2020;22(8):893.PubMedCrossRef Zhang T, Li C, Li P, Peng Y, Kang X, Jiang C, Li F, Zhu X, Yao D, Biswal B, et al. Separated Channel Attention Convolutional Neural Network (SC-CNN-Attention) to Identify ADHD in Multi-Site Rs-fMRI Dataset. Entropy (Basel, Switzerland). 2020;22(8):893.PubMedCrossRef
224.
Zurück zum Zitat Abramov DM, Lazarev VV, Gomes Junior SC, Mourao-Junior CA, Castro-Pontes M, Cunha CQ, deAzevedo LC, Vigneau E. Estimating biological accuracy of DSM for attention deficit/hyperactivity disorder based on multivariate analysis for small samples. PeerJ. 2019;7:e7074.PubMedPubMedCentralCrossRef Abramov DM, Lazarev VV, Gomes Junior SC, Mourao-Junior CA, Castro-Pontes M, Cunha CQ, deAzevedo LC, Vigneau E. Estimating biological accuracy of DSM for attention deficit/hyperactivity disorder based on multivariate analysis for small samples. PeerJ. 2019;7:e7074.PubMedPubMedCentralCrossRef
225.
Zurück zum Zitat Dey S, Rao AR, Shah M. Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects. Front Neural Circuits. 2014;8:64.PubMedPubMedCentralCrossRef Dey S, Rao AR, Shah M. Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects. Front Neural Circuits. 2014;8:64.PubMedPubMedCentralCrossRef
226.
Zurück zum Zitat Helgadóttir H, Gudmundsson Ó, Baldursson G, Magnússon P, Blin N, Brynjólfsdóttir B, Emilsdóttir Á, Gudmundsdóttir GB, Lorange M, Newman PK, et al. Electroencephalography as a clinical tool for diagnosing and monitoring attention deficit hyperactivity disorder: a cross-sectional study. BMJ Open. 2015;5(1):e005500.PubMedPubMedCentralCrossRef Helgadóttir H, Gudmundsson Ó, Baldursson G, Magnússon P, Blin N, Brynjólfsdóttir B, Emilsdóttir Á, Gudmundsdóttir GB, Lorange M, Newman PK, et al. Electroencephalography as a clinical tool for diagnosing and monitoring attention deficit hyperactivity disorder: a cross-sectional study. BMJ Open. 2015;5(1):e005500.PubMedPubMedCentralCrossRef
227.
Zurück zum Zitat Chow JC, Ouyang CS, Tsai CL, Chiang CT, Yang RC, Wu RC, Wu HC, Lin LC. Entropy-based quantitative electroencephalogram analysis for diagnosing attention-deficit hyperactivity disorder in girls. Clin EEG Neurosci. 2019;50(3):172–9.PubMedCrossRef Chow JC, Ouyang CS, Tsai CL, Chiang CT, Yang RC, Wu RC, Wu HC, Lin LC. Entropy-based quantitative electroencephalogram analysis for diagnosing attention-deficit hyperactivity disorder in girls. Clin EEG Neurosci. 2019;50(3):172–9.PubMedCrossRef
228.
Zurück zum Zitat Chen H, Song Y, Li X. Use of deep learning to detect personalized spatial-frequency abnormalities in EEGs of children with ADHD. J Neural Eng. 2019;16(6):066046.PubMedCrossRef Chen H, Song Y, Li X. Use of deep learning to detect personalized spatial-frequency abnormalities in EEGs of children with ADHD. J Neural Eng. 2019;16(6):066046.PubMedCrossRef
229.
Zurück zum Zitat Jahanshahloo HR, Shamsi M, Ghasemi E, Kouhi A. Automated and ERP-based diagnosis of attention-deficit hyperactivity disorder in children. J Med Signals Sens. 2017;7(1):26–32.PubMedPubMedCentralCrossRef Jahanshahloo HR, Shamsi M, Ghasemi E, Kouhi A. Automated and ERP-based diagnosis of attention-deficit hyperactivity disorder in children. J Med Signals Sens. 2017;7(1):26–32.PubMedPubMedCentralCrossRef
230.
Zurück zum Zitat Wolfers T, van Rooij D, Oosterlaan J, Heslenfeld D, Hartman CA, Hoekstra PJ, Beckmann CF, Franke B, Buitelaar JK, Marquand AF. Quantifying patterns of brain activity: distinguishing unaffected siblings from participants with ADHD and healthy individuals. NeuroImage Clin. 2016;12:227–33.PubMedPubMedCentralCrossRef Wolfers T, van Rooij D, Oosterlaan J, Heslenfeld D, Hartman CA, Hoekstra PJ, Beckmann CF, Franke B, Buitelaar JK, Marquand AF. Quantifying patterns of brain activity: distinguishing unaffected siblings from participants with ADHD and healthy individuals. NeuroImage Clin. 2016;12:227–33.PubMedPubMedCentralCrossRef
231.
Zurück zum Zitat Shao L, You Y, Du H, Fu D. Classification of ADHD with fMRI data and multi-objective optimization. Comput Methods Programs Biomed. 2020;196:105676.PubMedCrossRef Shao L, You Y, Du H, Fu D. Classification of ADHD with fMRI data and multi-objective optimization. Comput Methods Programs Biomed. 2020;196:105676.PubMedCrossRef
232.
Zurück zum Zitat Itani S, Rossignol M, Lecron F, Fortemps P. Towards interpretable machine learning models for diagnosis aid: a case study on attention deficit/hyperactivity disorder. PLoS One. 2019;14(4):e0215720.PubMedPubMedCentralCrossRef Itani S, Rossignol M, Lecron F, Fortemps P. Towards interpretable machine learning models for diagnosis aid: a case study on attention deficit/hyperactivity disorder. PLoS One. 2019;14(4):e0215720.PubMedPubMedCentralCrossRef
233.
Zurück zum Zitat Khoshnoud S, Nazari MA, Shamsi M. Functional brain dynamic analysis of ADHD and control children using nonlinear dynamical features of EEG signals. J Integr Neurosci. 2018;17(1):11–7.PubMedCrossRef Khoshnoud S, Nazari MA, Shamsi M. Functional brain dynamic analysis of ADHD and control children using nonlinear dynamical features of EEG signals. J Integr Neurosci. 2018;17(1):11–7.PubMedCrossRef
234.
Zurück zum Zitat Chikara RK, Ko LW. Neural activities classification of human inhibitory control using hierarchical model. Sensors (Basel). 2019;19(17):3791.PubMedCrossRef Chikara RK, Ko LW. Neural activities classification of human inhibitory control using hierarchical model. Sensors (Basel). 2019;19(17):3791.PubMedCrossRef
235.
Zurück zum Zitat Dinkel PJ, Willmes K, Krinzinger H, Konrad K, Koten JW Jr. Diagnosing developmental dyscalculia on the basis of reliable single case FMRI methods: promises and limitations. PLoS One. 2013;8(12):e83722.PubMedPubMedCentralCrossRef Dinkel PJ, Willmes K, Krinzinger H, Konrad K, Koten JW Jr. Diagnosing developmental dyscalculia on the basis of reliable single case FMRI methods: promises and limitations. PLoS One. 2013;8(12):e83722.PubMedPubMedCentralCrossRef
236.
Zurück zum Zitat Zahia S, Garcia-Zapirain B, Saralegui I, Fernandez-Ruanova B. Dyslexia detection using 3D convolutional neural networks and functional magnetic resonance imaging. Comput Methods Programs Biomed. 2020;197:105726.PubMedCrossRef Zahia S, Garcia-Zapirain B, Saralegui I, Fernandez-Ruanova B. Dyslexia detection using 3D convolutional neural networks and functional magnetic resonance imaging. Comput Methods Programs Biomed. 2020;197:105726.PubMedCrossRef
237.
Zurück zum Zitat Płoński P, Gradkowski W, Altarelli I, Monzalvo K, van Ermingen-Marbach M, Grande M, Heim S, Marchewka A, Bogorodzki P, Ramus F, et al. Multi-parameter machine learning approach to the neuroanatomical basis of developmental dyslexia. Hum Brain Mapp. 2017;38(2):900–8.PubMedCrossRef Płoński P, Gradkowski W, Altarelli I, Monzalvo K, van Ermingen-Marbach M, Grande M, Heim S, Marchewka A, Bogorodzki P, Ramus F, et al. Multi-parameter machine learning approach to the neuroanatomical basis of developmental dyslexia. Hum Brain Mapp. 2017;38(2):900–8.PubMedCrossRef
238.
Zurück zum Zitat Martinez-Murcia FJ, Ortiz A, Gorriz JM, Ramirez J, Lopez-Abarejo PJ, Lopez-Zamora M, Luque JL. EEG connectivity analysis using denoising autoencoders for the detection of dyslexia. Int J Neural Syst. 2020;30(7):2050037.PubMedCrossRef Martinez-Murcia FJ, Ortiz A, Gorriz JM, Ramirez J, Lopez-Abarejo PJ, Lopez-Zamora M, Luque JL. EEG connectivity analysis using denoising autoencoders for the detection of dyslexia. Int J Neural Syst. 2020;30(7):2050037.PubMedCrossRef
239.
Zurück zum Zitat Zainuddin AZA, Mansor W, Lee KY, Mahmoodin Z. Comparison of extreme learning machine and K-nearest neighbour performance in classifying EEG signal of normal, poor and capable dyslexic children. Annu Int Conf IEEE Eng Med Biol Soc. 2019;2019:4513–6.PubMed Zainuddin AZA, Mansor W, Lee KY, Mahmoodin Z. Comparison of extreme learning machine and K-nearest neighbour performance in classifying EEG signal of normal, poor and capable dyslexic children. Annu Int Conf IEEE Eng Med Biol Soc. 2019;2019:4513–6.PubMed
240.
Zurück zum Zitat Serrallach B, Groß C, Bernhofs V, Engelmann D, Benner J, Gündert N, Blatow M, Wengenroth M, Seitz A, Brunner M, et al. Neural biomarkers for dyslexia, ADHD, and ADD in the auditory cortex of children. Front Neurosci. 2016;10:324.PubMedPubMedCentralCrossRef Serrallach B, Groß C, Bernhofs V, Engelmann D, Benner J, Gündert N, Blatow M, Wengenroth M, Seitz A, Brunner M, et al. Neural biomarkers for dyslexia, ADHD, and ADD in the auditory cortex of children. Front Neurosci. 2016;10:324.PubMedPubMedCentralCrossRef
241.
Zurück zum Zitat Cui Z, Xia Z, Su M, Shu H, Gong G. Disrupted white matter connectivity underlying developmental dyslexia: a machine learning approach. Hum Brain Mapp. 2016;37(4):1443–58.PubMedPubMedCentralCrossRef Cui Z, Xia Z, Su M, Shu H, Gong G. Disrupted white matter connectivity underlying developmental dyslexia: a machine learning approach. Hum Brain Mapp. 2016;37(4):1443–58.PubMedPubMedCentralCrossRef
242.
Zurück zum Zitat García Chimeno Y, García Zapirain B, Saralegui Prieto I, Fernandez-Ruanova B. Automatic classification of dyslexic children by applying machine learning to fMRI images. Biomed Mater Eng. 2014;24(6):2995–3002.PubMed García Chimeno Y, García Zapirain B, Saralegui Prieto I, Fernandez-Ruanova B. Automatic classification of dyslexic children by applying machine learning to fMRI images. Biomed Mater Eng. 2014;24(6):2995–3002.PubMed
243.
Zurück zum Zitat Bailey S, Hoeft F, Aboud K, Cutting L. Anomalous gray matter patterns in specific reading comprehension deficit are independent of dyslexia. Ann Dyslexia. 2016;66(3):256–74.PubMedPubMedCentralCrossRef Bailey S, Hoeft F, Aboud K, Cutting L. Anomalous gray matter patterns in specific reading comprehension deficit are independent of dyslexia. Ann Dyslexia. 2016;66(3):256–74.PubMedPubMedCentralCrossRef
244.
Zurück zum Zitat Usman OL, Muniyandi RC, Omar K, Mohamad M. Gaussian smoothing and modified histogram normalization methods to improve neural-biomarker interpretations for dyslexia classification mechanism. PLoS One. 2021;16(2):e0245579.PubMedPubMedCentralCrossRef Usman OL, Muniyandi RC, Omar K, Mohamad M. Gaussian smoothing and modified histogram normalization methods to improve neural-biomarker interpretations for dyslexia classification mechanism. PLoS One. 2021;16(2):e0245579.PubMedPubMedCentralCrossRef
245.
Zurück zum Zitat Mascheretti S, Peruzzo D, Andreola C, Villa M, Ciceri T, Trezzi V, Marino C, Arrigoni F. Selecting the most relevant brain regions to classify children with developmental dyslexia and typical readers by using complex magnocellular stimuli and multiple kernel learning. Brain Sci. 2021;11(6):722.PubMedPubMedCentralCrossRef Mascheretti S, Peruzzo D, Andreola C, Villa M, Ciceri T, Trezzi V, Marino C, Arrigoni F. Selecting the most relevant brain regions to classify children with developmental dyslexia and typical readers by using complex magnocellular stimuli and multiple kernel learning. Brain Sci. 2021;11(6):722.PubMedPubMedCentralCrossRef
246.
Zurück zum Zitat Li A, Zalesky A, Yue W, Howes O, Yan H, Liu Y, Fan L, Whitaker KJ, Xu K, Rao G, et al. A neuroimaging biomarker for striatal dysfunction in schizophrenia. Nat Med. 2020;26(4):558–65.PubMedCrossRef Li A, Zalesky A, Yue W, Howes O, Yan H, Liu Y, Fan L, Whitaker KJ, Xu K, Rao G, et al. A neuroimaging biomarker for striatal dysfunction in schizophrenia. Nat Med. 2020;26(4):558–65.PubMedCrossRef
247.
Zurück zum Zitat Jo YT, Joo SW, Shon SH, Kim H, Kim Y, Lee J. Diagnosing schizophrenia with network analysis and a machine learning method. Int J Methods Psychiatr Res. 2020;29(1):e1818.PubMedPubMedCentralCrossRef Jo YT, Joo SW, Shon SH, Kim H, Kim Y, Lee J. Diagnosing schizophrenia with network analysis and a machine learning method. Int J Methods Psychiatr Res. 2020;29(1):e1818.PubMedPubMedCentralCrossRef
248.
Zurück zum Zitat Yassin W, Nakatani H, Zhu Y, Kojima M, Owada K, Kuwabara H, Gonoi W, Aoki Y, Takao H, Natsubori T, et al. Machine-learning classification using neuroimaging data in schizophrenia, autism, ultra-high risk and first-episode psychosis. Transl Psychiatry. 2020;10(1):278.PubMedPubMedCentralCrossRef Yassin W, Nakatani H, Zhu Y, Kojima M, Owada K, Kuwabara H, Gonoi W, Aoki Y, Takao H, Natsubori T, et al. Machine-learning classification using neuroimaging data in schizophrenia, autism, ultra-high risk and first-episode psychosis. Transl Psychiatry. 2020;10(1):278.PubMedPubMedCentralCrossRef
249.
Zurück zum Zitat Chen Z, Yan T, Wang E, Jiang H, Tang Y, Yu X, Zhang J, Liu C. Detecting abnormal brain regions in schizophrenia using structural MRI via machine learning. Comput Intell Neurosci. 2020;2020:6405930.PubMedPubMedCentralCrossRef Chen Z, Yan T, Wang E, Jiang H, Tang Y, Yu X, Zhang J, Liu C. Detecting abnormal brain regions in schizophrenia using structural MRI via machine learning. Comput Intell Neurosci. 2020;2020:6405930.PubMedPubMedCentralCrossRef
250.
Zurück zum Zitat Jahmunah V, Lih OhS, Rajinikanth V, Ciaccio EJ, Hao Cheong K, Arunkumar N, Acharya UR. Automated detection of schizophrenia using nonlinear signal processing methods. Artif Intell Med. 2019;100:101698.PubMedCrossRef Jahmunah V, Lih OhS, Rajinikanth V, Ciaccio EJ, Hao Cheong K, Arunkumar N, Acharya UR. Automated detection of schizophrenia using nonlinear signal processing methods. Artif Intell Med. 2019;100:101698.PubMedCrossRef
251.
Zurück zum Zitat Wang L, Li X, Zhu Y, Lin B, Bo Q, Li F, Wang C. Discriminative analysis of symptom severity and ultra-high risk of schizophrenia using intrinsic functional connectivity. Int J Neural Syst. 2020;30(9):2050047.PubMedCrossRef Wang L, Li X, Zhu Y, Lin B, Bo Q, Li F, Wang C. Discriminative analysis of symptom severity and ultra-high risk of schizophrenia using intrinsic functional connectivity. Int J Neural Syst. 2020;30(9):2050047.PubMedCrossRef
252.
Zurück zum Zitat Mikolas P, Hlinka J, Skoch A, Pitra Z, Frodl T, Spaniel F, Hajek T. Machine learning classification of first-episode schizophrenia spectrum disorders and controls using whole brain white matter fractional anisotropy. BMC Psychiatry. 2018;18(1):97.PubMedPubMedCentralCrossRef Mikolas P, Hlinka J, Skoch A, Pitra Z, Frodl T, Spaniel F, Hajek T. Machine learning classification of first-episode schizophrenia spectrum disorders and controls using whole brain white matter fractional anisotropy. BMC Psychiatry. 2018;18(1):97.PubMedPubMedCentralCrossRef
253.
Zurück zum Zitat Schwarz E, Doan NT, Pergola G, Westlye LT, Kaufmann T, Wolfers T, Brecheisen R, Quarto T, Ing AJ, Di Carlo P, et al. Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder. Transl Psychiatry. 2019;9(1):12.PubMedPubMedCentralCrossRef Schwarz E, Doan NT, Pergola G, Westlye LT, Kaufmann T, Wolfers T, Brecheisen R, Quarto T, Ing AJ, Di Carlo P, et al. Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder. Transl Psychiatry. 2019;9(1):12.PubMedPubMedCentralCrossRef
254.
Zurück zum Zitat Baradits M, Bitter I, Czobor P. Multivariate patterns of EEG microstate parameters and their role in the discrimination of patients with schizophrenia from healthy controls. Psychiatry Res. 2020;288:112938.PubMedCrossRef Baradits M, Bitter I, Czobor P. Multivariate patterns of EEG microstate parameters and their role in the discrimination of patients with schizophrenia from healthy controls. Psychiatry Res. 2020;288:112938.PubMedCrossRef
255.
Zurück zum Zitat Kim J, Kim MY, Kwon H, Kim JW, Im WY, Lee SM, Kim K, Kim SJ. Feature optimization method for machine learning-based diagnosis of schizophrenia using magnetoencephalography. J Neurosci Methods. 2020;338:108688.PubMedCrossRef Kim J, Kim MY, Kwon H, Kim JW, Im WY, Lee SM, Kim K, Kim SJ. Feature optimization method for machine learning-based diagnosis of schizophrenia using magnetoencephalography. J Neurosci Methods. 2020;338:108688.PubMedCrossRef
256.
Zurück zum Zitat de Moura AM, Pinaya WHL, Gadelha A, Zugman A, Noto C, Cordeiro Q, Belangero SI, Jackowski AP, Bressan RA, Sato JR. Investigating brain structural patterns in first episode psychosis and schizophrenia using MRI and a machine learning approach. Psychiatry Res Neuroimaging. 2018;275:14–20.PubMedCrossRef de Moura AM, Pinaya WHL, Gadelha A, Zugman A, Noto C, Cordeiro Q, Belangero SI, Jackowski AP, Bressan RA, Sato JR. Investigating brain structural patterns in first episode psychosis and schizophrenia using MRI and a machine learning approach. Psychiatry Res Neuroimaging. 2018;275:14–20.PubMedCrossRef
257.
Zurück zum Zitat Yamamoto M, Bagarinao E, Kushima I, Takahashi T, Sasabayashi D, Inada T, Suzuki M, Iidaka T, Ozaki N. Support vector machine-based classification of schizophrenia patients and healthy controls using structural magnetic resonance imaging from two independent sites. PLoS One. 2020;15(11):e0239615.PubMedPubMedCentralCrossRef Yamamoto M, Bagarinao E, Kushima I, Takahashi T, Sasabayashi D, Inada T, Suzuki M, Iidaka T, Ozaki N. Support vector machine-based classification of schizophrenia patients and healthy controls using structural magnetic resonance imaging from two independent sites. PLoS One. 2020;15(11):e0239615.PubMedPubMedCentralCrossRef
258.
Zurück zum Zitat Zou H, Yang J. Dynamic thresholding networks for schizophrenia diagnosis. Artif Intell Med. 2019;96:25–32.PubMedCrossRef Zou H, Yang J. Dynamic thresholding networks for schizophrenia diagnosis. Artif Intell Med. 2019;96:25–32.PubMedCrossRef
259.
Zurück zum Zitat Rozycki M, Satterthwaite TD, Koutsouleris N, Erus G, Doshi J, Wolf DH, Fan Y, Gur RE, Gur RC, Meisenzahl EM, et al. Multisite machine learning analysis provides a robust structural imaging signature of schizophrenia detectable across diverse patient populations and within individuals. Schizophr Bull. 2018;44(5):1035–44.PubMedCrossRef Rozycki M, Satterthwaite TD, Koutsouleris N, Erus G, Doshi J, Wolf DH, Fan Y, Gur RE, Gur RC, Meisenzahl EM, et al. Multisite machine learning analysis provides a robust structural imaging signature of schizophrenia detectable across diverse patient populations and within individuals. Schizophr Bull. 2018;44(5):1035–44.PubMedCrossRef
260.
Zurück zum Zitat Liang S, Deng W, Li X, Wang Q, Greenshaw AJ, Guo W, Kong X, Li M, Zhao L, Meng Y, et al. Aberrant posterior cingulate connectivity classify first-episode schizophrenia from controls: a machine learning study. Schizophr Res. 2020;220:187–93.PubMedCrossRef Liang S, Deng W, Li X, Wang Q, Greenshaw AJ, Guo W, Kong X, Li M, Zhao L, Meng Y, et al. Aberrant posterior cingulate connectivity classify first-episode schizophrenia from controls: a machine learning study. Schizophr Res. 2020;220:187–93.PubMedCrossRef
261.
Zurück zum Zitat Alamian G, Pascarella A, Lajnef T, Knight L, Walters J, Singh KD, Jerbi K. Patient, interrupted: MEG oscillation dynamics reveal temporal dysconnectivity in schizophrenia. NeuroImage Clin. 2020;28:102485.PubMedPubMedCentralCrossRef Alamian G, Pascarella A, Lajnef T, Knight L, Walters J, Singh KD, Jerbi K. Patient, interrupted: MEG oscillation dynamics reveal temporal dysconnectivity in schizophrenia. NeuroImage Clin. 2020;28:102485.PubMedPubMedCentralCrossRef
262.
Zurück zum Zitat de Pierrefeu A, Löfstedt T, Laidi C, Hadj-Selem F, Bourgin J, Hajek T, Spaniel F, Kolenic M, Ciuciu P, Hamdani N, et al. Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine learning with structured sparsity. Acta Psychiatr Scand. 2018;138(6):571–80.PubMedCrossRef de Pierrefeu A, Löfstedt T, Laidi C, Hadj-Selem F, Bourgin J, Hajek T, Spaniel F, Kolenic M, Ciuciu P, Hamdani N, et al. Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine learning with structured sparsity. Acta Psychiatr Scand. 2018;138(6):571–80.PubMedCrossRef
263.
Zurück zum Zitat Di Carlo P, Pergola G, Antonucci LA, Bonvino A, Mancini M, Quarto T, Rampino A, Popolizio T, Bertolino A, Blasi G. Multivariate patterns of gray matter volume in thalamic nuclei are associated with positive schizotypy in healthy individuals. Psychol Med. 2020;50(9):1501–9.PubMedCrossRef Di Carlo P, Pergola G, Antonucci LA, Bonvino A, Mancini M, Quarto T, Rampino A, Popolizio T, Bertolino A, Blasi G. Multivariate patterns of gray matter volume in thalamic nuclei are associated with positive schizotypy in healthy individuals. Psychol Med. 2020;50(9):1501–9.PubMedCrossRef
264.
Zurück zum Zitat Bae Y, Kumarasamy K, Ali IM, Korfiatis P, Akkus Z, Erickson BJ. Differences between schizophrenic and normal subjects using network properties from fMRI. J Digit Imaging. 2018;31(2):252–61.PubMedCrossRef Bae Y, Kumarasamy K, Ali IM, Korfiatis P, Akkus Z, Erickson BJ. Differences between schizophrenic and normal subjects using network properties from fMRI. J Digit Imaging. 2018;31(2):252–61.PubMedCrossRef
265.
Zurück zum Zitat Yu Y, Shen H, Zeng LL, Ma Q, Hu D. Convergent and divergent functional connectivity patterns in schizophrenia and depression. PLoS One. 2013;8(7):e68250.PubMedPubMedCentralCrossRef Yu Y, Shen H, Zeng LL, Ma Q, Hu D. Convergent and divergent functional connectivity patterns in schizophrenia and depression. PLoS One. 2013;8(7):e68250.PubMedPubMedCentralCrossRef
266.
Zurück zum Zitat Dluhoš P, Schwarz D, Cahn W, van Haren N, Kahn R, Španiel F, Horáček J, Kašpárek T, Schnack H. Multi-center machine learning in imaging psychiatry: a meta-model approach. Neuroimage. 2017;155:10–24.PubMedCrossRef Dluhoš P, Schwarz D, Cahn W, van Haren N, Kahn R, Španiel F, Horáček J, Kašpárek T, Schnack H. Multi-center machine learning in imaging psychiatry: a meta-model approach. Neuroimage. 2017;155:10–24.PubMedCrossRef
267.
Zurück zum Zitat Lee J, Chon MW, Kim H, Rathi Y, Bouix S, Shenton ME, Kubicki M. Diagnostic value of structural and diffusion imaging measures in schizophrenia. NeuroImage Clin. 2018;18:467–74.PubMedPubMedCentralCrossRef Lee J, Chon MW, Kim H, Rathi Y, Bouix S, Shenton ME, Kubicki M. Diagnostic value of structural and diffusion imaging measures in schizophrenia. NeuroImage Clin. 2018;18:467–74.PubMedPubMedCentralCrossRef
268.
Zurück zum Zitat Antonucci LA, Penzel N, Pergola G, Kambeitz-Ilankovic L, Dwyer D, Kambeitz J, Haas SS, Passiatore R, Fazio L, Caforio G, et al. Multivariate classification of schizophrenia and its familial risk based on load-dependent attentional control brain functional connectivity. Neuropsychopharmacology. 2020;45(4):613–21.PubMedCrossRef Antonucci LA, Penzel N, Pergola G, Kambeitz-Ilankovic L, Dwyer D, Kambeitz J, Haas SS, Passiatore R, Fazio L, Caforio G, et al. Multivariate classification of schizophrenia and its familial risk based on load-dependent attentional control brain functional connectivity. Neuropsychopharmacology. 2020;45(4):613–21.PubMedCrossRef
269.
Zurück zum Zitat Lu X, Yang Y, Wu F, Gao M, Xu Y, Zhang Y, Yao Y, Du X, Li C, Wu L, et al. Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images. Medicine (Baltim). 2016;95(30):e3973.CrossRef Lu X, Yang Y, Wu F, Gao M, Xu Y, Zhang Y, Yao Y, Du X, Li C, Wu L, et al. Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images. Medicine (Baltim). 2016;95(30):e3973.CrossRef
270.
Zurück zum Zitat Chyzhyk D, Graña M, Öngür D, Shinn AK. Discrimination of schizophrenia auditory hallucinators by machine learning of resting-state functional MRI. Int J Neural Syst. 2015;25(3):1550007.PubMedPubMedCentralCrossRef Chyzhyk D, Graña M, Öngür D, Shinn AK. Discrimination of schizophrenia auditory hallucinators by machine learning of resting-state functional MRI. Int J Neural Syst. 2015;25(3):1550007.PubMedPubMedCentralCrossRef
271.
Zurück zum Zitat Jing R, Li P, Ding Z, Lin X, Zhao R, Shi L, Yan H, Liao J, Zhuo C, Lu L, et al. Machine learning identifies unaffected first-degree relatives with functional network patterns and cognitive impairment similar to those of schizophrenia patients. Hum Brain Mapp. 2019;40(13):3930–9.PubMedPubMedCentral Jing R, Li P, Ding Z, Lin X, Zhao R, Shi L, Yan H, Liao J, Zhuo C, Lu L, et al. Machine learning identifies unaffected first-degree relatives with functional network patterns and cognitive impairment similar to those of schizophrenia patients. Hum Brain Mapp. 2019;40(13):3930–9.PubMedPubMedCentral
272.
Zurück zum Zitat Hua M, Peng Y, Zhou Y, Qin W, Yu C, Liang M. Disrupted pathways from limbic areas to thalamus in schizophrenia highlighted by whole-brain resting-state effective connectivity analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2020;99:109837.PubMedCrossRef Hua M, Peng Y, Zhou Y, Qin W, Yu C, Liang M. Disrupted pathways from limbic areas to thalamus in schizophrenia highlighted by whole-brain resting-state effective connectivity analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2020;99:109837.PubMedCrossRef
273.
Zurück zum Zitat Gould IC, Shepherd AM, Laurens KR, Cairns MJ, Carr VJ, Green MJ. Multivariate neuroanatomical classification of cognitive subtypes in schizophrenia: a support vector machine learning approach. NeuroImage Clin. 2014;6:229–36.PubMedPubMedCentralCrossRef Gould IC, Shepherd AM, Laurens KR, Cairns MJ, Carr VJ, Green MJ. Multivariate neuroanatomical classification of cognitive subtypes in schizophrenia: a support vector machine learning approach. NeuroImage Clin. 2014;6:229–36.PubMedPubMedCentralCrossRef
274.
Zurück zum Zitat Song H, Chen L, Gao R, Bogdan IIM, Yang J, Wang S, Dong W, Quan W, Dang W, Yu X. Automatic schizophrenic discrimination on fNIRS by using complex brain network analysis and SVM. BMC Med Inform Decis Mak. 2017;17(Suppl 3):166.PubMedPubMedCentralCrossRef Song H, Chen L, Gao R, Bogdan IIM, Yang J, Wang S, Dong W, Quan W, Dang W, Yu X. Automatic schizophrenic discrimination on fNIRS by using complex brain network analysis and SVM. BMC Med Inform Decis Mak. 2017;17(Suppl 3):166.PubMedPubMedCentralCrossRef
275.
Zurück zum Zitat Zhu Q, Huang J, Xu X. Non-negative discriminative brain functional connectivity for identifying schizophrenia on resting-state fMRI. Biomed Eng Online. 2018;17(1):32.PubMedPubMedCentralCrossRef Zhu Q, Huang J, Xu X. Non-negative discriminative brain functional connectivity for identifying schizophrenia on resting-state fMRI. Biomed Eng Online. 2018;17(1):32.PubMedPubMedCentralCrossRef
276.
Zurück zum Zitat Zhao W, Guo S, Linli Z, Yang AC, Lin CP, Tsai SJ. Functional, anatomical, and morphological networks highlight the role of basal ganglia-thalamus-cortex circuits in schizophrenia. Schizophr Bull. 2020;46(2):422–31.PubMed Zhao W, Guo S, Linli Z, Yang AC, Lin CP, Tsai SJ. Functional, anatomical, and morphological networks highlight the role of basal ganglia-thalamus-cortex circuits in schizophrenia. Schizophr Bull. 2020;46(2):422–31.PubMed
277.
Zurück zum Zitat Chin R, You AX, Meng F, Zhou J, Sim K. Recognition of schizophrenia with regularized support vector machine and sequential region of interest selection using structural magnetic resonance imaging. Sci Rep. 2018;8(1):13858.PubMedPubMedCentralCrossRef Chin R, You AX, Meng F, Zhou J, Sim K. Recognition of schizophrenia with regularized support vector machine and sequential region of interest selection using structural magnetic resonance imaging. Sci Rep. 2018;8(1):13858.PubMedPubMedCentralCrossRef
278.
Zurück zum Zitat Iwabuchi SJ, Palaniyappan L. Abnormalities in the effective connectivity of visuothalamic circuitry in schizophrenia. Psychol Med. 2017;47(7):1300–10.PubMedCrossRef Iwabuchi SJ, Palaniyappan L. Abnormalities in the effective connectivity of visuothalamic circuitry in schizophrenia. Psychol Med. 2017;47(7):1300–10.PubMedCrossRef
279.
Zurück zum Zitat Winterburn JL, Voineskos AN, Devenyi GA, Plitman E, de la Fuente-Sandoval C, Bhagwat N, Graff-Guerrero A, Knight J, Chakravarty MM. Can we accurately classify schizophrenia patients from healthy controls using magnetic resonance imaging and machine learning? A multi-method and multi-dataset study. Schizophr Res. 2019;214:3–10.PubMedCrossRef Winterburn JL, Voineskos AN, Devenyi GA, Plitman E, de la Fuente-Sandoval C, Bhagwat N, Graff-Guerrero A, Knight J, Chakravarty MM. Can we accurately classify schizophrenia patients from healthy controls using magnetic resonance imaging and machine learning? A multi-method and multi-dataset study. Schizophr Res. 2019;214:3–10.PubMedCrossRef
280.
Zurück zum Zitat Chen H, Uddin LQ, Duan X, Zheng J, Long Z, Zhang Y, Guo X, Zhang Y, Zhao J, Chen H. Shared atypical default mode and salience network functional connectivity between autism and schizophrenia. Autism Res. 2017;10(11):1776–86.PubMedPubMedCentralCrossRef Chen H, Uddin LQ, Duan X, Zheng J, Long Z, Zhang Y, Guo X, Zhang Y, Zhao J, Chen H. Shared atypical default mode and salience network functional connectivity between autism and schizophrenia. Autism Res. 2017;10(11):1776–86.PubMedPubMedCentralCrossRef
281.
Zurück zum Zitat Zeng LL, Wang H, Hu P, Yang B, Pu W, Shen H, Chen X, Liu Z, Yin H, Tan Q, et al. Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI. EBioMedicine. 2018;30:74–85.PubMedPubMedCentralCrossRef Zeng LL, Wang H, Hu P, Yang B, Pu W, Shen H, Chen X, Liu Z, Yin H, Tan Q, et al. Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI. EBioMedicine. 2018;30:74–85.PubMedPubMedCentralCrossRef
282.
Zurück zum Zitat Supekar K, Cai W, Krishnadas R, Palaniyappan L, Menon V. Dysregulated brain dynamics in a triple-network saliency model of schizophrenia and its relation to psychosis. Biol Psychiatry. 2019;85(1):60–9.PubMedCrossRef Supekar K, Cai W, Krishnadas R, Palaniyappan L, Menon V. Dysregulated brain dynamics in a triple-network saliency model of schizophrenia and its relation to psychosis. Biol Psychiatry. 2019;85(1):60–9.PubMedCrossRef
283.
Zurück zum Zitat Mastrovito D, Hanson C, Hanson SJ. Differences in atypical resting-state effective connectivity distinguish autism from schizophrenia. NeuroImage Clin. 2018;18:367–76.PubMedPubMedCentralCrossRef Mastrovito D, Hanson C, Hanson SJ. Differences in atypical resting-state effective connectivity distinguish autism from schizophrenia. NeuroImage Clin. 2018;18:367–76.PubMedPubMedCentralCrossRef
284.
Zurück zum Zitat Liu Y, Zhang Y, Lv L, Wu R, Zhao J, Guo W. Abnormal neural activity as a potential biomarker for drug-naive first-episode adolescent-onset schizophrenia with coherence regional homogeneity and support vector machine analyses. Schizophr Res. 2018;192:408–15.PubMedCrossRef Liu Y, Zhang Y, Lv L, Wu R, Zhao J, Guo W. Abnormal neural activity as a potential biomarker for drug-naive first-episode adolescent-onset schizophrenia with coherence regional homogeneity and support vector machine analyses. Schizophr Res. 2018;192:408–15.PubMedCrossRef
285.
Zurück zum Zitat Cui LB, Liu L, Wang HN, Wang LX, Guo F, Xi YB, Liu TT, Li C, Tian P, Liu K, et al. Disease definition for schizophrenia by functional connectivity using radiomics strategy. Schizophr Bull. 2018;44(5):1053–9.PubMedPubMedCentralCrossRef Cui LB, Liu L, Wang HN, Wang LX, Guo F, Xi YB, Liu TT, Li C, Tian P, Liu K, et al. Disease definition for schizophrenia by functional connectivity using radiomics strategy. Schizophr Bull. 2018;44(5):1053–9.PubMedPubMedCentralCrossRef
286.
Zurück zum Zitat Pinaya WHL, Mechelli A, Sato JR. Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: a large-scale multi-sample study. Hum Brain Mapp. 2019;40(3):944–54.PubMedCrossRef Pinaya WHL, Mechelli A, Sato JR. Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: a large-scale multi-sample study. Hum Brain Mapp. 2019;40(3):944–54.PubMedCrossRef
287.
Zurück zum Zitat Chen X, Liu C, He H, Chang X, Jiang Y, Li Y, Duan M, Li J, Luo C, Yao D. Transdiagnostic differences in the resting-state functional connectivity of the prefrontal cortex in depression and schizophrenia. J Affect Disord. 2017;217:118–24.PubMedCrossRef Chen X, Liu C, He H, Chang X, Jiang Y, Li Y, Duan M, Li J, Luo C, Yao D. Transdiagnostic differences in the resting-state functional connectivity of the prefrontal cortex in depression and schizophrenia. J Affect Disord. 2017;217:118–24.PubMedCrossRef
288.
Zurück zum Zitat Schnack HG, Nieuwenhuis M, van Haren NE, Abramovic L, Scheewe TW, Brouwer RM, Hulshoff Pol HE, Kahn RS. Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. Neuroimage. 2014;84:299–306.PubMedCrossRef Schnack HG, Nieuwenhuis M, van Haren NE, Abramovic L, Scheewe TW, Brouwer RM, Hulshoff Pol HE, Kahn RS. Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. Neuroimage. 2014;84:299–306.PubMedCrossRef
289.
Zurück zum Zitat Cheng H, Newman S, Goñi J, Kent JS, Howell J, Bolbecker A, Puce A, O’Donnell BF, Hetrick WP. Nodal centrality of functional network in the differentiation of schizophrenia. Schizophr Res. 2015;168(1–2):345–52.PubMedPubMedCentralCrossRef Cheng H, Newman S, Goñi J, Kent JS, Howell J, Bolbecker A, Puce A, O’Donnell BF, Hetrick WP. Nodal centrality of functional network in the differentiation of schizophrenia. Schizophr Res. 2015;168(1–2):345–52.PubMedPubMedCentralCrossRef
290.
Zurück zum Zitat Mikolas P, Melicher T, Skoch A, Matejka M, Slovakova A, Bakstein E, Hajek T, Spaniel F. Connectivity of the anterior insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: a machine-learning study. Psychol Med. 2016;46(13):2695–704.PubMedCrossRef Mikolas P, Melicher T, Skoch A, Matejka M, Slovakova A, Bakstein E, Hajek T, Spaniel F. Connectivity of the anterior insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: a machine-learning study. Psychol Med. 2016;46(13):2695–704.PubMedCrossRef
291.
Zurück zum Zitat Venkataraman A, Whitford TJ, Westin CF, Golland P, Kubicki M. Whole brain resting state functional connectivity abnormalities in schizophrenia. Schizophr Res. 2012;139(1–3):7–12.PubMedPubMedCentralCrossRef Venkataraman A, Whitford TJ, Westin CF, Golland P, Kubicki M. Whole brain resting state functional connectivity abnormalities in schizophrenia. Schizophr Res. 2012;139(1–3):7–12.PubMedPubMedCentralCrossRef
292.
Zurück zum Zitat Wang S, Zhang Y, Lv L, Wu R, Fan X, Zhao J, Guo W. Abnormal regional homogeneity as a potential imaging biomarker for adolescent-onset schizophrenia: a resting-state fMRI study and support vector machine analysis. Schizophr Res. 2018;192:179–84.PubMedCrossRef Wang S, Zhang Y, Lv L, Wu R, Fan X, Zhao J, Guo W. Abnormal regional homogeneity as a potential imaging biomarker for adolescent-onset schizophrenia: a resting-state fMRI study and support vector machine analysis. Schizophr Res. 2018;192:179–84.PubMedCrossRef
293.
Zurück zum Zitat Cabral C, Kambeitz-Ilankovic L, Kambeitz J, Calhoun VD, Dwyer DB, von Saldern S, Urquijo MF, Falkai P, Koutsouleris N. Classifying schizophrenia using multimodal multivariate pattern recognition analysis: evaluating the impact of individual clinical profiles on the neurodiagnostic performance. Schizophr Bull. 2016;42 Suppl 1(Suppl 1):S110-117.PubMedCrossRef Cabral C, Kambeitz-Ilankovic L, Kambeitz J, Calhoun VD, Dwyer DB, von Saldern S, Urquijo MF, Falkai P, Koutsouleris N. Classifying schizophrenia using multimodal multivariate pattern recognition analysis: evaluating the impact of individual clinical profiles on the neurodiagnostic performance. Schizophr Bull. 2016;42 Suppl 1(Suppl 1):S110-117.PubMedCrossRef
294.
Zurück zum Zitat Ebdrup BH, Axelsen MC, Bak N, Fagerlund B, Oranje B, Raghava JM, Nielsen M, Rostrup E, Hansen LK, Glenthøj BY. Accuracy of diagnostic classification algorithms using cognitive-, electrophysiological-, and neuroanatomical data in antipsychotic-naïve schizophrenia patients. Psychol Med. 2019;49(16):2754–63.PubMedCrossRef Ebdrup BH, Axelsen MC, Bak N, Fagerlund B, Oranje B, Raghava JM, Nielsen M, Rostrup E, Hansen LK, Glenthøj BY. Accuracy of diagnostic classification algorithms using cognitive-, electrophysiological-, and neuroanatomical data in antipsychotic-naïve schizophrenia patients. Psychol Med. 2019;49(16):2754–63.PubMedCrossRef
295.
Zurück zum Zitat Pinaya WH, Gadelha A, Doyle OM, Noto C, Zugman A, Cordeiro Q, Jackowski AP, Bressan RA, Sato JR. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci Rep. 2016;6:38897.PubMedPubMedCentralCrossRef Pinaya WH, Gadelha A, Doyle OM, Noto C, Zugman A, Cordeiro Q, Jackowski AP, Bressan RA, Sato JR. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci Rep. 2016;6:38897.PubMedPubMedCentralCrossRef
296.
Zurück zum Zitat Kim J, Calhoun VD, Shim E, Lee JH. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Neuroimage. 2016;124(Pt A):127–46.PubMedCrossRef Kim J, Calhoun VD, Shim E, Lee JH. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Neuroimage. 2016;124(Pt A):127–46.PubMedCrossRef
297.
Zurück zum Zitat Viviano JD, Buchanan RW, Calarco N, Gold JM, Foussias G, Bhagwat N, Stefanik L, Hawco C, DeRosse P, Argyelan M, et al. Resting-state connectivity biomarkers of cognitive performance and social function in individuals with schizophrenia spectrum disorder and healthy control subjects. Biol Psychiatry. 2018;84(9):665–74.PubMedPubMedCentralCrossRef Viviano JD, Buchanan RW, Calarco N, Gold JM, Foussias G, Bhagwat N, Stefanik L, Hawco C, DeRosse P, Argyelan M, et al. Resting-state connectivity biomarkers of cognitive performance and social function in individuals with schizophrenia spectrum disorder and healthy control subjects. Biol Psychiatry. 2018;84(9):665–74.PubMedPubMedCentralCrossRef
298.
Zurück zum Zitat Arbabshirani MR, Castro E, Calhoun VD. Accurate classification of schizophrenia patients based on novel resting-state fMRI features. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6691–4.PubMed Arbabshirani MR, Castro E, Calhoun VD. Accurate classification of schizophrenia patients based on novel resting-state fMRI features. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6691–4.PubMed
299.
Zurück zum Zitat Yan W, Calhoun V, Song M, Cui Y, Yan H, Liu S, Fan L, Zuo N, Yang Z, Xu K, et al. Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data. EBioMedicine. 2019;47:543–52.PubMedPubMedCentralCrossRef Yan W, Calhoun V, Song M, Cui Y, Yan H, Liu S, Fan L, Zuo N, Yang Z, Xu K, et al. Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data. EBioMedicine. 2019;47:543–52.PubMedPubMedCentralCrossRef
300.
Zurück zum Zitat Orban P, Dansereau C, Desbois L, Mongeau-Pérusse V, Giguère C, Nguyen H, Mendrek A, Stip E, Bellec P. Multisite generalizability of schizophrenia diagnosis classification based on functional brain connectivity. Schizophr Res. 2018;192:167–71.PubMedCrossRef Orban P, Dansereau C, Desbois L, Mongeau-Pérusse V, Giguère C, Nguyen H, Mendrek A, Stip E, Bellec P. Multisite generalizability of schizophrenia diagnosis classification based on functional brain connectivity. Schizophr Res. 2018;192:167–71.PubMedCrossRef
301.
Zurück zum Zitat Yu Y, Shen H, Zhang H, Zeng LL, Xue Z, Hu D. Functional connectivity-based signatures of schizophrenia revealed by multiclass pattern analysis of resting-state fMRI from schizophrenic patients and their healthy siblings. Biomed Eng Online. 2013;12:10.PubMedPubMedCentralCrossRef Yu Y, Shen H, Zhang H, Zeng LL, Xue Z, Hu D. Functional connectivity-based signatures of schizophrenia revealed by multiclass pattern analysis of resting-state fMRI from schizophrenic patients and their healthy siblings. Biomed Eng Online. 2013;12:10.PubMedPubMedCentralCrossRef
302.
Zurück zum Zitat Dillon K, Calhoun V, Wang YP. A robust sparse-modeling framework for estimating schizophrenia biomarkers from fMRI. J Neurosci Methods. 2017;276:46–55.PubMedCrossRef Dillon K, Calhoun V, Wang YP. A robust sparse-modeling framework for estimating schizophrenia biomarkers from fMRI. J Neurosci Methods. 2017;276:46–55.PubMedCrossRef
303.
Zurück zum Zitat Pergola G, Trizio S, Di Carlo P, Taurisano P, Mancini M, Amoroso N, Nettis MA, Andriola I, Caforio G, Popolizio T, et al. Grey matter volume patterns in thalamic nuclei are associated with familial risk for schizophrenia. Schizophr Res. 2017;180:13–20.PubMedCrossRef Pergola G, Trizio S, Di Carlo P, Taurisano P, Mancini M, Amoroso N, Nettis MA, Andriola I, Caforio G, Popolizio T, et al. Grey matter volume patterns in thalamic nuclei are associated with familial risk for schizophrenia. Schizophr Res. 2017;180:13–20.PubMedCrossRef
304.
Zurück zum Zitat Shen H, Wang L, Liu Y, Hu D. Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. Neuroimage. 2010;49(4):3110–21.PubMedCrossRef Shen H, Wang L, Liu Y, Hu D. Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. Neuroimage. 2010;49(4):3110–21.PubMedCrossRef
305.
Zurück zum Zitat Chu WL, Huang MW, Jian BL, Hsu CY, Cheng KS. A Correlative classification study of schizophrenic patients with results of clinical evaluation and structural magnetic resonance images. Behav Neurol. 2016;2016:7849526.PubMedPubMedCentralCrossRef Chu WL, Huang MW, Jian BL, Hsu CY, Cheng KS. A Correlative classification study of schizophrenic patients with results of clinical evaluation and structural magnetic resonance images. Behav Neurol. 2016;2016:7849526.PubMedPubMedCentralCrossRef
306.
Zurück zum Zitat Masychev K, Ciprian C, Ravan M, Reilly JP, MacCrimmon D. Advanced signal processing methods for characterization of schizophrenia. IEEE Trans Biomed Eng. 2021;68(4):1123–30.PubMedCrossRef Masychev K, Ciprian C, Ravan M, Reilly JP, MacCrimmon D. Advanced signal processing methods for characterization of schizophrenia. IEEE Trans Biomed Eng. 2021;68(4):1123–30.PubMedCrossRef
307.
Zurück zum Zitat Korda AI, Ruef A, Neufang S, Davatzikos C, Borgwardt S, Meisenzahl EM, Koutsouleris N. Identification of voxel-based texture abnormalities as new biomarkers for schizophrenia and major depressive patients using layer-wise relevance propagation on deep learning decisions. Psychiatry Res Neuroimaging. 2021;313:111303.PubMedPubMedCentralCrossRef Korda AI, Ruef A, Neufang S, Davatzikos C, Borgwardt S, Meisenzahl EM, Koutsouleris N. Identification of voxel-based texture abnormalities as new biomarkers for schizophrenia and major depressive patients using layer-wise relevance propagation on deep learning decisions. Psychiatry Res Neuroimaging. 2021;313:111303.PubMedPubMedCentralCrossRef
308.
Zurück zum Zitat Pina-Camacho L, Garcia-Prieto J, Parellada M, Castro-Fornieles J, Gonzalez-Pinto AM, Bombin I, Graell M, Paya B, Rapado-Castro M, Janssen J, et al. Predictors of schizophrenia spectrum disorders in early-onset first episodes of psychosis: a support vector machine model. Eur Child Adolesc Psychiatry. 2015;24(4):427–40.PubMedCrossRef Pina-Camacho L, Garcia-Prieto J, Parellada M, Castro-Fornieles J, Gonzalez-Pinto AM, Bombin I, Graell M, Paya B, Rapado-Castro M, Janssen J, et al. Predictors of schizophrenia spectrum disorders in early-onset first episodes of psychosis: a support vector machine model. Eur Child Adolesc Psychiatry. 2015;24(4):427–40.PubMedCrossRef
309.
Zurück zum Zitat Castro E, Martínez-Ramón M, Pearlson G, Sui J, Calhoun VD. Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia. Neuroimage. 2011;58(2):526–36.PubMedCrossRef Castro E, Martínez-Ramón M, Pearlson G, Sui J, Calhoun VD. Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia. Neuroimage. 2011;58(2):526–36.PubMedCrossRef
310.
Zurück zum Zitat Koch SP, Hägele C, Haynes JD, Heinz A, Schlagenhauf F, Sterzer P. Diagnostic classification of schizophrenia patients on the basis of regional reward-related FMRI signal patterns. PLoS One. 2015;10(3):e0119089.PubMedPubMedCentralCrossRef Koch SP, Hägele C, Haynes JD, Heinz A, Schlagenhauf F, Sterzer P. Diagnostic classification of schizophrenia patients on the basis of regional reward-related FMRI signal patterns. PLoS One. 2015;10(3):e0119089.PubMedPubMedCentralCrossRef
311.
Zurück zum Zitat Castro E, Gupta CN, Martínez-Ramón M, Calhoun VD, Arbabshirani MR, Turner J. Identification of patterns of gray matter abnormalities in schizophrenia using source-based morphometry and bagging. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1513–6.PubMed Castro E, Gupta CN, Martínez-Ramón M, Calhoun VD, Arbabshirani MR, Turner J. Identification of patterns of gray matter abnormalities in schizophrenia using source-based morphometry and bagging. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1513–6.PubMed
312.
Zurück zum Zitat Arribas JI, Calhoun VD, Adali T. Automatic Bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from FMRI data. IEEE Trans Biomed Eng. 2010;57(12):2850–60.PubMedPubMedCentralCrossRef Arribas JI, Calhoun VD, Adali T. Automatic Bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from FMRI data. IEEE Trans Biomed Eng. 2010;57(12):2850–60.PubMedPubMedCentralCrossRef
313.
Zurück zum Zitat Yoon JH, Nguyen DV, McVay LM, Deramo P, Minzenberg MJ, Ragland JD, Niendham T, Solomon M, Carter CS. Automated classification of fMRI during cognitive control identifies more severely disorganized subjects with schizophrenia. Schizophr Res. 2012;135(1–3):28–33.PubMedPubMedCentralCrossRef Yoon JH, Nguyen DV, McVay LM, Deramo P, Minzenberg MJ, Ragland JD, Niendham T, Solomon M, Carter CS. Automated classification of fMRI during cognitive control identifies more severely disorganized subjects with schizophrenia. Schizophr Res. 2012;135(1–3):28–33.PubMedPubMedCentralCrossRef
314.
Zurück zum Zitat Chyzhyk D, Savio A, Graña M. Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM. Neural Netw. 2015;68:23–33.PubMedCrossRef Chyzhyk D, Savio A, Graña M. Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM. Neural Netw. 2015;68:23–33.PubMedCrossRef
315.
Zurück zum Zitat Wang P, Verma R. On classifying disease-induced patterns in the brain using diffusion tensor images. Med Image Comput Comput Assist Interv. 2008;11(Pt 1):908–16.PubMed Wang P, Verma R. On classifying disease-induced patterns in the brain using diffusion tensor images. Med Image Comput Comput Assist Interv. 2008;11(Pt 1):908–16.PubMed
316.
Zurück zum Zitat Ince NF, Goksu F, Pellizzer G, Tewfik A, Stephane M. Selection of spectro-temporal patterns in multichannel MEG with support vector machines for schizophrenia classification. Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3554–7.PubMed Ince NF, Goksu F, Pellizzer G, Tewfik A, Stephane M. Selection of spectro-temporal patterns in multichannel MEG with support vector machines for schizophrenia classification. Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3554–7.PubMed
317.
Zurück zum Zitat Sveinsson JR, Benediktsson JA, Stefansson SB, Davidsson K. Parallel principal component neural networks for classification of event-related potential waveforms. Med Eng Phys. 1997;19(1):15–20.PubMedCrossRef Sveinsson JR, Benediktsson JA, Stefansson SB, Davidsson K. Parallel principal component neural networks for classification of event-related potential waveforms. Med Eng Phys. 1997;19(1):15–20.PubMedCrossRef
318.
Zurück zum Zitat Calhas D, Romero E, Henriques R. On the use of pairwise distance learning for brain signal classification with limited observations. Artif Intell Med. 2020;105:101852.PubMedCrossRef Calhas D, Romero E, Henriques R. On the use of pairwise distance learning for brain signal classification with limited observations. Artif Intell Med. 2020;105:101852.PubMedCrossRef
319.
Zurück zum Zitat Calhoun VD, Maciejewski PK, Pearlson GD. Temporal lobe and “Default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Hum Brain Mapp. 2008;29(11):1265–75.PubMedCrossRef Calhoun VD, Maciejewski PK, Pearlson GD. Temporal lobe and “Default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Hum Brain Mapp. 2008;29(11):1265–75.PubMedCrossRef
320.
Zurück zum Zitat Neuhaus AH, Popescu FC, Bates JA, Goldberg TE, Malhotra AK. Single-subject classification of schizophrenia using event-related potentials obtained during auditory and visual oddball paradigms. Eur Arch Psychiatry Clin Neurosci. 2013;263(3):241–7.PubMedCrossRef Neuhaus AH, Popescu FC, Bates JA, Goldberg TE, Malhotra AK. Single-subject classification of schizophrenia using event-related potentials obtained during auditory and visual oddball paradigms. Eur Arch Psychiatry Clin Neurosci. 2013;263(3):241–7.PubMedCrossRef
321.
Zurück zum Zitat Xu T, Stephane M, Parhi KK. Abnormal neural oscillations in schizophrenia assessed by spectral power ratio of MEG during word processing. IEEE Trans Neural Syst Rehabil Eng. 2016;24(11):1148–58.PubMedCrossRef Xu T, Stephane M, Parhi KK. Abnormal neural oscillations in schizophrenia assessed by spectral power ratio of MEG during word processing. IEEE Trans Neural Syst Rehabil Eng. 2016;24(11):1148–58.PubMedCrossRef
322.
Zurück zum Zitat Ravan M, MacCrimmon D, Hasey G, Reilly JP, Khodayari-Rostamabad A. A machine learning approach using P300 responses to investigate effect of clozapine therapy. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5911–4.PubMed Ravan M, MacCrimmon D, Hasey G, Reilly JP, Khodayari-Rostamabad A. A machine learning approach using P300 responses to investigate effect of clozapine therapy. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5911–4.PubMed
323.
Zurück zum Zitat Castellani U, Rossato E, Murino V, Bellani M, Rambaldelli G, Perlini C, Tomelleri L, Tansella M, Brambilla P. Classification of schizophrenia using feature-based morphometry. J Neural Transm (Vienna, Austria : 1996). 2012;119(3):395–404.CrossRef Castellani U, Rossato E, Murino V, Bellani M, Rambaldelli G, Perlini C, Tomelleri L, Tansella M, Brambilla P. Classification of schizophrenia using feature-based morphometry. J Neural Transm (Vienna, Austria : 1996). 2012;119(3):395–404.CrossRef
324.
Zurück zum Zitat Khare S, Bajaj V, Siuly S, Sinha PG. Classification of schizophrenia patients through empirical wavelet transformation using electroencephalogram signals. In., edn.; 2020: 1.1–1.26. Khare S, Bajaj V, Siuly S, Sinha PG. Classification of schizophrenia patients through empirical wavelet transformation using electroencephalogram signals. In., edn.; 2020: 1.1–1.26.
325.
Zurück zum Zitat Yan W, Zhao M, Fu Z, Pearlson GD, Sui J, Calhoun VD. Mapping relationships among schizophrenia, bipolar and schizoaffective disorders: a deep classification and clustering framework using fMRI time series. Schizophr Res. 2022;245:141–50.PubMedCrossRef Yan W, Zhao M, Fu Z, Pearlson GD, Sui J, Calhoun VD. Mapping relationships among schizophrenia, bipolar and schizoaffective disorders: a deep classification and clustering framework using fMRI time series. Schizophr Res. 2022;245:141–50.PubMedCrossRef
326.
Zurück zum Zitat Du Y, Hao H, Wang S, Pearlson GD, Calhoun VD. Identifying commonality and specificity across psychosis sub-groups via classification based on features from dynamic connectivity analysis. NeuroImage Clin. 2020;27:102284.PubMedPubMedCentralCrossRef Du Y, Hao H, Wang S, Pearlson GD, Calhoun VD. Identifying commonality and specificity across psychosis sub-groups via classification based on features from dynamic connectivity analysis. NeuroImage Clin. 2020;27:102284.PubMedPubMedCentralCrossRef
327.
Zurück zum Zitat Oh K, Kim W, Shen G, Piao Y, Kang NI, Oh IS, Chung YC. Classification of schizophrenia and normal controls using 3D convolutional neural network and outcome visualization. Schizophr Res. 2019;212:186–95.PubMedCrossRef Oh K, Kim W, Shen G, Piao Y, Kang NI, Oh IS, Chung YC. Classification of schizophrenia and normal controls using 3D convolutional neural network and outcome visualization. Schizophr Res. 2019;212:186–95.PubMedCrossRef
328.
Zurück zum Zitat Guo Y, Qiu J, Lu W. Support vector machine-based schizophrenia classification using morphological information from amygdaloid and hippocampal subregions. Brain Sci. 2020;10(8):562.PubMedPubMedCentralCrossRef Guo Y, Qiu J, Lu W. Support vector machine-based schizophrenia classification using morphological information from amygdaloid and hippocampal subregions. Brain Sci. 2020;10(8):562.PubMedPubMedCentralCrossRef
329.
Zurück zum Zitat Qureshi MNI, Oh J, Cho D, Jo HJ, Lee B. Multimodal discrimination of schizophrenia using hybrid weighted feature concatenation of brain functional connectivity and anatomical features with an extreme learning machine. Front Neuroinform. 2017;11:59.PubMedPubMedCentralCrossRef Qureshi MNI, Oh J, Cho D, Jo HJ, Lee B. Multimodal discrimination of schizophrenia using hybrid weighted feature concatenation of brain functional connectivity and anatomical features with an extreme learning machine. Front Neuroinform. 2017;11:59.PubMedPubMedCentralCrossRef
330.
Zurück zum Zitat Gallos IK, Gkiatis K, Matsopoulos GK, Siettos C. ISOMAP and machine learning algorithms for the construction of embedded functional connectivity networks of anatomically separated brain regions from resting state fMRI data of patients with Schizophrenia. AIMS Neurosci. 2021;8(2):295–321.PubMedPubMedCentralCrossRef Gallos IK, Gkiatis K, Matsopoulos GK, Siettos C. ISOMAP and machine learning algorithms for the construction of embedded functional connectivity networks of anatomically separated brain regions from resting state fMRI data of patients with Schizophrenia. AIMS Neurosci. 2021;8(2):295–321.PubMedPubMedCentralCrossRef
331.
Zurück zum Zitat Wang T, Bezerianos A, Cichocki A, Li J. Multikernel Capsule Network for Schizophrenia Identification. IEEE Trans Cybern. 2022;52(6):4741–50.PubMedCrossRef Wang T, Bezerianos A, Cichocki A, Li J. Multikernel Capsule Network for Schizophrenia Identification. IEEE Trans Cybern. 2022;52(6):4741–50.PubMedCrossRef
332.
Zurück zum Zitat Zang J, Huang Y, Kong L, Lei B, Ke P, Li H, Zhou J, Xiong D, Li G, Chen J, et al. Effects of brain atlases and machine learning methods on the discrimination of schizophrenia patients: a multimodal MRI study. Front Neurosci. 2021;15:697168.PubMedPubMedCentralCrossRef Zang J, Huang Y, Kong L, Lei B, Ke P, Li H, Zhou J, Xiong D, Li G, Chen J, et al. Effects of brain atlases and machine learning methods on the discrimination of schizophrenia patients: a multimodal MRI study. Front Neurosci. 2021;15:697168.PubMedPubMedCentralCrossRef
333.
Zurück zum Zitat Hu M, Qian X, Liu S, Koh AJ, Sim K, Jiang X, Guan C, Zhou JH. Structural and diffusion MRI based schizophrenia classification using 2D pretrained and 3D naive Convolutional Neural Networks. Schizophr Res. 2022;243:330–41.PubMedCrossRef Hu M, Qian X, Liu S, Koh AJ, Sim K, Jiang X, Guan C, Zhou JH. Structural and diffusion MRI based schizophrenia classification using 2D pretrained and 3D naive Convolutional Neural Networks. Schizophr Res. 2022;243:330–41.PubMedCrossRef
335.
Zurück zum Zitat Salvador R, Canales-Rodríguez E, Guerrero-Pedraza A, Sarró S, Tordesillas-Gutiérrez D, Maristany T, Crespo-Facorro B, McKenna P, Pomarol-Clotet E. Multimodal integration of brain images for MRI-based diagnosis in schizophrenia. Front Neurosci. 2019;13:1203.PubMedPubMedCentralCrossRef Salvador R, Canales-Rodríguez E, Guerrero-Pedraza A, Sarró S, Tordesillas-Gutiérrez D, Maristany T, Crespo-Facorro B, McKenna P, Pomarol-Clotet E. Multimodal integration of brain images for MRI-based diagnosis in schizophrenia. Front Neurosci. 2019;13:1203.PubMedPubMedCentralCrossRef
336.
Zurück zum Zitat Chou PH, Yao YH, Zheng RX, Liou YL, Liu TT, Lane HY, Yang AC, Wang SC. Deep neural network to differentiate brain activity between patients with first-episode schizophrenia and healthy individuals: a multi-channel near infrared spectroscopy study. Front Psych. 2021;12:655292.CrossRef Chou PH, Yao YH, Zheng RX, Liou YL, Liu TT, Lane HY, Yang AC, Wang SC. Deep neural network to differentiate brain activity between patients with first-episode schizophrenia and healthy individuals: a multi-channel near infrared spectroscopy study. Front Psych. 2021;12:655292.CrossRef
337.
Zurück zum Zitat Li Z, Li W, Wei Y, Gui G, Zhang R, Liu H, Chen Y, Jiang Y. Deep learning based automatic diagnosis of first-episode psychosis, bipolar disorder and healthy controls. Comput Med Imaging Graph. 2021;89:101882.PubMedCrossRef Li Z, Li W, Wei Y, Gui G, Zhang R, Liu H, Chen Y, Jiang Y. Deep learning based automatic diagnosis of first-episode psychosis, bipolar disorder and healthy controls. Comput Med Imaging Graph. 2021;89:101882.PubMedCrossRef
338.
Zurück zum Zitat Yang H, Liu J, Sui J, Pearlson G, Calhoun VD. A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia. Front Hum Neurosci. 2010;4:192.PubMedPubMedCentralCrossRef Yang H, Liu J, Sui J, Pearlson G, Calhoun VD. A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia. Front Hum Neurosci. 2010;4:192.PubMedPubMedCentralCrossRef
339.
Zurück zum Zitat Kalmady SV, Greiner R, Agrawal R, Shivakumar V, Narayanaswamy JC, Brown MRG, Greenshaw AJ, Dursun SM, Venkatasubramanian G. Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning. NPJ Schizophr. 2019;5(1):2.PubMedPubMedCentralCrossRef Kalmady SV, Greiner R, Agrawal R, Shivakumar V, Narayanaswamy JC, Brown MRG, Greenshaw AJ, Dursun SM, Venkatasubramanian G. Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning. NPJ Schizophr. 2019;5(1):2.PubMedPubMedCentralCrossRef
340.
Zurück zum Zitat Liu W, Zhang X, Qiao Y, Cai Y, Yin H, Zheng M, Zhu Y, Wang H. Functional connectivity combined with a machine learning algorithm can classify high-risk first-degree relatives of patients with schizophrenia and identify correlates of cognitive impairments. Front Neurosci. 2020;14:577568.PubMedPubMedCentralCrossRef Liu W, Zhang X, Qiao Y, Cai Y, Yin H, Zheng M, Zhu Y, Wang H. Functional connectivity combined with a machine learning algorithm can classify high-risk first-degree relatives of patients with schizophrenia and identify correlates of cognitive impairments. Front Neurosci. 2020;14:577568.PubMedPubMedCentralCrossRef
341.
Zurück zum Zitat Bansal R, Staib LH, Laine AF, Hao X, Xu D, Liu J, Weissman M. Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses. PLoS One. 2012;7(12):e50698.PubMedPubMedCentralCrossRef Bansal R, Staib LH, Laine AF, Hao X, Xu D, Liu J, Weissman M. Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses. PLoS One. 2012;7(12):e50698.PubMedPubMedCentralCrossRef
342.
Zurück zum Zitat Li F, Wang J, Liao Y, Yi C, Jiang Y, Si Y, Peng W, Yao D, Zhang Y, Dong W, et al. Differentiation of schizophrenia by combining the spatial EEG brain network patterns of rest and task P300. IEEE Trans Neural Syst Rehabil Eng. 2019;27(4):594–602.PubMedCrossRef Li F, Wang J, Liao Y, Yi C, Jiang Y, Si Y, Peng W, Yao D, Zhang Y, Dong W, et al. Differentiation of schizophrenia by combining the spatial EEG brain network patterns of rest and task P300. IEEE Trans Neural Syst Rehabil Eng. 2019;27(4):594–602.PubMedCrossRef
343.
Zurück zum Zitat Zhao Z, Li J, Niu Y, Wang C, Zhao J, Yuan Q, Ren Q, Xu Y, Yu Y. Classification of schizophrenia by combination of brain effective and functional connectivity. Front Neurosci. 2021;15:651439.PubMedPubMedCentralCrossRef Zhao Z, Li J, Niu Y, Wang C, Zhao J, Yuan Q, Ren Q, Xu Y, Yu Y. Classification of schizophrenia by combination of brain effective and functional connectivity. Front Neurosci. 2021;15:651439.PubMedPubMedCentralCrossRef
344.
Zurück zum Zitat Park SM, Jeong B, Oh DY, Choi CH, Jung HY, Lee JY, Lee D, Choi JS. Identification of major psychiatric disorders from resting-state electroencephalography using a machine learning approach. Front Psych. 2021;12:707581.CrossRef Park SM, Jeong B, Oh DY, Choi CH, Jung HY, Lee JY, Lee D, Choi JS. Identification of major psychiatric disorders from resting-state electroencephalography using a machine learning approach. Front Psych. 2021;12:707581.CrossRef
345.
Zurück zum Zitat Lei D, Pinaya WHL, Young J, van Amelsvoort T, Marcelis M, Donohoe G, Mothersill DO, Corvin A, Vieira S, Huang X, et al. Integrating machining learning and multimodal neuroimaging to detect schizophrenia at the level of the individual. Hum Brain Mapp. 2020;41(5):1119–35.PubMedCrossRef Lei D, Pinaya WHL, Young J, van Amelsvoort T, Marcelis M, Donohoe G, Mothersill DO, Corvin A, Vieira S, Huang X, et al. Integrating machining learning and multimodal neuroimaging to detect schizophrenia at the level of the individual. Hum Brain Mapp. 2020;41(5):1119–35.PubMedCrossRef
346.
Zurück zum Zitat Kim JY, Lee HS, Lee SH. EEG source network for the diagnosis of schizophrenia and the identification of subtypes based on symptom severity-a machine learning approach. J Clin Med. 2020;9(12):3934.PubMedPubMedCentralCrossRef Kim JY, Lee HS, Lee SH. EEG source network for the diagnosis of schizophrenia and the identification of subtypes based on symptom severity-a machine learning approach. J Clin Med. 2020;9(12):3934.PubMedPubMedCentralCrossRef
347.
Zurück zum Zitat Shi D, Li Y, Zhang H, Yao X, Wang S, Wang G, Ren K. Machine learning of schizophrenia detection with structural and functional neuroimaging. Dis Markers. 2021;2021:9963824.PubMedPubMedCentralCrossRef Shi D, Li Y, Zhang H, Yao X, Wang S, Wang G, Ren K. Machine learning of schizophrenia detection with structural and functional neuroimaging. Dis Markers. 2021;2021:9963824.PubMedPubMedCentralCrossRef
348.
Zurück zum Zitat Shalbaf A, Bagherzadeh S, Maghsoudi A. Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals. Phys Eng Sci Med. 2020;43(4):1229–39.PubMedCrossRef Shalbaf A, Bagherzadeh S, Maghsoudi A. Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals. Phys Eng Sci Med. 2020;43(4):1229–39.PubMedCrossRef
349.
Zurück zum Zitat Janousova E, Montana G, Kasparek T, Schwarz D. Supervised, multivariate, whole-brain reduction did not help to achieve high classification performance in schizophrenia research. Front Neurosci. 2016;10:392.PubMedPubMedCentralCrossRef Janousova E, Montana G, Kasparek T, Schwarz D. Supervised, multivariate, whole-brain reduction did not help to achieve high classification performance in schizophrenia research. Front Neurosci. 2016;10:392.PubMedPubMedCentralCrossRef
350.
Zurück zum Zitat Lieslehto J, Jääskeläinen E, Kiviniemi V, Haapea M, Jones PB, Murray GK, Veijola J, Dannlowski U, Grotegerd D, Meinert S, et al. The progression of disorder-specific brain pattern expression in schizophrenia over 9 years. NPJ Schizophr. 2021;7(1):32.PubMedPubMedCentralCrossRef Lieslehto J, Jääskeläinen E, Kiviniemi V, Haapea M, Jones PB, Murray GK, Veijola J, Dannlowski U, Grotegerd D, Meinert S, et al. The progression of disorder-specific brain pattern expression in schizophrenia over 9 years. NPJ Schizophr. 2021;7(1):32.PubMedPubMedCentralCrossRef
351.
Zurück zum Zitat Ke PF, Xiong DS, Li JH, Pan ZL, Zhou J, Li SJ, Song J, Chen XY, Li GX, Chen J, et al. An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data. Sci Rep. 2021;11(1):14636.PubMedPubMedCentralCrossRef Ke PF, Xiong DS, Li JH, Pan ZL, Zhou J, Li SJ, Song J, Chen XY, Li GX, Chen J, et al. An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data. Sci Rep. 2021;11(1):14636.PubMedPubMedCentralCrossRef
352.
Zurück zum Zitat Gheiratmand M, Rish I, Cecchi GA, Brown MRG, Greiner R, Polosecki PI, Bashivan P, Greenshaw AJ, Ramasubbu R, Dursun SM. Learning stable and predictive network-based patterns of schizophrenia and its clinical symptoms. NPJ Schizophr. 2017;3:22.PubMedPubMedCentralCrossRef Gheiratmand M, Rish I, Cecchi GA, Brown MRG, Greiner R, Polosecki PI, Bashivan P, Greenshaw AJ, Ramasubbu R, Dursun SM. Learning stable and predictive network-based patterns of schizophrenia and its clinical symptoms. NPJ Schizophr. 2017;3:22.PubMedPubMedCentralCrossRef
353.
Zurück zum Zitat Chen J, Li X, Calhoun VD, Turner JA, van Erp TGM, Wang L, Andreassen OA, Agartz I, Westlye LT, Jönsson E, et al. Sparse deep neural networks on imaging genetics for schizophrenia case-control classification. Hum Brain Mapp. 2021;42(8):2556–68.PubMedPubMedCentralCrossRef Chen J, Li X, Calhoun VD, Turner JA, van Erp TGM, Wang L, Andreassen OA, Agartz I, Westlye LT, Jönsson E, et al. Sparse deep neural networks on imaging genetics for schizophrenia case-control classification. Hum Brain Mapp. 2021;42(8):2556–68.PubMedPubMedCentralCrossRef
354.
Zurück zum Zitat Oh J, Oh BL, Lee KU, Chae JH, Yun K. Identifying schizophrenia using structural MRI with a deep learning algorithm. Front Psych. 2020;11:16.CrossRef Oh J, Oh BL, Lee KU, Chae JH, Yun K. Identifying schizophrenia using structural MRI with a deep learning algorithm. Front Psych. 2020;11:16.CrossRef
355.
Zurück zum Zitat Singh K, Singh S, Malhotra J. Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients. Proc Inst Mech Eng H. 2021;235(2):167–84.PubMedCrossRef Singh K, Singh S, Malhotra J. Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients. Proc Inst Mech Eng H. 2021;235(2):167–84.PubMedCrossRef
356.
Zurück zum Zitat Sun J, Cao R, Zhou M, Hussain W, Wang B, Xue J, Xiang J. A hybrid deep neural network for classification of schizophrenia using EEG Data. Sci Rep. 2021;11(1):4706.PubMedPubMedCentralCrossRef Sun J, Cao R, Zhou M, Hussain W, Wang B, Xue J, Xiang J. A hybrid deep neural network for classification of schizophrenia using EEG Data. Sci Rep. 2021;11(1):4706.PubMedPubMedCentralCrossRef
357.
Zurück zum Zitat Li YJ, Fan FY. Classification of Schizophrenia and Depression by EEG with ANNs. Conf Proc IEEE Eng Med Biol Soc. 2005;2005:2679–82.PubMed Li YJ, Fan FY. Classification of Schizophrenia and Depression by EEG with ANNs. Conf Proc IEEE Eng Med Biol Soc. 2005;2005:2679–82.PubMed
358.
Zurück zum Zitat Johannesen JK, Bi J, Jiang R, Kenney JG, Chen CA. Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults. Neuropsychiatr Electrophysiol. 2016;2:3.PubMedPubMedCentralCrossRef Johannesen JK, Bi J, Jiang R, Kenney JG, Chen CA. Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults. Neuropsychiatr Electrophysiol. 2016;2:3.PubMedPubMedCentralCrossRef
359.
Zurück zum Zitat Jin K, Xu D, Shen Z, Feng G, Zhao Z, Lu J, Lyu H, Pan F, Shang D, Chen J, et al. Distinguishing hypochondriasis and schizophrenia using regional homogeneity: a resting-state fMRI study and support vector machine analysis. Acta Neuropsychiatr. 2021;33(4):182–90.PubMedCrossRef Jin K, Xu D, Shen Z, Feng G, Zhao Z, Lu J, Lyu H, Pan F, Shang D, Chen J, et al. Distinguishing hypochondriasis and schizophrenia using regional homogeneity: a resting-state fMRI study and support vector machine analysis. Acta Neuropsychiatr. 2021;33(4):182–90.PubMedCrossRef
360.
Zurück zum Zitat Siuly S, Khare SK, Bajaj V, Wang H, Zhang Y. A Computerized method for automatic detection of schizophrenia using EEG signals. IEEE Trans Neural Syst Rehabil Eng. 2020;28(11):2390–400.PubMedCrossRef Siuly S, Khare SK, Bajaj V, Wang H, Zhang Y. A Computerized method for automatic detection of schizophrenia using EEG signals. IEEE Trans Neural Syst Rehabil Eng. 2020;28(11):2390–400.PubMedCrossRef
361.
Zurück zum Zitat Li H, Cui L, Cao L, Zhang Y, Liu Y, Deng W, Zhou W. Identification of bipolar disorder using a combination of multimodality magnetic resonance imaging and machine learning techniques. BMC Psychiatry. 2020;20(1):488.PubMedPubMedCentralCrossRef Li H, Cui L, Cao L, Zhang Y, Liu Y, Deng W, Zhou W. Identification of bipolar disorder using a combination of multimodality magnetic resonance imaging and machine learning techniques. BMC Psychiatry. 2020;20(1):488.PubMedPubMedCentralCrossRef
362.
Zurück zum Zitat Linke JO, Adleman NE, Sarlls J, Ross A, Perlstein S, Frank HR, Towbin KE, Pine DS, Leibenluft E, Brotman MA. White matter microstructure in pediatric bipolar disorder and disruptive mood dysregulation disorder. J Am Acad Child Adolesc Psychiatry. 2020;59(10):1135–45.PubMedCrossRef Linke JO, Adleman NE, Sarlls J, Ross A, Perlstein S, Frank HR, Towbin KE, Pine DS, Leibenluft E, Brotman MA. White matter microstructure in pediatric bipolar disorder and disruptive mood dysregulation disorder. J Am Acad Child Adolesc Psychiatry. 2020;59(10):1135–45.PubMedCrossRef
363.
Zurück zum Zitat Squarcina L, Dagnew TM, Rivolta MW, Bellani M, Sassi R, Brambilla P. Automated cortical thickness and skewness feature selection in bipolar disorder using a semi-supervised learning method. J Affect Disord. 2019;256:416–23.PubMedCrossRef Squarcina L, Dagnew TM, Rivolta MW, Bellani M, Sassi R, Brambilla P. Automated cortical thickness and skewness feature selection in bipolar disorder using a semi-supervised learning method. J Affect Disord. 2019;256:416–23.PubMedCrossRef
364.
Zurück zum Zitat Matsuo K, Harada K, Fujita Y, Okamoto Y, Ota M, Narita H, Mwangi B, Gutierrez CA, Okada G, Takamura M, et al. Distinctive neuroanatomical substrates for depression in bipolar disorder versus major depressive disorder. Cereb Cortex. 2019;29(1):202–14.PubMedCrossRef Matsuo K, Harada K, Fujita Y, Okamoto Y, Ota M, Narita H, Mwangi B, Gutierrez CA, Okada G, Takamura M, et al. Distinctive neuroanatomical substrates for depression in bipolar disorder versus major depressive disorder. Cereb Cortex. 2019;29(1):202–14.PubMedCrossRef
365.
Zurück zum Zitat Frangou S, Dima D, Jogia J. Towards person-centered neuroimaging markers for resilience and vulnerability in Bipolar Disorder. Neuroimage. 2017;145(Pt B):230–7.PubMedCrossRef Frangou S, Dima D, Jogia J. Towards person-centered neuroimaging markers for resilience and vulnerability in Bipolar Disorder. Neuroimage. 2017;145(Pt B):230–7.PubMedCrossRef
366.
Zurück zum Zitat Doan NT, Kaufmann T, Bettella F, Jørgensen KN, Brandt CL, Moberget T, Alnæs D, Douaud G, Duff E, Djurovic S, et al. Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders. NeuroImage Clin. 2017;15:719–31.PubMedPubMedCentralCrossRef Doan NT, Kaufmann T, Bettella F, Jørgensen KN, Brandt CL, Moberget T, Alnæs D, Douaud G, Duff E, Djurovic S, et al. Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders. NeuroImage Clin. 2017;15:719–31.PubMedPubMedCentralCrossRef
367.
Zurück zum Zitat Calhoun VD, Maciejewski PK, Pearlson GD, Kiehl KA. Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Hum Brain Mapp. 2008;29(11):1265–75.PubMedCrossRef Calhoun VD, Maciejewski PK, Pearlson GD, Kiehl KA. Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Hum Brain Mapp. 2008;29(11):1265–75.PubMedCrossRef
368.
Zurück zum Zitat Reavis EA, Lee J, Wynn JK, Engel SA, Cohen MS, Nuechterlein KH, Glahn DC, Altshuler LL, Green MF. Assessing neural tuning for object perception in schizophrenia and bipolar disorder with multivariate pattern analysis of fMRI data. NeuroImage Clinical. 2017;16:491–7.PubMedPubMedCentralCrossRef Reavis EA, Lee J, Wynn JK, Engel SA, Cohen MS, Nuechterlein KH, Glahn DC, Altshuler LL, Green MF. Assessing neural tuning for object perception in schizophrenia and bipolar disorder with multivariate pattern analysis of fMRI data. NeuroImage Clinical. 2017;16:491–7.PubMedPubMedCentralCrossRef
369.
Zurück zum Zitat Mwangi B, Wu MJ, Bauer IE, Modi H, Zeni CP, Zunta-Soares GB, Hasan KM, Soares JC. Predictive classification of pediatric bipolar disorder using atlas-based diffusion weighted imaging and support vector machines. Psychiatry Res. 2015;234(2):265–71.PubMedPubMedCentralCrossRef Mwangi B, Wu MJ, Bauer IE, Modi H, Zeni CP, Zunta-Soares GB, Hasan KM, Soares JC. Predictive classification of pediatric bipolar disorder using atlas-based diffusion weighted imaging and support vector machines. Psychiatry Res. 2015;234(2):265–71.PubMedPubMedCentralCrossRef
370.
Zurück zum Zitat Mwangi B, Spiker D, Zunta-Soares GB, Soares JC. Prediction of pediatric bipolar disorder using neuroanatomical signatures of the amygdala. Bipolar Disord. 2014;16(7):713–21.PubMedPubMedCentralCrossRef Mwangi B, Spiker D, Zunta-Soares GB, Soares JC. Prediction of pediatric bipolar disorder using neuroanatomical signatures of the amygdala. Bipolar Disord. 2014;16(7):713–21.PubMedPubMedCentralCrossRef
371.
Zurück zum Zitat Costafreda SG, Fu CH, Picchioni M, Toulopoulou T, McDonald C, Kravariti E, Walshe M, Prata D, Murray RM, McGuire PK. Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder. BMC Psychiatry. 2011;11:18.PubMedPubMedCentralCrossRef Costafreda SG, Fu CH, Picchioni M, Toulopoulou T, McDonald C, Kravariti E, Walshe M, Prata D, Murray RM, McGuire PK. Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder. BMC Psychiatry. 2011;11:18.PubMedPubMedCentralCrossRef
372.
Zurück zum Zitat Rashid B, Arbabshirani MR, Damaraju E, Cetin MS, Miller R, Pearlson GD, Calhoun VD. Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity. Neuroimage. 2016;134:645–57.PubMedCrossRef Rashid B, Arbabshirani MR, Damaraju E, Cetin MS, Miller R, Pearlson GD, Calhoun VD. Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity. Neuroimage. 2016;134:645–57.PubMedCrossRef
373.
Zurück zum Zitat Kaufmann T, Alnæs D, Brandt CL, Doan NT, Kauppi K, Bettella F, Lagerberg TV, Berg AO, Djurovic S, Agartz I, et al. Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets. Neuroimage. 2017;147:243–52.PubMedCrossRef Kaufmann T, Alnæs D, Brandt CL, Doan NT, Kauppi K, Bettella F, Lagerberg TV, Berg AO, Djurovic S, Agartz I, et al. Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets. Neuroimage. 2017;147:243–52.PubMedCrossRef
374.
Zurück zum Zitat Mourão-Miranda J, Almeida JR, Hassel S, de Oliveira L, Versace A, Marquand AF, Sato JR, Brammer M, Phillips ML. Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression. Bipolar Disord. 2012;14(4):451–60.PubMedPubMedCentralCrossRef Mourão-Miranda J, Almeida JR, Hassel S, de Oliveira L, Versace A, Marquand AF, Sato JR, Brammer M, Phillips ML. Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression. Bipolar Disord. 2012;14(4):451–60.PubMedPubMedCentralCrossRef
375.
Zurück zum Zitat Wu MJ, Mwangi B, Bauer IE, Passos IC, Sanches M, Zunta-Soares GB, Meyer TD, Hasan KM, Soares JC. Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning. Neuroimage. 2017;145(Pt B):254–64.PubMedCrossRef Wu MJ, Mwangi B, Bauer IE, Passos IC, Sanches M, Zunta-Soares GB, Meyer TD, Hasan KM, Soares JC. Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning. Neuroimage. 2017;145(Pt B):254–64.PubMedCrossRef
376.
Zurück zum Zitat Bürger C, Redlich R, Grotegerd D, Meinert S, Dohm K, Schneider I, Zaremba D, Förster K, Alferink J, Bölte J, et al. Differential abnormal pattern of anterior cingulate gyrus activation in unipolar and bipolar depression: an fMRI and pattern classification approach. Neuropsychopharmacology. 2017;42(7):1399–408.PubMedPubMedCentralCrossRef Bürger C, Redlich R, Grotegerd D, Meinert S, Dohm K, Schneider I, Zaremba D, Förster K, Alferink J, Bölte J, et al. Differential abnormal pattern of anterior cingulate gyrus activation in unipolar and bipolar depression: an fMRI and pattern classification approach. Neuropsychopharmacology. 2017;42(7):1399–408.PubMedPubMedCentralCrossRef
377.
Zurück zum Zitat Anticevic A, Cole MW, Repovs G, Murray JD, Brumbaugh MS, Winkler AM, Savic A, Krystal JH, Pearlson GD, Glahn DC. Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cereb Cortex. 2014;24(12):3116–30.PubMedCrossRef Anticevic A, Cole MW, Repovs G, Murray JD, Brumbaugh MS, Winkler AM, Savic A, Krystal JH, Pearlson GD, Glahn DC. Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cereb Cortex. 2014;24(12):3116–30.PubMedCrossRef
378.
Zurück zum Zitat Besga A, Termenon M, Graña M, Echeveste J, Pérez JM, Gonzalez-Pinto A. Discovering Alzheimer’s disease and bipolar disorder white matter effects building computer aided diagnostic systems on brain diffusion tensor imaging features. Neurosci Lett. 2012;520(1):71–6.PubMedCrossRef Besga A, Termenon M, Graña M, Echeveste J, Pérez JM, Gonzalez-Pinto A. Discovering Alzheimer’s disease and bipolar disorder white matter effects building computer aided diagnostic systems on brain diffusion tensor imaging features. Neurosci Lett. 2012;520(1):71–6.PubMedCrossRef
379.
Zurück zum Zitat Chen Y, Storrs J, Tan L, Mazlack LJ, Lee JH, Lu LJ. Detecting brain structural changes as biomarker from magnetic resonance images using a local feature based SVM approach. J Neurosci Methods. 2014;221:22–31.PubMedCrossRef Chen Y, Storrs J, Tan L, Mazlack LJ, Lee JH, Lu LJ. Detecting brain structural changes as biomarker from magnetic resonance images using a local feature based SVM approach. J Neurosci Methods. 2014;221:22–31.PubMedCrossRef
380.
Zurück zum Zitat Xi C, Lai J, Du Y, Ng CH, Jiang J, Wu L, Zhang P, Xu Y, Hu S. Abnormal functional connectivity within the reward network: a potential neuroimaging endophenotype of bipolar disorder. J Affect Disord. 2021;280(Pt B):49–56.PubMedCrossRef Xi C, Lai J, Du Y, Ng CH, Jiang J, Wu L, Zhang P, Xu Y, Hu S. Abnormal functional connectivity within the reward network: a potential neuroimaging endophenotype of bipolar disorder. J Affect Disord. 2021;280(Pt B):49–56.PubMedCrossRef
381.
Zurück zum Zitat Teng S, Lu CF, Wang PS, Hung CI, Li CT, Tu PC, Su TP, Wu YT. Classification of bipolar disorder using basal-ganglia-related functional connectivity in the resting state. Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:1057–60.PubMed Teng S, Lu CF, Wang PS, Hung CI, Li CT, Tu PC, Su TP, Wu YT. Classification of bipolar disorder using basal-ganglia-related functional connectivity in the resting state. Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:1057–60.PubMed
382.
Zurück zum Zitat Bansal R, Staib LH, Laine AF, Hao X, Xu D, Liu J, Weissman M, Peterson BS. Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses. PLoS One. 2012;7(12):e50698.PubMedPubMedCentralCrossRef Bansal R, Staib LH, Laine AF, Hao X, Xu D, Liu J, Weissman M, Peterson BS. Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses. PLoS One. 2012;7(12):e50698.PubMedPubMedCentralCrossRef
383.
Zurück zum Zitat Nazhvani AD, Boostani R, Afrasiabi S, Sadatnezhad K. Classification of ADHD and BMD patients using visual evoked potential. Clin Neurol Neurosurg. 2013;115(11):2329–35.PubMedCrossRef Nazhvani AD, Boostani R, Afrasiabi S, Sadatnezhad K. Classification of ADHD and BMD patients using visual evoked potential. Clin Neurol Neurosurg. 2013;115(11):2329–35.PubMedCrossRef
384.
Zurück zum Zitat Chen YL, Tu PC, Huang TH, Bai YM, Su TP, Chen MH, Wu YT. Using minimal-redundant and maximal-relevant whole-brain functional connectivity to classify bipolar disorder. Front Neurosci. 2020;14:563368.PubMedPubMedCentralCrossRef Chen YL, Tu PC, Huang TH, Bai YM, Su TP, Chen MH, Wu YT. Using minimal-redundant and maximal-relevant whole-brain functional connectivity to classify bipolar disorder. Front Neurosci. 2020;14:563368.PubMedPubMedCentralCrossRef
385.
Zurück zum Zitat Mwangi B, Wu MJ, Cao B, Passos IC, Lavagnino L, Keser Z, Zunta-Soares GB, Hasan KM, Kapczinski F, Soares JC. Individualized prediction and clinical staging of bipolar disorders using neuroanatomical biomarkers. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1(2):186–94.PubMedPubMedCentral Mwangi B, Wu MJ, Cao B, Passos IC, Lavagnino L, Keser Z, Zunta-Soares GB, Hasan KM, Kapczinski F, Soares JC. Individualized prediction and clinical staging of bipolar disorders using neuroanatomical biomarkers. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1(2):186–94.PubMedPubMedCentral
386.
Zurück zum Zitat Yamashita A, Sakai Y, Yamada T, Yahata N, Kunimatsu A, Okada N, Itahashi T, Hashimoto R, Mizuta H, Ichikawa N, et al. Generalizable brain network markers of major depressive disorder across multiple imaging sites. PLoS Biol. 2020;18(12):e3000966.PubMedPubMedCentralCrossRef Yamashita A, Sakai Y, Yamada T, Yahata N, Kunimatsu A, Okada N, Itahashi T, Hashimoto R, Mizuta H, Ichikawa N, et al. Generalizable brain network markers of major depressive disorder across multiple imaging sites. PLoS Biol. 2020;18(12):e3000966.PubMedPubMedCentralCrossRef
387.
Zurück zum Zitat Maglanoc LA, Kaufmann T, Jonassen R, Hilland E, Beck D, Landrø NI, Westlye LT. Multimodal fusion of structural and functional brain imaging in depression using linked independent component analysis. Hum Brain Mapp. 2020;41(1):241–55.PubMedCrossRef Maglanoc LA, Kaufmann T, Jonassen R, Hilland E, Beck D, Landrø NI, Westlye LT. Multimodal fusion of structural and functional brain imaging in depression using linked independent component analysis. Hum Brain Mapp. 2020;41(1):241–55.PubMedCrossRef
388.
Zurück zum Zitat Shim M, Jin MJ, Im CH, Lee SH. Machine-learning-based classification between post-traumatic stress disorder and major depressive disorder using P300 features. NeuroImage Clinical. 2019;24:102001.PubMedPubMedCentralCrossRef Shim M, Jin MJ, Im CH, Lee SH. Machine-learning-based classification between post-traumatic stress disorder and major depressive disorder using P300 features. NeuroImage Clinical. 2019;24:102001.PubMedPubMedCentralCrossRef
389.
Zurück zum Zitat Chun JY, Sendi MSE, Sui J, Zhi D, Calhoun VD. Visualizing functional network connectivity difference between healthy control and major depressive disorder using an explainable machine-learning method. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:1424–7.PubMed Chun JY, Sendi MSE, Sui J, Zhi D, Calhoun VD. Visualizing functional network connectivity difference between healthy control and major depressive disorder using an explainable machine-learning method. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:1424–7.PubMed
390.
Zurück zum Zitat Uyulan C, Ergüzel TT, Unubol H, Cebi M, Sayar GH, Nezhad Asad M, Tarhan N. Major depressive disorder classification based on different convolutional neural network models: deep learning approach. Clin EEG Neurosci. 2021;52(1):38–51.PubMedCrossRef Uyulan C, Ergüzel TT, Unubol H, Cebi M, Sayar GH, Nezhad Asad M, Tarhan N. Major depressive disorder classification based on different convolutional neural network models: deep learning approach. Clin EEG Neurosci. 2021;52(1):38–51.PubMedCrossRef
391.
Zurück zum Zitat Shi Y, Zhang L, Wang Z, Lu X, Wang T, Zhou D, Zhang Z. Multivariate machine learning analyses in identification of major depressive disorder using resting-state functional connectivity: a multicentral study. ACS Chem Neurosci. 2021;12(15):2878–86.PubMedCrossRef Shi Y, Zhang L, Wang Z, Lu X, Wang T, Zhou D, Zhang Z. Multivariate machine learning analyses in identification of major depressive disorder using resting-state functional connectivity: a multicentral study. ACS Chem Neurosci. 2021;12(15):2878–86.PubMedCrossRef
392.
Zurück zum Zitat Mahato S, Goyal N, Ram D, Paul S. Detection of depression and scaling of severity using six channel EEG data. J Med Syst. 2020;44(7):118.PubMedCrossRef Mahato S, Goyal N, Ram D, Paul S. Detection of depression and scaling of severity using six channel EEG data. J Med Syst. 2020;44(7):118.PubMedCrossRef
393.
Zurück zum Zitat Guo H, Cao X, Liu Z, Li H, Chen J, Zhang K. Machine learning classifier using abnormal brain network topological metrics in major depressive disorder. NeuroReport. 2012;23(17):1006–11.PubMedCrossRef Guo H, Cao X, Liu Z, Li H, Chen J, Zhang K. Machine learning classifier using abnormal brain network topological metrics in major depressive disorder. NeuroReport. 2012;23(17):1006–11.PubMedCrossRef
394.
Zurück zum Zitat Guo H, Li Y, Mensah GK, Xu Y, Chen J, Xiang J, Chen D. Resting-State Functional Network Scale Effects and Statistical Significance-Based Feature Selection in Machine Learning Classification. Comput Math Methods Med. 2019;2019:9108108.PubMedPubMedCentralCrossRef Guo H, Li Y, Mensah GK, Xu Y, Chen J, Xiang J, Chen D. Resting-State Functional Network Scale Effects and Statistical Significance-Based Feature Selection in Machine Learning Classification. Comput Math Methods Med. 2019;2019:9108108.PubMedPubMedCentralCrossRef
395.
Zurück zum Zitat Patel MJ, Andreescu C, Price JC, Edelman KL, Reynolds CF 3rd, Aizenstein HJ. Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction. Int J Geriatr Psychiatry. 2015;30(10):1056–67.PubMedPubMedCentralCrossRef Patel MJ, Andreescu C, Price JC, Edelman KL, Reynolds CF 3rd, Aizenstein HJ. Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction. Int J Geriatr Psychiatry. 2015;30(10):1056–67.PubMedPubMedCentralCrossRef
396.
Zurück zum Zitat Yang J, Zhang M, Ahn H, Zhang Q, Jin TB, Li I, Nemesure M, Joshi N, Jiang H, Miller JM, et al. Development and evaluation of a multimodal marker of major depressive disorder. Hum Brain Mapp. 2018;39(11):4420–39.PubMedPubMedCentralCrossRef Yang J, Zhang M, Ahn H, Zhang Q, Jin TB, Li I, Nemesure M, Joshi N, Jiang H, Miller JM, et al. Development and evaluation of a multimodal marker of major depressive disorder. Hum Brain Mapp. 2018;39(11):4420–39.PubMedPubMedCentralCrossRef
397.
Zurück zum Zitat Ahmadlou M, Adeli H, Adeli A. Fractality analysis of frontal brain in major depressive disorder. Int J Psychophysiol. 2012;85(2):206–11.PubMedCrossRef Ahmadlou M, Adeli H, Adeli A. Fractality analysis of frontal brain in major depressive disorder. Int J Psychophysiol. 2012;85(2):206–11.PubMedCrossRef
398.
Zurück zum Zitat Sacchet MD, Livermore EE, Iglesias JE, Glover GH, Gotlib IH. Subcortical volumes differentiate major depressive disorder, bipolar disorder, and remitted major depressive disorder. J Psychiatr Res. 2015;68:91–8.PubMedCrossRef Sacchet MD, Livermore EE, Iglesias JE, Glover GH, Gotlib IH. Subcortical volumes differentiate major depressive disorder, bipolar disorder, and remitted major depressive disorder. J Psychiatr Res. 2015;68:91–8.PubMedCrossRef
399.
Zurück zum Zitat Ramasubbu R, Brown EC, Marcil LD, Talai AS, Forkert ND. Automatic classification of major depression disorder using arterial spin labeling MRI perfusion measurements. Psychiatry Clin Neurosci. 2019;73(8):486–93.PubMed Ramasubbu R, Brown EC, Marcil LD, Talai AS, Forkert ND. Automatic classification of major depression disorder using arterial spin labeling MRI perfusion measurements. Psychiatry Clin Neurosci. 2019;73(8):486–93.PubMed
400.
Zurück zum Zitat Li H, Song S, Wang D, Tan Z, Lian Z, Wang Y, Zhou X, Pan C. Individualized diagnosis of major depressive disorder via multivariate pattern analysis of thalamic sMRI features. BMC Psychiatry. 2021;21(1):415.PubMedPubMedCentralCrossRef Li H, Song S, Wang D, Tan Z, Lian Z, Wang Y, Zhou X, Pan C. Individualized diagnosis of major depressive disorder via multivariate pattern analysis of thalamic sMRI features. BMC Psychiatry. 2021;21(1):415.PubMedPubMedCentralCrossRef
401.
Zurück zum Zitat Zhong X, Shi H, Ming Q, Dong D, Zhang X, Zeng LL, Yao S. Whole-brain resting-state functional connectivity identified major depressive disorder: a multivariate pattern analysis in two independent samples. J Affect Disord. 2017;218:346–52.PubMedCrossRef Zhong X, Shi H, Ming Q, Dong D, Zhang X, Zeng LL, Yao S. Whole-brain resting-state functional connectivity identified major depressive disorder: a multivariate pattern analysis in two independent samples. J Affect Disord. 2017;218:346–52.PubMedCrossRef
402.
Zurück zum Zitat Liu W, Zhang C, Wang X, Xu J, Chang Y, Ristaniemi T, Cong F. Functional connectivity of major depression disorder using ongoing EEG during music perception. Clin Neurophysiol. 2020;131(10):2413–22.PubMedCrossRef Liu W, Zhang C, Wang X, Xu J, Chang Y, Ristaniemi T, Cong F. Functional connectivity of major depression disorder using ongoing EEG during music perception. Clin Neurophysiol. 2020;131(10):2413–22.PubMedCrossRef
403.
Zurück zum Zitat Liao SC, Wu CT, Huang HC, Cheng WT, Liu YH. Major depression detection from EEG signals using kernel eigen-filter-bank common spatial patterns. Sensors (Basel). 2017;17(6):1385.PubMedCrossRef Liao SC, Wu CT, Huang HC, Cheng WT, Liu YH. Major depression detection from EEG signals using kernel eigen-filter-bank common spatial patterns. Sensors (Basel). 2017;17(6):1385.PubMedCrossRef
404.
Zurück zum Zitat Rosa MJ, Portugal L, Hahn T, Fallgatter AJ, Garrido MI, Shawe-Taylor J, Mourao-Miranda J. Sparse network-based models for patient classification using fMRI. Neuroimage. 2015;105:493–506.PubMedCrossRef Rosa MJ, Portugal L, Hahn T, Fallgatter AJ, Garrido MI, Shawe-Taylor J, Mourao-Miranda J. Sparse network-based models for patient classification using fMRI. Neuroimage. 2015;105:493–506.PubMedCrossRef
405.
Zurück zum Zitat Schnyer DM, Clasen PC, Gonzalez C, Beevers CG. Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder. Psychiatry Res Neuroimaging. 2017;264:1–9.PubMedCrossRef Schnyer DM, Clasen PC, Gonzalez C, Beevers CG. Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder. Psychiatry Res Neuroimaging. 2017;264:1–9.PubMedCrossRef
406.
Zurück zum Zitat Johnston BA, Steele JD, Tolomeo S, Christmas D, Matthews K. Structural MRI-Based Predictions in Patients with Treatment-Refractory Depression (TRD). PLoS One. 2015;10(7):e0132958.PubMedPubMedCentralCrossRef Johnston BA, Steele JD, Tolomeo S, Christmas D, Matthews K. Structural MRI-Based Predictions in Patients with Treatment-Refractory Depression (TRD). PLoS One. 2015;10(7):e0132958.PubMedPubMedCentralCrossRef
407.
Zurück zum Zitat Liu F, Guo W, Yu D, Gao Q, Gao K, Xue Z, Du H, Zhang J, Tan C, Liu Z, et al. Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PLoS One. 2012;7(7):e40968.PubMedPubMedCentralCrossRef Liu F, Guo W, Yu D, Gao Q, Gao K, Xue Z, Du H, Zhang J, Tan C, Liu Z, et al. Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PLoS One. 2012;7(7):e40968.PubMedPubMedCentralCrossRef
408.
Zurück zum Zitat Wei M, Qin J, Yan R, Li H, Yao Z, Lu Q. Identifying major depressive disorder using Hurst exponent of resting-state brain networks. Psychiatry Res. 2013;214(3):306–12.PubMedCrossRef Wei M, Qin J, Yan R, Li H, Yao Z, Lu Q. Identifying major depressive disorder using Hurst exponent of resting-state brain networks. Psychiatry Res. 2013;214(3):306–12.PubMedCrossRef
409.
Zurück zum Zitat Chu SH, Lenglet C, Schreiner MW, Klimes-Dougan B, Cullen K, Parhi KK. Anatomical biomarkers for adolescent major depressive disorder from diffusion weighted imaging using SVM classifier. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:2740–3.PubMed Chu SH, Lenglet C, Schreiner MW, Klimes-Dougan B, Cullen K, Parhi KK. Anatomical biomarkers for adolescent major depressive disorder from diffusion weighted imaging using SVM classifier. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:2740–3.PubMed
410.
Zurück zum Zitat Guo H, Qin M, Chen J, Xu Y, Xiang J. Machine-learning classifier for patients with major depressive disorder: multifeature approach based on a high-order minimum spanning tree functional brain network. Comput Math Methods Med. 2017;2017:4820935.PubMedPubMedCentralCrossRef Guo H, Qin M, Chen J, Xu Y, Xiang J. Machine-learning classifier for patients with major depressive disorder: multifeature approach based on a high-order minimum spanning tree functional brain network. Comput Math Methods Med. 2017;2017:4820935.PubMedPubMedCentralCrossRef
411.
Zurück zum Zitat Zeng LL, Shen H, Liu L, Hu D. Unsupervised classification of major depression using functional connectivity MRI. Hum Brain Mapp. 2014;35(4):1630–41.PubMedCrossRef Zeng LL, Shen H, Liu L, Hu D. Unsupervised classification of major depression using functional connectivity MRI. Hum Brain Mapp. 2014;35(4):1630–41.PubMedCrossRef
412.
Zurück zum Zitat Fang P, Zeng LL, Shen H, Wang L, Li B, Liu L, Hu D. Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging. PLoS One. 2012;7(9):e45972.PubMedPubMedCentralCrossRef Fang P, Zeng LL, Shen H, Wang L, Li B, Liu L, Hu D. Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging. PLoS One. 2012;7(9):e45972.PubMedPubMedCentralCrossRef
413.
Zurück zum Zitat Tan W, Liu Z, Xi C, Deng M, Long Y, Palaniyappan L, Yang J. Decreased integration of the frontoparietal network during a working memory task in major depressive disorder. Aust N Z J Psychiatry. 2021;55(6):577–87.PubMedCrossRef Tan W, Liu Z, Xi C, Deng M, Long Y, Palaniyappan L, Yang J. Decreased integration of the frontoparietal network during a working memory task in major depressive disorder. Aust N Z J Psychiatry. 2021;55(6):577–87.PubMedCrossRef
414.
Zurück zum Zitat Cao L, Guo S, Xue Z, Hu Y, Liu H, Mwansisya TE, Pu W, Yang B, Liu C, Feng J, et al. Aberrant functional connectivity for diagnosis of major depressive disorder: a discriminant analysis. Psychiatry Clin Neurosci. 2014;68(2):110–9.PubMedCrossRef Cao L, Guo S, Xue Z, Hu Y, Liu H, Mwansisya TE, Pu W, Yang B, Liu C, Feng J, et al. Aberrant functional connectivity for diagnosis of major depressive disorder: a discriminant analysis. Psychiatry Clin Neurosci. 2014;68(2):110–9.PubMedCrossRef
415.
Zurück zum Zitat Zeng LL, Shen H, Liu L, Wang L, Li B, Fang P, Zhou Z, Li Y, Hu D. Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain. 2012;135(Pt 5):1498–507.PubMedCrossRef Zeng LL, Shen H, Liu L, Wang L, Li B, Fang P, Zhou Z, Li Y, Hu D. Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain. 2012;135(Pt 5):1498–507.PubMedCrossRef
416.
Zurück zum Zitat Ramasubbu R, Brown MR, Cortese F, Gaxiola I, Goodyear B, Greenshaw AJ, Dursun SM, Greiner R. Accuracy of automated classification of major depressive disorder as a function of symptom severity. NeuroImage Clin. 2016;12:320–31.PubMedPubMedCentralCrossRef Ramasubbu R, Brown MR, Cortese F, Gaxiola I, Goodyear B, Greenshaw AJ, Dursun SM, Greiner R. Accuracy of automated classification of major depressive disorder as a function of symptom severity. NeuroImage Clin. 2016;12:320–31.PubMedPubMedCentralCrossRef
417.
Zurück zum Zitat Qiu L, Huang X, Zhang J, Wang Y, Kuang W, Li J, Wang X, Wang L, Yang X, Lui S, et al. Characterization of major depressive disorder using a multiparametric classification approach based on high resolution structural images. J Psychiatry Neurosci. 2014;39(2):78–86.PubMedPubMedCentral Qiu L, Huang X, Zhang J, Wang Y, Kuang W, Li J, Wang X, Wang L, Yang X, Lui S, et al. Characterization of major depressive disorder using a multiparametric classification approach based on high resolution structural images. J Psychiatry Neurosci. 2014;39(2):78–86.PubMedPubMedCentral
418.
Zurück zum Zitat Mwangi B, Ebmeier KP, Matthews K, Steele JD. Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder. Brain. 2012;135(Pt 5):1508–21.PubMedCrossRef Mwangi B, Ebmeier KP, Matthews K, Steele JD. Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder. Brain. 2012;135(Pt 5):1508–21.PubMedCrossRef
419.
Zurück zum Zitat Zhao J, Huang J, Zhi D, Yan W, Ma X, Yang X, Li X, Ke Q, Jiang T, Calhoun VD, et al. Functional network connectivity (FNC)-based generative adversarial network (GAN) and its applications in classification of mental disorders. J Neurosci Methods. 2020;341:108756.PubMedPubMedCentralCrossRef Zhao J, Huang J, Zhi D, Yan W, Ma X, Yang X, Li X, Ke Q, Jiang T, Calhoun VD, et al. Functional network connectivity (FNC)-based generative adversarial network (GAN) and its applications in classification of mental disorders. J Neurosci Methods. 2020;341:108756.PubMedPubMedCentralCrossRef
420.
Zurück zum Zitat Bi K, Hua L, Wei M, Qin J, Lu Q, Yao Z. Dynamic functional-structural coupling within acute functional state change phases: Evidence from a depression recognition study. J Affect Disord. 2016;191:145–55.PubMedCrossRef Bi K, Hua L, Wei M, Qin J, Lu Q, Yao Z. Dynamic functional-structural coupling within acute functional state change phases: Evidence from a depression recognition study. J Affect Disord. 2016;191:145–55.PubMedCrossRef
421.
Zurück zum Zitat Zhu X, Yuan F, Zhou G, Nie J, Wang D, Hu P, Ouyang L, Kong L, Liao W. Cross-network interaction for diagnosis of major depressive disorder based on resting state functional connectivity. Brain Imaging Behav. 2021;15(3):1279–89.PubMedCrossRef Zhu X, Yuan F, Zhou G, Nie J, Wang D, Hu P, Ouyang L, Kong L, Liao W. Cross-network interaction for diagnosis of major depressive disorder based on resting state functional connectivity. Brain Imaging Behav. 2021;15(3):1279–89.PubMedCrossRef
422.
Zurück zum Zitat Sundermann B, Feder S, Wersching H, Teuber A, Schwindt W, Kugel H, Heindel W, Arolt V, Berger K, Pfleiderer B. Diagnostic classification of unipolar depression based on resting-state functional connectivity MRI: effects of generalization to a diverse sample. J Neural Transm (Vienna, Austria : 1996). 2017;124(5):589–605.CrossRef Sundermann B, Feder S, Wersching H, Teuber A, Schwindt W, Kugel H, Heindel W, Arolt V, Berger K, Pfleiderer B. Diagnostic classification of unipolar depression based on resting-state functional connectivity MRI: effects of generalization to a diverse sample. J Neural Transm (Vienna, Austria : 1996). 2017;124(5):589–605.CrossRef
423.
Zurück zum Zitat Qin J, Wei M, Liu H, Chen J, Yan R, Hua L, Zhao K, Yao Z, Lu Q. Abnormal hubs of white matter networks in the frontal-parieto circuit contribute to depression discrimination via pattern classification. Magn Reson Imaging. 2014;32(10):1314–20.PubMedCrossRef Qin J, Wei M, Liu H, Chen J, Yan R, Hua L, Zhao K, Yao Z, Lu Q. Abnormal hubs of white matter networks in the frontal-parieto circuit contribute to depression discrimination via pattern classification. Magn Reson Imaging. 2014;32(10):1314–20.PubMedCrossRef
424.
Zurück zum Zitat Guo M, Wang T, Zhang Z, Chen N, Li Y, Wang Y, Yao Z, Hu B. Diagnosis of major depressive disorder using whole-brain effective connectivity networks derived from resting-state functional MRI. J Neural Eng. 2020;17(5):056038.PubMedCrossRef Guo M, Wang T, Zhang Z, Chen N, Li Y, Wang Y, Yao Z, Hu B. Diagnosis of major depressive disorder using whole-brain effective connectivity networks derived from resting-state functional MRI. J Neural Eng. 2020;17(5):056038.PubMedCrossRef
426.
Zurück zum Zitat Zhang B, Yan G, Yang Z, Su Y, Wang J, Lei T. Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification. IEEE Trans Neural Syst Rehabil Eng. 2021;29:215–29.PubMedCrossRef Zhang B, Yan G, Yang Z, Su Y, Wang J, Lei T. Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification. IEEE Trans Neural Syst Rehabil Eng. 2021;29:215–29.PubMedCrossRef
427.
Zurück zum Zitat Zhu Y, Jayagopal JK, Mehta RK, Erraguntla M, Nuamah J, McDonald AD, Taylor H, Chang SH. Classifying major depressive disorder using fNIRS during motor rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2020;28(4):961–9.PubMedCrossRef Zhu Y, Jayagopal JK, Mehta RK, Erraguntla M, Nuamah J, McDonald AD, Taylor H, Chang SH. Classifying major depressive disorder using fNIRS during motor rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2020;28(4):961–9.PubMedCrossRef
428.
Zurück zum Zitat Geng X, Xu J, Liu B, Shi Y. Multivariate classification of major depressive disorder using the effective connectivity and functional connectivity. Front Neurosci. 2018;12:38.PubMedPubMedCentralCrossRef Geng X, Xu J, Liu B, Shi Y. Multivariate classification of major depressive disorder using the effective connectivity and functional connectivity. Front Neurosci. 2018;12:38.PubMedPubMedCentralCrossRef
429.
Zurück zum Zitat Sacchet MD, Prasad G, Foland-Ross LC, Thompson PM, Gotlib IH. Elucidating brain connectivity networks in major depressive disorder using classification-based scoring. Proc IEEE Int Symp Biomed Imaging. 2014;2014:246–9.PubMedPubMedCentral Sacchet MD, Prasad G, Foland-Ross LC, Thompson PM, Gotlib IH. Elucidating brain connectivity networks in major depressive disorder using classification-based scoring. Proc IEEE Int Symp Biomed Imaging. 2014;2014:246–9.PubMedPubMedCentral
430.
Zurück zum Zitat Yan B, Xu X, Liu M, Zheng K, Liu J, Li J, Wei L, Zhang B, Lu H, Li B. Quantitative identification of major depression based on resting-state dynamic functional connectivity: a machine learning approach. Front Neurosci. 2020;14:191.PubMedPubMedCentralCrossRef Yan B, Xu X, Liu M, Zheng K, Liu J, Li J, Wei L, Zhang B, Lu H, Li B. Quantitative identification of major depression based on resting-state dynamic functional connectivity: a machine learning approach. Front Neurosci. 2020;14:191.PubMedPubMedCentralCrossRef
431.
Zurück zum Zitat Nakano T, Takamura M, Ichikawa N, Okada G, Okamoto Y, Yamada M, Suhara T, Yamawaki S, Yoshimoto J. Enhancing multi-center generalization of machine learning-based depression diagnosis from resting-state fMRI. Front Psych. 2020;11:400.CrossRef Nakano T, Takamura M, Ichikawa N, Okada G, Okamoto Y, Yamada M, Suhara T, Yamawaki S, Yoshimoto J. Enhancing multi-center generalization of machine learning-based depression diagnosis from resting-state fMRI. Front Psych. 2020;11:400.CrossRef
432.
Zurück zum Zitat Sacchet MD, Prasad G, Foland-Ross LC, Thompson PM, Gotlib IH. Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory. Front Psych. 2015;6:21. Sacchet MD, Prasad G, Foland-Ross LC, Thompson PM, Gotlib IH. Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory. Front Psych. 2015;6:21.
433.
Zurück zum Zitat Shi Y, Zhang L, He C, Yin Y, Song R, Chen S, Fan D, Zhou D, Yuan Y, Xie C, et al. Sleep disturbance-related neuroimaging features as potential biomarkers for the diagnosis of major depressive disorder: a multicenter study based on machine learning. J Affect Disord. 2021;295:148–55.PubMedCrossRef Shi Y, Zhang L, He C, Yin Y, Song R, Chen S, Fan D, Zhou D, Yuan Y, Xie C, et al. Sleep disturbance-related neuroimaging features as potential biomarkers for the diagnosis of major depressive disorder: a multicenter study based on machine learning. J Affect Disord. 2021;295:148–55.PubMedCrossRef
434.
Zurück zum Zitat Duan L, Duan H, Qiao Y, Sha S, Qi S, Zhang X, Huang J, Huang X, Wang C. Machine learning approaches for MDD detection and emotion decoding using EEG signals. Front Hum Neurosci. 2020;14:284.PubMedPubMedCentralCrossRef Duan L, Duan H, Qiao Y, Sha S, Qi S, Zhang X, Huang J, Huang X, Wang C. Machine learning approaches for MDD detection and emotion decoding using EEG signals. Front Hum Neurosci. 2020;14:284.PubMedPubMedCentralCrossRef
435.
Zurück zum Zitat Saeedi A, Saeedi M, Maghsoudi A, Shalbaf A. Major depressive disorder diagnosis based on effective connectivity in EEG signals: a convolutional neural network and long short-term memory approach. Cogn Neurodyn. 2021;15(2):239–52.PubMedCrossRef Saeedi A, Saeedi M, Maghsoudi A, Shalbaf A. Major depressive disorder diagnosis based on effective connectivity in EEG signals: a convolutional neural network and long short-term memory approach. Cogn Neurodyn. 2021;15(2):239–52.PubMedCrossRef
436.
Zurück zum Zitat Bi K, Chattun MR, Liu X, Wang Q, Tian S, Zhang S, Lu Q, Yao Z. Abnormal early dynamic individual patterns of functional networks in low gamma band for depression recognition. J Affect Disord. 2018;238:366–74.PubMedCrossRef Bi K, Chattun MR, Liu X, Wang Q, Tian S, Zhang S, Lu Q, Yao Z. Abnormal early dynamic individual patterns of functional networks in low gamma band for depression recognition. J Affect Disord. 2018;238:366–74.PubMedCrossRef
437.
Zurück zum Zitat Qin J, Wei M, Liu H, Chen J, Yan R, Yao Z, Lu Q. Altered anatomical patterns of depression in relation to antidepressant treatment: evidence from a pattern recognition analysis on the topological organization of brain networks. J Affect Disord. 2015;180:129–37.PubMedCrossRef Qin J, Wei M, Liu H, Chen J, Yan R, Yao Z, Lu Q. Altered anatomical patterns of depression in relation to antidepressant treatment: evidence from a pattern recognition analysis on the topological organization of brain networks. J Affect Disord. 2015;180:129–37.PubMedCrossRef
438.
Zurück zum Zitat Knott V, Mahoney C, Kennedy S, Evans K. EEG power, frequency, asymmetry and coherence in male depression. Psychiatry Res. 2001;106(2):123–40.PubMedCrossRef Knott V, Mahoney C, Kennedy S, Evans K. EEG power, frequency, asymmetry and coherence in male depression. Psychiatry Res. 2001;106(2):123–40.PubMedCrossRef
439.
Zurück zum Zitat Marquand AF, Mourão-Miranda J, Brammer MJ, Cleare AJ, Fu CH. Neuroanatomy of verbal working memory as a diagnostic biomarker for depression. NeuroReport. 2008;19(15):1507–11.PubMedCrossRef Marquand AF, Mourão-Miranda J, Brammer MJ, Cleare AJ, Fu CH. Neuroanatomy of verbal working memory as a diagnostic biomarker for depression. NeuroReport. 2008;19(15):1507–11.PubMedCrossRef
440.
Zurück zum Zitat Lu Q, Bi K, Liu C, Luo G, Tang H, Yao Z. Predicting depression based on dynamic regional connectivity: a windowed Granger causality analysis of MEG recordings. Brain Res. 2013;1535:52–60.PubMedCrossRef Lu Q, Bi K, Liu C, Luo G, Tang H, Yao Z. Predicting depression based on dynamic regional connectivity: a windowed Granger causality analysis of MEG recordings. Brain Res. 2013;1535:52–60.PubMedCrossRef
441.
Zurück zum Zitat Craddock RC, Holtzheimer PE 3rd, Hu XP, Mayberg HS. Disease state prediction from resting state functional connectivity. Magn Reson Med. 2009;62(6):1619–28.PubMedPubMedCentralCrossRef Craddock RC, Holtzheimer PE 3rd, Hu XP, Mayberg HS. Disease state prediction from resting state functional connectivity. Magn Reson Med. 2009;62(6):1619–28.PubMedPubMedCentralCrossRef
442.
Zurück zum Zitat Kang M, Kwon H, Park JH, Kang S, Lee Y. Deep-asymmetry: asymmetry matrix image for deep learning method in pre-screening depression. Sensors (Basel). 2020;20(22):6526.PubMedCrossRef Kang M, Kwon H, Park JH, Kang S, Lee Y. Deep-asymmetry: asymmetry matrix image for deep learning method in pre-screening depression. Sensors (Basel). 2020;20(22):6526.PubMedCrossRef
443.
Zurück zum Zitat Lois G, Wessa M. Differential association of default mode network connectivity and rumination in healthy individuals and remitted MDD patients. Soc Cogn Affect Neurosci. 2016;11(11):1792–801.PubMedPubMedCentralCrossRef Lois G, Wessa M. Differential association of default mode network connectivity and rumination in healthy individuals and remitted MDD patients. Soc Cogn Affect Neurosci. 2016;11(11):1792–801.PubMedPubMedCentralCrossRef
444.
Zurück zum Zitat Hasanzadeh F, Mohebbi M, Rostami R. Graph theory analysis of directed functional brain networks in major depressive disorder based on EEG signal. J Neural Eng. 2020;17(2):026010.PubMedCrossRef Hasanzadeh F, Mohebbi M, Rostami R. Graph theory analysis of directed functional brain networks in major depressive disorder based on EEG signal. J Neural Eng. 2020;17(2):026010.PubMedCrossRef
445.
Zurück zum Zitat Mumtaz W, Ali SSA, Yasin MAM, Malik AS. A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD). Med Biol Eng Comput. 2018;56(2):233–46.PubMedCrossRef Mumtaz W, Ali SSA, Yasin MAM, Malik AS. A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD). Med Biol Eng Comput. 2018;56(2):233–46.PubMedCrossRef
446.
Zurück zum Zitat Frick A, Gingnell M, Marquand AF, Howner K, Fischer H, Kristiansson M, Williams SC, Fredrikson M, Furmark T. Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure. Behav Brain Res. 2014;259:330–5.PubMedPubMedCentralCrossRef Frick A, Gingnell M, Marquand AF, Howner K, Fischer H, Kristiansson M, Williams SC, Fredrikson M, Furmark T. Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure. Behav Brain Res. 2014;259:330–5.PubMedPubMedCentralCrossRef
447.
Zurück zum Zitat Zhang W, Yang X, Lui S, Meng Y, Yao L, Xiao Y, Deng W, Zhang W, Gong Q. Diagnostic prediction for social anxiety disorder via multivariate pattern analysis of the regional homogeneity. Biomed Res Int. 2015;2015:763965.PubMedPubMedCentral Zhang W, Yang X, Lui S, Meng Y, Yao L, Xiao Y, Deng W, Zhang W, Gong Q. Diagnostic prediction for social anxiety disorder via multivariate pattern analysis of the regional homogeneity. Biomed Res Int. 2015;2015:763965.PubMedPubMedCentral
448.
Zurück zum Zitat Liu F, Guo W, Fouche JP, Wang Y, Wang W, Ding J, Zeng L, Qiu C, Gong Q, Zhang W, et al. Multivariate classification of social anxiety disorder using whole brain functional connectivity. Brain Struct Funct. 2015;220(1):101–15.PubMedCrossRef Liu F, Guo W, Fouche JP, Wang Y, Wang W, Ding J, Zeng L, Qiu C, Gong Q, Zhang W, et al. Multivariate classification of social anxiety disorder using whole brain functional connectivity. Brain Struct Funct. 2015;220(1):101–15.PubMedCrossRef
449.
Zurück zum Zitat Xing M, Fitzgerald JM, Klumpp H. Classification of social anxiety disorder with support vector machine analysis using neural correlates of social signals of threat. Front Psych. 2020;11:144.CrossRef Xing M, Fitzgerald JM, Klumpp H. Classification of social anxiety disorder with support vector machine analysis using neural correlates of social signals of threat. Front Psych. 2020;11:144.CrossRef
450.
Zurück zum Zitat Gavrilescu M, Vizireanu N. Predicting depression, anxiety, and stress levels from videos using the facial action coding system. Sensors (Basel). 2019;19(17):3693.PubMedCrossRef Gavrilescu M, Vizireanu N. Predicting depression, anxiety, and stress levels from videos using the facial action coding system. Sensors (Basel). 2019;19(17):3693.PubMedCrossRef
451.
Zurück zum Zitat Xie Y, Yang B, Lu X, Zheng M, Fan C, Bi X, Zhou S, Li Y. Anxiety and depression diagnosis method based on brain networks and convolutional neural networks. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:1503–6.PubMed Xie Y, Yang B, Lu X, Zheng M, Fan C, Bi X, Zhou S, Li Y. Anxiety and depression diagnosis method based on brain networks and convolutional neural networks. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:1503–6.PubMed
452.
Zurück zum Zitat Qiao J, Li A, Cao C, Wang Z, Sun J, Xu G. Aberrant functional network connectivity as a biomarker of generalized anxiety disorder. Front Hum Neurosci. 2017;11:626.PubMedPubMedCentralCrossRef Qiao J, Li A, Cao C, Wang Z, Sun J, Xu G. Aberrant functional network connectivity as a biomarker of generalized anxiety disorder. Front Hum Neurosci. 2017;11:626.PubMedPubMedCentralCrossRef
453.
Zurück zum Zitat Xing X, Jin L, Li Q, Yang Q, Han H, Xu C, Wei Z, Zhan Y, Zhou XS, Xue Z, et al. Modeling essential connections in obsessive-compulsive disorder patients using functional MRI. Brain Behav. 2020;10(2):e01499.PubMedPubMedCentralCrossRef Xing X, Jin L, Li Q, Yang Q, Han H, Xu C, Wei Z, Zhan Y, Zhou XS, Xue Z, et al. Modeling essential connections in obsessive-compulsive disorder patients using functional MRI. Brain Behav. 2020;10(2):e01499.PubMedPubMedCentralCrossRef
454.
Zurück zum Zitat Yang X, Hu X, Tang W, Li B, Yang Y, Gong Q, Huang X. Multivariate classification of drug-naive obsessive-compulsive disorder patients and healthy controls by applying an SVM to resting-state functional MRI data. BMC Psychiatry. 2019;19(1):210.PubMedPubMedCentralCrossRef Yang X, Hu X, Tang W, Li B, Yang Y, Gong Q, Huang X. Multivariate classification of drug-naive obsessive-compulsive disorder patients and healthy controls by applying an SVM to resting-state functional MRI data. BMC Psychiatry. 2019;19(1):210.PubMedPubMedCentralCrossRef
455.
Zurück zum Zitat Bruin WB, Taylor L, Thomas RM, Shock JP, Zhutovsky P, Abe Y, Alonso P, Ameis SH, Anticevic A, Arnold PD, et al. Structural neuroimaging biomarkers for obsessive-compulsive disorder in the ENIGMA-OCD consortium: medication matters. Transl Psychiatry. 2020;10(1):342.PubMedPubMedCentralCrossRef Bruin WB, Taylor L, Thomas RM, Shock JP, Zhutovsky P, Abe Y, Alonso P, Ameis SH, Anticevic A, Arnold PD, et al. Structural neuroimaging biomarkers for obsessive-compulsive disorder in the ENIGMA-OCD consortium: medication matters. Transl Psychiatry. 2020;10(1):342.PubMedPubMedCentralCrossRef
456.
Zurück zum Zitat Takagi Y, Sakai Y, Lisi G, Yahata N, Abe Y, Nishida S, Nakamae T, Morimoto J, Kawato M, Narumoto J, et al. A neural marker of obsessive-compulsive disorder from whole-brain functional connectivity. Sci Rep. 2017;7(1):7538.PubMedPubMedCentralCrossRef Takagi Y, Sakai Y, Lisi G, Yahata N, Abe Y, Nishida S, Nakamae T, Morimoto J, Kawato M, Narumoto J, et al. A neural marker of obsessive-compulsive disorder from whole-brain functional connectivity. Sci Rep. 2017;7(1):7538.PubMedPubMedCentralCrossRef
457.
Zurück zum Zitat Zhou C, Cheng Y, Ping L, Xu J, Shen Z, Jiang L, Shi L, Yang S, Lu Y, Xu X. Support vector machine classification of obsessive-compulsive disorder based on whole-brain volumetry and diffusion tensor imaging. Front Psych. 2018;9:524.CrossRef Zhou C, Cheng Y, Ping L, Xu J, Shen Z, Jiang L, Shi L, Yang S, Lu Y, Xu X. Support vector machine classification of obsessive-compulsive disorder based on whole-brain volumetry and diffusion tensor imaging. Front Psych. 2018;9:524.CrossRef
458.
Zurück zum Zitat Hu X, Liu Q, Li B, Tang W, Sun H, Li F, Yang Y, Gong Q, Huang X. Multivariate pattern analysis of obsessive-compulsive disorder using structural neuroanatomy. Eur Neuropsychopharmacol. 2016;26(2):246–54.PubMedCrossRef Hu X, Liu Q, Li B, Tang W, Sun H, Li F, Yang Y, Gong Q, Huang X. Multivariate pattern analysis of obsessive-compulsive disorder using structural neuroanatomy. Eur Neuropsychopharmacol. 2016;26(2):246–54.PubMedCrossRef
459.
Zurück zum Zitat Bu X, Hu X, Zhang L, Li B, Zhou M, Lu L, Hu X, Li H, Yang Y, Tang W, et al. Investigating the predictive value of different resting-state functional MRI parameters in obsessive-compulsive disorder. Transl Psychiatry. 2019;9(1):17.PubMedPubMedCentralCrossRef Bu X, Hu X, Zhang L, Li B, Zhou M, Lu L, Hu X, Li H, Yang Y, Tang W, et al. Investigating the predictive value of different resting-state functional MRI parameters in obsessive-compulsive disorder. Transl Psychiatry. 2019;9(1):17.PubMedPubMedCentralCrossRef
460.
Zurück zum Zitat Sen B, Bernstein GA, Tingting X, Mueller BA, Schreiner MW, Cullen KR, Parhi KK. Classification of obsessive-compulsive disorder from resting-state fMRI. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:3606–9.PubMed Sen B, Bernstein GA, Tingting X, Mueller BA, Schreiner MW, Cullen KR, Parhi KK. Classification of obsessive-compulsive disorder from resting-state fMRI. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:3606–9.PubMed
461.
Zurück zum Zitat Trambaiolli LR, Biazoli CE Jr, Balardin JB, Hoexter MQ, Sato JR. The relevance of feature selection methods to the classification of obsessive-compulsive disorder based on volumetric measures. J Affect Disord. 2017;222:49–56.PubMedCrossRef Trambaiolli LR, Biazoli CE Jr, Balardin JB, Hoexter MQ, Sato JR. The relevance of feature selection methods to the classification of obsessive-compulsive disorder based on volumetric measures. J Affect Disord. 2017;222:49–56.PubMedCrossRef
462.
Zurück zum Zitat Li F, Huang X, Tang W, Yang Y, Li B, Kemp GJ, Mechelli A, Gong Q. Multivariate pattern analysis of DTI reveals differential white matter in individuals with obsessive-compulsive disorder. Hum Brain Mapp. 2014;35(6):2643–51.PubMedCrossRef Li F, Huang X, Tang W, Yang Y, Li B, Kemp GJ, Mechelli A, Gong Q. Multivariate pattern analysis of DTI reveals differential white matter in individuals with obsessive-compulsive disorder. Hum Brain Mapp. 2014;35(6):2643–51.PubMedCrossRef
463.
Zurück zum Zitat Shenas SK, Halici U, Çiçek M. A comparative analysis of functional connectivity data in resting and task-related conditions of the brain for disease signature of OCD. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:978–81.PubMed Shenas SK, Halici U, Çiçek M. A comparative analysis of functional connectivity data in resting and task-related conditions of the brain for disease signature of OCD. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:978–81.PubMed
464.
Zurück zum Zitat Liu J, Bu X, Hu X, Li H, Cao L, Gao Y, Liang K, Zhang L, Lu L, Hu X, et al. Temporal variability of regional intrinsic neural activity in drug-naïve patients with obsessive-compulsive disorder. Hum Brain Mapp. 2021;42(12):3792–803.PubMedPubMedCentralCrossRef Liu J, Bu X, Hu X, Li H, Cao L, Gao Y, Liang K, Zhang L, Lu L, Hu X, et al. Temporal variability of regional intrinsic neural activity in drug-naïve patients with obsessive-compulsive disorder. Hum Brain Mapp. 2021;42(12):3792–803.PubMedPubMedCentralCrossRef
465.
Zurück zum Zitat Liu W, Hua M, Qin J, Tang Q, Han Y, Tian H, Lian D, Zhang Z, Wang W, Wang C, et al. Disrupted pathways from frontal-parietal cortex to basal ganglia and cerebellum in patients with unmedicated obsessive compulsive disorder as observed by whole-brain resting-state effective connectivity analysis - a small sample pilot study. Brain Imaging Behav. 2021;15(3):1344–54.PubMedCrossRef Liu W, Hua M, Qin J, Tang Q, Han Y, Tian H, Lian D, Zhang Z, Wang W, Wang C, et al. Disrupted pathways from frontal-parietal cortex to basal ganglia and cerebellum in patients with unmedicated obsessive compulsive disorder as observed by whole-brain resting-state effective connectivity analysis - a small sample pilot study. Brain Imaging Behav. 2021;15(3):1344–54.PubMedCrossRef
466.
Zurück zum Zitat Chen Y, Ou Y, Lv D, Ma J, Zhan C, Yang R, Jia C, Shang T, Sun L, Wang Y, et al. Decreased nucleus accumbens connectivity at rest in medication-free patients with obsessive-compulsive disorder. Neural Plast. 2021;2021:9966378.PubMedPubMedCentralCrossRef Chen Y, Ou Y, Lv D, Ma J, Zhan C, Yang R, Jia C, Shang T, Sun L, Wang Y, et al. Decreased nucleus accumbens connectivity at rest in medication-free patients with obsessive-compulsive disorder. Neural Plast. 2021;2021:9966378.PubMedPubMedCentralCrossRef
467.
Zurück zum Zitat Kalatzis I, Piliouras N, Glotsos D, Ventouras E, Papageorgiou C, Rabavilas A, Soldatos C, Cavouras D. Identifying differences in the P600 component of ERP-signals between OCD patients and controls employing a PNN-based majority vote classification scheme. Conf Proc IEEE Eng Med Biol Soc. 2005;2005:3994–7.PubMed Kalatzis I, Piliouras N, Glotsos D, Ventouras E, Papageorgiou C, Rabavilas A, Soldatos C, Cavouras D. Identifying differences in the P600 component of ERP-signals between OCD patients and controls employing a PNN-based majority vote classification scheme. Conf Proc IEEE Eng Med Biol Soc. 2005;2005:3994–7.PubMed
468.
Zurück zum Zitat Aydin S, Arica N, Ergul E, Tan O. Classification of obsessive compulsive disorder by EEG complexity and hemispheric dependency measurements. Int J Neural Syst. 2015;25(3):1550010.PubMedCrossRef Aydin S, Arica N, Ergul E, Tan O. Classification of obsessive compulsive disorder by EEG complexity and hemispheric dependency measurements. Int J Neural Syst. 2015;25(3):1550010.PubMedCrossRef
469.
Zurück zum Zitat Zilcha-Mano S, Zhu X, Suarez-Jimenez B, Pickover A, Tal S, Such S, Marohasy C, Chrisanthopoulos M, Salzman C, Lazarov A, et al. Diagnostic and predictive neuroimaging biomarkers for posttraumatic stress disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5(7):688–96.PubMedPubMedCentral Zilcha-Mano S, Zhu X, Suarez-Jimenez B, Pickover A, Tal S, Such S, Marohasy C, Chrisanthopoulos M, Salzman C, Lazarov A, et al. Diagnostic and predictive neuroimaging biomarkers for posttraumatic stress disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5(7):688–96.PubMedPubMedCentral
470.
Zurück zum Zitat Nicholson AA, Densmore M, McKinnon MC, Neufeld RWJ, Frewen PA, Théberge J, Jetly R, Richardson JD, Lanius RA. Machine learning multivariate pattern analysis predicts classification of posttraumatic stress disorder and its dissociative subtype: a multimodal neuroimaging approach. Psychol Med. 2019;49(12):2049–59.PubMedCrossRef Nicholson AA, Densmore M, McKinnon MC, Neufeld RWJ, Frewen PA, Théberge J, Jetly R, Richardson JD, Lanius RA. Machine learning multivariate pattern analysis predicts classification of posttraumatic stress disorder and its dissociative subtype: a multimodal neuroimaging approach. Psychol Med. 2019;49(12):2049–59.PubMedCrossRef
471.
Zurück zum Zitat Zhu H, Yuan M, Qiu C, Ren Z, Li Y, Wang J, Huang X, Lui S, Gong Q, Zhang W, et al. Multivariate classification of earthquake survivors with post-traumatic stress disorder based on large-scale brain networks. Acta Psychiatr Scand. 2020;141(3):285–98.PubMedCrossRef Zhu H, Yuan M, Qiu C, Ren Z, Li Y, Wang J, Huang X, Lui S, Gong Q, Zhang W, et al. Multivariate classification of earthquake survivors with post-traumatic stress disorder based on large-scale brain networks. Acta Psychiatr Scand. 2020;141(3):285–98.PubMedCrossRef
472.
Zurück zum Zitat Shim M, Jin MJ, Im CH, Lee SH. Machine-learning-based classification between post-traumatic stress disorder and major depressive disorder using P300 features. Neuroimage Clin. 2019;24:102001.PubMedPubMedCentralCrossRef Shim M, Jin MJ, Im CH, Lee SH. Machine-learning-based classification between post-traumatic stress disorder and major depressive disorder using P300 features. Neuroimage Clin. 2019;24:102001.PubMedPubMedCentralCrossRef
473.
Zurück zum Zitat Nicholson AA, Harricharan S, Densmore M, Neufeld RWJ, Ros T, McKinnon MC, Frewen PA, Théberge J, Jetly R, Pedlar D, et al. Classifying heterogeneous presentations of PTSD via the default mode, central executive, and salience networks with machine learning. NeuroImage Clin. 2020;27:102262.PubMedPubMedCentralCrossRef Nicholson AA, Harricharan S, Densmore M, Neufeld RWJ, Ros T, McKinnon MC, Frewen PA, Théberge J, Jetly R, Pedlar D, et al. Classifying heterogeneous presentations of PTSD via the default mode, central executive, and salience networks with machine learning. NeuroImage Clin. 2020;27:102262.PubMedPubMedCentralCrossRef
474.
Zurück zum Zitat Harricharan S, Nicholson AA, Thome J, Densmore M, McKinnon MC, Théberge J, Frewen PA, Neufeld RWJ, Lanius RA. PTSD and its dissociative subtype through the lens of the insula: Anterior and posterior insula resting-state functional connectivity and its predictive validity using machine learning. Psychophysiology. 2020;57(1):e13472.PubMedCrossRef Harricharan S, Nicholson AA, Thome J, Densmore M, McKinnon MC, Théberge J, Frewen PA, Neufeld RWJ, Lanius RA. PTSD and its dissociative subtype through the lens of the insula: Anterior and posterior insula resting-state functional connectivity and its predictive validity using machine learning. Psychophysiology. 2020;57(1):e13472.PubMedCrossRef
475.
Zurück zum Zitat Park SM, Jeong B, Oh DY, Choi CH, Jung HY. Identification of major psychiatric disorders from resting-state electroencephalography using a machine learning approach. Front Psych. 2021;12:707581.CrossRef Park SM, Jeong B, Oh DY, Choi CH, Jung HY. Identification of major psychiatric disorders from resting-state electroencephalography using a machine learning approach. Front Psych. 2021;12:707581.CrossRef
476.
Zurück zum Zitat Eken A, Çolak B, Bal NB, Kuşman A, Kızılpınar S, Akaslan DS, Baskak B. Hyperparameter-tuned prediction of somatic symptom disorder using functional near-infrared spectroscopy-based dynamic functional connectivity. J Neural Eng. 2019;17(1):016012.PubMedCrossRef Eken A, Çolak B, Bal NB, Kuşman A, Kızılpınar S, Akaslan DS, Baskak B. Hyperparameter-tuned prediction of somatic symptom disorder using functional near-infrared spectroscopy-based dynamic functional connectivity. J Neural Eng. 2019;17(1):016012.PubMedCrossRef
477.
Zurück zum Zitat Lavagnino L, Amianto F, Mwangi B, D’Agata F, Spalatro A, Zunta-Soares GB, Abbate Daga G, Mortara P, Fassino S, Soares JC. Identifying neuroanatomical signatures of anorexia nervosa: a multivariate machine learning approach. Psychol Med. 2015;45(13):2805–12.PubMedCrossRef Lavagnino L, Amianto F, Mwangi B, D’Agata F, Spalatro A, Zunta-Soares GB, Abbate Daga G, Mortara P, Fassino S, Soares JC. Identifying neuroanatomical signatures of anorexia nervosa: a multivariate machine learning approach. Psychol Med. 2015;45(13):2805–12.PubMedCrossRef
478.
Zurück zum Zitat Lavagnino L, Mwangi B, Cao B, Shott ME, Soares JC, Frank GKW. Cortical thickness patterns as state biomarker of anorexia nervosa. Int J Eat Disord. 2018;51(3):241–9.PubMedPubMedCentralCrossRef Lavagnino L, Mwangi B, Cao B, Shott ME, Soares JC, Frank GKW. Cortical thickness patterns as state biomarker of anorexia nervosa. Int J Eat Disord. 2018;51(3):241–9.PubMedPubMedCentralCrossRef
479.
Zurück zum Zitat Geisler D, Borchardt V, Boehm I, King JA, Tam FI, Marxen M, Biemann R, Roessner V, Walter M, Ehrlich S. Altered global brain network topology as a trait marker in patients with anorexia nervosa. Psychol Med. 2020;50(1):107–15.PubMedCrossRef Geisler D, Borchardt V, Boehm I, King JA, Tam FI, Marxen M, Biemann R, Roessner V, Walter M, Ehrlich S. Altered global brain network topology as a trait marker in patients with anorexia nervosa. Psychol Med. 2020;50(1):107–15.PubMedCrossRef
480.
Zurück zum Zitat Weygandt M, Schaefer A, Schienle A, Haynes JD. Diagnosing different binge-eating disorders based on reward-related brain activation patterns. Hum Brain Mapp. 2012;33(9):2135–46.PubMedCrossRef Weygandt M, Schaefer A, Schienle A, Haynes JD. Diagnosing different binge-eating disorders based on reward-related brain activation patterns. Hum Brain Mapp. 2012;33(9):2135–46.PubMedCrossRef
481.
Zurück zum Zitat Lee MH, Kim N, Yoo J, Kim HK, Son YD, Kim YB, Oh SM, Kim S, Lee H, Jeon JE, et al. Multitask fMRI and machine learning approach improve prediction of differential brain activity pattern in patients with insomnia disorder. Sci Rep. 2021;11(1):9402.PubMedPubMedCentralCrossRef Lee MH, Kim N, Yoo J, Kim HK, Son YD, Kim YB, Oh SM, Kim S, Lee H, Jeon JE, et al. Multitask fMRI and machine learning approach improve prediction of differential brain activity pattern in patients with insomnia disorder. Sci Rep. 2021;11(1):9402.PubMedPubMedCentralCrossRef
482.
Zurück zum Zitat Jansen C, Penzel T, Hodel S, Breuer S, Spott M, Krefting D. Network physiology in insomnia patients: Assessment of relevant changes in network topology with interpretable machine learning models. Chaos (Woodbury, NY). 2019;29(12):123129.CrossRef Jansen C, Penzel T, Hodel S, Breuer S, Spott M, Krefting D. Network physiology in insomnia patients: Assessment of relevant changes in network topology with interpretable machine learning models. Chaos (Woodbury, NY). 2019;29(12):123129.CrossRef
483.
Zurück zum Zitat Zhang J, Liu Y, Luo R, Du Z, Lu F, Yuan Z, Zhou J, Li S. Classification of pure conduct disorder from healthy controls based on indices of brain networks during resting state. Med Biol Eng Comput. 2020;58(9):2071–82.PubMedCrossRef Zhang J, Liu Y, Luo R, Du Z, Lu F, Yuan Z, Zhou J, Li S. Classification of pure conduct disorder from healthy controls based on indices of brain networks during resting state. Med Biol Eng Comput. 2020;58(9):2071–82.PubMedCrossRef
484.
Zurück zum Zitat Zhang J, Cao W, Wang M, Wang N, Yao S, Huang B. Multivoxel pattern analysis of structural MRI in children and adolescents with conduct disorder. Brain Imaging Behav. 2019;13(5):1273–80.PubMedCrossRef Zhang J, Cao W, Wang M, Wang N, Yao S, Huang B. Multivoxel pattern analysis of structural MRI in children and adolescents with conduct disorder. Brain Imaging Behav. 2019;13(5):1273–80.PubMedCrossRef
485.
Zurück zum Zitat Zhang J, Liu W, Zhang J, Wu Q, Gao Y, Jiang Y, Gao J, Yao S, Huang B. Distinguishing adolescents with conduct disorder from typically developing youngsters based on pattern classification of brain structural MRI. Front Hum Neurosci. 2018;12:152.PubMedPubMedCentralCrossRef Zhang J, Liu W, Zhang J, Wu Q, Gao Y, Jiang Y, Gao J, Yao S, Huang B. Distinguishing adolescents with conduct disorder from typically developing youngsters based on pattern classification of brain structural MRI. Front Hum Neurosci. 2018;12:152.PubMedPubMedCentralCrossRef
486.
Zurück zum Zitat Tang Y, Jiang W, Liao J, Wang W, Luo A. Identifying individuals with antisocial personality disorder using resting-state FMRI. PLoS One. 2013;8(4):e60652.PubMedPubMedCentralCrossRef Tang Y, Jiang W, Liao J, Wang W, Luo A. Identifying individuals with antisocial personality disorder using resting-state FMRI. PLoS One. 2013;8(4):e60652.PubMedPubMedCentralCrossRef
487.
Zurück zum Zitat Tang Y, Liu W, Chen J, Liao J, Hu D, Wang W. Altered spontaneous activity in antisocial personality disorder revealed by regional homogeneity. NeuroReport. 2013;24(11):590–5.PubMedCrossRef Tang Y, Liu W, Chen J, Liao J, Hu D, Wang W. Altered spontaneous activity in antisocial personality disorder revealed by regional homogeneity. NeuroReport. 2013;24(11):590–5.PubMedCrossRef
488.
Zurück zum Zitat Sato JR, de Oliveira-Souza R, Thomaz CE, Basílio R, Bramati IE, Amaro E Jr, Tovar-Moll F, Hare RD, Moll J. Identification of psychopathic individuals using pattern classification of MRI images. Soc Neurosci. 2011;6(5–6):627–39.PubMedCrossRef Sato JR, de Oliveira-Souza R, Thomaz CE, Basílio R, Bramati IE, Amaro E Jr, Tovar-Moll F, Hare RD, Moll J. Identification of psychopathic individuals using pattern classification of MRI images. Soc Neurosci. 2011;6(5–6):627–39.PubMedCrossRef
489.
Zurück zum Zitat Wetherill RR, Rao H, Hager N, Wang J, Franklin TR, Fan Y. Classifying and characterizing nicotine use disorder with high accuracy using machine learning and resting-state fMRI. Addict Biol. 2019;24(4):811–21.PubMedCrossRef Wetherill RR, Rao H, Hager N, Wang J, Franklin TR, Fan Y. Classifying and characterizing nicotine use disorder with high accuracy using machine learning and resting-state fMRI. Addict Biol. 2019;24(4):811–21.PubMedCrossRef
490.
Zurück zum Zitat Li Y, Cui Z, Liao Q, Dong H, Zhang J, Shen W, Zhou W. Support vector machine-based multivariate pattern classification of methamphetamine dependence using arterial spin labeling. Addict Biol. 2019;24(6):1254–62.PubMedCrossRef Li Y, Cui Z, Liao Q, Dong H, Zhang J, Shen W, Zhou W. Support vector machine-based multivariate pattern classification of methamphetamine dependence using arterial spin labeling. Addict Biol. 2019;24(6):1254–62.PubMedCrossRef
491.
Zurück zum Zitat Ding X, Li Y, Li D, Li L, Liu X. Using machine-learning approach to distinguish patients with methamphetamine dependence from healthy subjects in a virtual reality environment. Brain and behavior. 2020;10(11):e01814.PubMedPubMedCentralCrossRef Ding X, Li Y, Li D, Li L, Liu X. Using machine-learning approach to distinguish patients with methamphetamine dependence from healthy subjects in a virtual reality environment. Brain and behavior. 2020;10(11):e01814.PubMedPubMedCentralCrossRef
492.
Zurück zum Zitat Mete M, Sakoglu U, Spence JS, Devous MD Sr, Harris TS, Adinoff B. Successful classification of cocaine dependence using brain imaging: a generalizable machine learning approach. BMC Bioinformatics. 2016;17(Suppl 13):357.PubMedPubMedCentralCrossRef Mete M, Sakoglu U, Spence JS, Devous MD Sr, Harris TS, Adinoff B. Successful classification of cocaine dependence using brain imaging: a generalizable machine learning approach. BMC Bioinformatics. 2016;17(Suppl 13):357.PubMedPubMedCentralCrossRef
493.
Zurück zum Zitat Adeli E, Zahr NM, Pfefferbaum A, Sullivan EV, Pohl KM. Novel machine learning identifies brain patterns distinguishing diagnostic membership of human immunodeficiency virus, alcoholism, and their comorbidity of individuals. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4(6):589–99.PubMedPubMedCentral Adeli E, Zahr NM, Pfefferbaum A, Sullivan EV, Pohl KM. Novel machine learning identifies brain patterns distinguishing diagnostic membership of human immunodeficiency virus, alcoholism, and their comorbidity of individuals. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4(6):589–99.PubMedPubMedCentral
494.
Zurück zum Zitat Guggenmos M, Schmack K, Veer IM, Lett T, Sekutowicz M, Sebold M, Garbusow M, Sommer C, Wittchen HU, Zimmermann US, et al. A multimodal neuroimaging classifier for alcohol dependence. Sci Rep. 2020;10(1):298.PubMedPubMedCentralCrossRef Guggenmos M, Schmack K, Veer IM, Lett T, Sekutowicz M, Sebold M, Garbusow M, Sommer C, Wittchen HU, Zimmermann US, et al. A multimodal neuroimaging classifier for alcohol dependence. Sci Rep. 2020;10(1):298.PubMedPubMedCentralCrossRef
495.
Zurück zum Zitat Mehla VK, Singhal A, Singh P. A novel approach for automated alcoholism detection using Fourier decomposition method. J Neurosci Methods. 2020;346:108945.PubMedCrossRef Mehla VK, Singhal A, Singh P. A novel approach for automated alcoholism detection using Fourier decomposition method. J Neurosci Methods. 2020;346:108945.PubMedCrossRef
496.
Zurück zum Zitat Zhu X, Du X, Kerich M, Lohoff FW, Momenan R. Random forest based classification of alcohol dependence patients and healthy controls using resting state MRI. Neurosci Lett. 2018;676:27–33.PubMedPubMedCentralCrossRef Zhu X, Du X, Kerich M, Lohoff FW, Momenan R. Random forest based classification of alcohol dependence patients and healthy controls using resting state MRI. Neurosci Lett. 2018;676:27–33.PubMedPubMedCentralCrossRef
497.
Zurück zum Zitat Mumtaz W, Saad M, Kamel N, Ali SSA, Malik AS. An EEG-based functional connectivity measure for automatic detection of alcohol use disorder. Artif Intell Med. 2018;84:79–89.PubMedCrossRef Mumtaz W, Saad M, Kamel N, Ali SSA, Malik AS. An EEG-based functional connectivity measure for automatic detection of alcohol use disorder. Artif Intell Med. 2018;84:79–89.PubMedCrossRef
498.
Zurück zum Zitat Wang SH, Lv YD, Sui Y, Liu S, Wang SJ, Zhang YD. Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling. J Med Syst. 2017;42(1):2.PubMedCrossRef Wang SH, Lv YD, Sui Y, Liu S, Wang SJ, Zhang YD. Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling. J Med Syst. 2017;42(1):2.PubMedCrossRef
499.
Zurück zum Zitat Kinreich S, McCutcheon VV, Aliev F, Meyers JL, Kamarajan C, Pandey AK, Chorlian DB, Zhang J, Kuang W, Pandey G, et al. Predicting alcohol use disorder remission: a longitudinal multimodal multi-featured machine learning approach. Transl Psychiatry. 2021;11(1):166.PubMedPubMedCentralCrossRef Kinreich S, McCutcheon VV, Aliev F, Meyers JL, Kamarajan C, Pandey AK, Chorlian DB, Zhang J, Kuang W, Pandey G, et al. Predicting alcohol use disorder remission: a longitudinal multimodal multi-featured machine learning approach. Transl Psychiatry. 2021;11(1):166.PubMedPubMedCentralCrossRef
500.
Zurück zum Zitat Bae Y, Yoo BW, Lee JC, Kim HC. Automated network analysis to measure brain effective connectivity estimated from EEG data of patients with alcoholism. Physiol Meas. 2017;38(5):759–73.PubMedCrossRef Bae Y, Yoo BW, Lee JC, Kim HC. Automated network analysis to measure brain effective connectivity estimated from EEG data of patients with alcoholism. Physiol Meas. 2017;38(5):759–73.PubMedCrossRef
501.
Zurück zum Zitat Kumar S, Ghosh S, Tetarway S, Sinha RK. Support vector machine and fuzzy C-mean clustering-based comparative evaluation of changes in motor cortex electroencephalogram under chronic alcoholism. Med Biol Eng Comput. 2015;53(7):609–22.PubMedCrossRef Kumar S, Ghosh S, Tetarway S, Sinha RK. Support vector machine and fuzzy C-mean clustering-based comparative evaluation of changes in motor cortex electroencephalogram under chronic alcoholism. Med Biol Eng Comput. 2015;53(7):609–22.PubMedCrossRef
502.
Zurück zum Zitat Khan DM, Yahya N, Kamel N, Faye I. Effective connectivity in default mode network for alcoholism diagnosis. IEEE Trans Neural Syst Rehabil Eng. 2021;29:796–808.PubMedCrossRef Khan DM, Yahya N, Kamel N, Faye I. Effective connectivity in default mode network for alcoholism diagnosis. IEEE Trans Neural Syst Rehabil Eng. 2021;29:796–808.PubMedCrossRef
503.
Zurück zum Zitat Mumtaz W, Vuong PL, Xia L, Malik AS, Rashid RBA. An EEG-based machine learning method to screen alcohol use disorder. Cogn Neurodyn. 2017;11(2):161–71.PubMedCrossRef Mumtaz W, Vuong PL, Xia L, Malik AS, Rashid RBA. An EEG-based machine learning method to screen alcohol use disorder. Cogn Neurodyn. 2017;11(2):161–71.PubMedCrossRef
504.
Zurück zum Zitat Hahn S, Mackey S, Cousijn J, Foxe JJ, Heinz A, Hester R, Hutchinson K, Kiefer F, Korucuoglu O, Lett T, et al. Predicting alcohol dependence from multi-site brain structural measures. Hum Brain Mapp. 2022;43(1):555–65.PubMedCrossRef Hahn S, Mackey S, Cousijn J, Foxe JJ, Heinz A, Hester R, Hutchinson K, Kiefer F, Korucuoglu O, Lett T, et al. Predicting alcohol dependence from multi-site brain structural measures. Hum Brain Mapp. 2022;43(1):555–65.PubMedCrossRef
505.
Zurück zum Zitat Zhang H, Silva FHS, Ohata EF, Medeiros AG, Rebouças Filho PP. Bi-dimensional approach based on transfer learning for alcoholism pre-disposition classification via EEG signals. Front Hum Neurosci. 2020;14:365.PubMedPubMedCentralCrossRef Zhang H, Silva FHS, Ohata EF, Medeiros AG, Rebouças Filho PP. Bi-dimensional approach based on transfer learning for alcoholism pre-disposition classification via EEG signals. Front Hum Neurosci. 2020;14:365.PubMedPubMedCentralCrossRef
506.
Zurück zum Zitat Wang SH, Xie S, Chen X, Guttery DS, Tang C, Sun J, Zhang YD. Alcoholism identification based on an AlexNet transfer learning model. Front Psych. 2019;10:205.CrossRef Wang SH, Xie S, Chen X, Guttery DS, Tang C, Sun J, Zhang YD. Alcoholism identification based on an AlexNet transfer learning model. Front Psych. 2019;10:205.CrossRef
507.
Zurück zum Zitat Prabhakar SK, Rajaguru H. Alcoholic EEG signal classification with Correlation Dimension based distance metrics approach and Modified Adaboost classification. Heliyon. 2020;6(12):e05689.PubMedPubMedCentralCrossRef Prabhakar SK, Rajaguru H. Alcoholic EEG signal classification with Correlation Dimension based distance metrics approach and Modified Adaboost classification. Heliyon. 2020;6(12):e05689.PubMedPubMedCentralCrossRef
508.
Zurück zum Zitat Erguzel TT, Noyan CO, Eryilmaz G, Ünsalver B, Cebi M, Tas C, Dilbaz N, Tarhan N. Binomial logistic regression and artificial neural network methods to classify opioid-dependent subjects and control group using quantitative EEG power measures. Clin EEG Neurosci. 2019;50(5):303–10.PubMedCrossRef Erguzel TT, Noyan CO, Eryilmaz G, Ünsalver B, Cebi M, Tas C, Dilbaz N, Tarhan N. Binomial logistic regression and artificial neural network methods to classify opioid-dependent subjects and control group using quantitative EEG power measures. Clin EEG Neurosci. 2019;50(5):303–10.PubMedCrossRef
509.
Zurück zum Zitat Cremers H, van Zutphen L, Duken S, Domes G, Sprenger A, Waldorp L, Arntz A. Borderline personality disorder classification based on brain network measures during emotion regulation. Eur Arch Psychiatry Clin Neurosci. 2021;271(6):1169–78.PubMedCrossRef Cremers H, van Zutphen L, Duken S, Domes G, Sprenger A, Waldorp L, Arntz A. Borderline personality disorder classification based on brain network measures during emotion regulation. Eur Arch Psychiatry Clin Neurosci. 2021;271(6):1169–78.PubMedCrossRef
510.
Zurück zum Zitat Xu T, Cullen KR, Houri A, Lim KO, Schulz SC, Parhi KK. Classification of borderline personality disorder based on spectral power of resting-state fMRI. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5036–9.PubMed Xu T, Cullen KR, Houri A, Lim KO, Schulz SC, Parhi KK. Classification of borderline personality disorder based on spectral power of resting-state fMRI. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5036–9.PubMed
511.
Zurück zum Zitat Chekroud AM, Bondar J, Delgadillo J, Doherty G, Wasil A, Fokkema M, Cohen Z, Belgrave D, DeRubeis R, Iniesta R, et al. The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry. 2021;20(2):154–70.PubMedPubMedCentralCrossRef Chekroud AM, Bondar J, Delgadillo J, Doherty G, Wasil A, Fokkema M, Cohen Z, Belgrave D, DeRubeis R, Iniesta R, et al. The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry. 2021;20(2):154–70.PubMedPubMedCentralCrossRef
512.
Zurück zum Zitat Greene AS, Shen X, Noble S, Horien C, Hahn CA, Arora J, Tokoglu F, Spann MN, Carrión CI, Barron DS, et al. Brain-phenotype models fail for individuals who defy sample stereotypes. Nature. 2022;609(7925):109–18.PubMedPubMedCentralCrossRef Greene AS, Shen X, Noble S, Horien C, Hahn CA, Arora J, Tokoglu F, Spann MN, Carrión CI, Barron DS, et al. Brain-phenotype models fail for individuals who defy sample stereotypes. Nature. 2022;609(7925):109–18.PubMedPubMedCentralCrossRef
513.
Zurück zum Zitat Li J, Bzdok D, Chen J, Tam A, Ooi LQR, Holmes AJ, Ge T, Patil KR, Jabbi M, Eickhoff SB, et al. Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity. Sci Adv. 2022;8(11):eabj1812.PubMedPubMedCentralCrossRef Li J, Bzdok D, Chen J, Tam A, Ooi LQR, Holmes AJ, Ge T, Patil KR, Jabbi M, Eickhoff SB, et al. Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity. Sci Adv. 2022;8(11):eabj1812.PubMedPubMedCentralCrossRef
514.
Zurück zum Zitat Grzenda A, Kraguljac NV, McDonald WM, Nemeroff C, Torous J, Alpert JE, Rodriguez CI, Widge AS. Evaluating the machine learning literature: a primer and user’s guide for psychiatrists. Am J Psychiatry. 2021;178(8):715–29.PubMedCrossRef Grzenda A, Kraguljac NV, McDonald WM, Nemeroff C, Torous J, Alpert JE, Rodriguez CI, Widge AS. Evaluating the machine learning literature: a primer and user’s guide for psychiatrists. Am J Psychiatry. 2021;178(8):715–29.PubMedCrossRef
515.
Zurück zum Zitat Zadrozny B. Learning and evaluating classifiers under sample selection bias. In: Proceedings of the twenty-first international conference on Machine learning. Banff, Alberta, Canada: Association for Computing Machinery; 2004. p. 114. Zadrozny B. Learning and evaluating classifiers under sample selection bias. In: Proceedings of the twenty-first international conference on Machine learning. Banff, Alberta, Canada: Association for Computing Machinery; 2004. p. 114.
516.
Zurück zum Zitat Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, Donohue MR, Foran W, Miller RL, Hendrickson TJ, et al. Reproducible brain-wide association studies require thousands of individuals. Nature. 2022;603(7902):654–60.PubMedPubMedCentralCrossRef Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, Donohue MR, Foran W, Miller RL, Hendrickson TJ, et al. Reproducible brain-wide association studies require thousands of individuals. Nature. 2022;603(7902):654–60.PubMedPubMedCentralCrossRef
517.
Zurück zum Zitat Goldfarb MG, Brown DR. Diversifying participation: the rarity of reporting racial demographics in neuroimaging research. Neuroimage. 2022;254:119122.PubMedCrossRef Goldfarb MG, Brown DR. Diversifying participation: the rarity of reporting racial demographics in neuroimaging research. Neuroimage. 2022;254:119122.PubMedCrossRef
518.
519.
Zurück zum Zitat Futoma J, Simons M, Panch T, Doshi-Velez F, Celi LA. The myth of generalisability in clinical research and machine learning in health care. Lancet Digital health. 2020;2(9):e489–92.PubMedCrossRef Futoma J, Simons M, Panch T, Doshi-Velez F, Celi LA. The myth of generalisability in clinical research and machine learning in health care. Lancet Digital health. 2020;2(9):e489–92.PubMedCrossRef
520.
Zurück zum Zitat Celi LA, Cellini J, Charpignon ML, Dee EC, Dernoncourt F, Eber R, Mitchell WG, Moukheiber L, Schirmer J, Situ J, et al. Sources of bias in artificial intelligence that perpetuate healthcare disparities-A global review. PLOS Digit Health. 2022;1(3):e0000022.PubMedPubMedCentralCrossRef Celi LA, Cellini J, Charpignon ML, Dee EC, Dernoncourt F, Eber R, Mitchell WG, Moukheiber L, Schirmer J, Situ J, et al. Sources of bias in artificial intelligence that perpetuate healthcare disparities-A global review. PLOS Digit Health. 2022;1(3):e0000022.PubMedPubMedCentralCrossRef
521.
Zurück zum Zitat Rutledge RB, Chekroud AM, Huys QJ. Machine learning and big data in psychiatry: toward clinical applications. Curr Opin Neurobiol. 2019;55:152–9.PubMedCrossRef Rutledge RB, Chekroud AM, Huys QJ. Machine learning and big data in psychiatry: toward clinical applications. Curr Opin Neurobiol. 2019;55:152–9.PubMedCrossRef
522.
Zurück zum Zitat Santos MS, Soares JP, Abreu PH, Araujo H, Santos J. Cross-validation for imbalanced datasets: avoiding overoptimistic and overfitting approaches [Research Frontier]. IEEE Comput Intell Mag. 2018;13(4):59–76.CrossRef Santos MS, Soares JP, Abreu PH, Araujo H, Santos J. Cross-validation for imbalanced datasets: avoiding overoptimistic and overfitting approaches [Research Frontier]. IEEE Comput Intell Mag. 2018;13(4):59–76.CrossRef
523.
Zurück zum Zitat Janssen RJ, Mourão-Miranda J, Schnack HG. Making individual prognoses in psychiatry using neuroimaging and machine learning. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(9):798–808.PubMed Janssen RJ, Mourão-Miranda J, Schnack HG. Making individual prognoses in psychiatry using neuroimaging and machine learning. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(9):798–808.PubMed
524.
Zurück zum Zitat Ho SY, Phua K, Wong L, Bin Goh WW. Extensions of the external validation for checking learned model interpretability and generalizability. Patterns (New York, NY). 2020;1(8):100129. Ho SY, Phua K, Wong L, Bin Goh WW. Extensions of the external validation for checking learned model interpretability and generalizability. Patterns (New York, NY). 2020;1(8):100129.
525.
Zurück zum Zitat Cai XL, Xie DJ, Madsen KH, Wang YM, Bögemann SA, Cheung EFC, Møller A, Chan RCK. Generalizability of machine learning for classification of schizophrenia based on resting-state functional MRI data. Hum Brain Mapp. 2020;41(1):172–84.PubMedCrossRef Cai XL, Xie DJ, Madsen KH, Wang YM, Bögemann SA, Cheung EFC, Møller A, Chan RCK. Generalizability of machine learning for classification of schizophrenia based on resting-state functional MRI data. Hum Brain Mapp. 2020;41(1):172–84.PubMedCrossRef
527.
Zurück zum Zitat Dinsdale NK, Bluemke E, Sundaresan V, Jenkinson M, Smith SM, Namburete AIL: Challenges for machine learning in clinical translation of big data imaging studies. Neuron. Dinsdale NK, Bluemke E, Sundaresan V, Jenkinson M, Smith SM, Namburete AIL: Challenges for machine learning in clinical translation of big data imaging studies. Neuron.
528.
Zurück zum Zitat Leenings R, Winter NR, Dannlowski U, Hahn T. Recommendations for machine learning benchmarks in neuroimaging. Neuroimage. 2022;257:119298.PubMedCrossRef Leenings R, Winter NR, Dannlowski U, Hahn T. Recommendations for machine learning benchmarks in neuroimaging. Neuroimage. 2022;257:119298.PubMedCrossRef
529.
Zurück zum Zitat Fusar-Poli P, Hijazi Z, Stahl D, Steyerberg EW. The science of prognosis in psychiatry: a review. JAMA Psychiat. 2018;75(12):1289–97.CrossRef Fusar-Poli P, Hijazi Z, Stahl D, Steyerberg EW. The science of prognosis in psychiatry: a review. JAMA Psychiat. 2018;75(12):1289–97.CrossRef
Metadaten
Titel
Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry
verfasst von
Zhiyi Chen
Bowen Hu
Xuerong Liu
Benjamin Becker
Simon B. Eickhoff
Kuan Miao
Xingmei Gu
Yancheng Tang
Xin Dai
Chao Li
Artemiy Leonov
Zhibing Xiao
Zhengzhi Feng
Ji Chen
Hu Chuan-Peng
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
BMC Medicine / Ausgabe 1/2023
Elektronische ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-023-02941-4

Weitere Artikel der Ausgabe 1/2023

BMC Medicine 1/2023 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 49 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Wie der Klimawandel gefährliche Pilzinfektionen begünstigt

24.05.2024 Candida-Mykosen Nachrichten

Dass sich invasive Pilzinfektionen in letzter Zeit weltweit häufen, liegt wahrscheinlich auch am Klimawandel. Ausbrüche mit dem Hefepilz Candida auris stellen eine zunehmende Gefahr für Immungeschwächte dar – auch in Deutschland.

So wirken verschiedene Alkoholika auf den Blutdruck

23.05.2024 Störungen durch Alkohol Nachrichten

Je mehr Alkohol Menschen pro Woche trinken, desto mehr steigt ihr Blutdruck, legen Daten aus Dänemark nahe. Ob es dabei auch auf die Art des Alkohols ankommt, wurde ebenfalls untersucht.

Das sind die führenden Symptome junger Darmkrebspatienten

Darmkrebserkrankungen in jüngeren Jahren sind ein zunehmendes Problem, das häufig längere Zeit übersehen wird, gerade weil die Patienten noch nicht alt sind. Welche Anzeichen Ärzte stutzig machen sollten, hat eine Metaanalyse herausgearbeitet.

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.