Skip to main content
Erschienen in: Critical Care 1/2014

Open Access 01.02.2014 | Review

Soluble adhesion molecules as markers for sepsis and the potential pathophysiological discrepancy in neonates, children and adults

verfasst von: Rens Zonneveld, Roberta Martinelli, Nathan I Shapiro, Taco W Kuijpers, Frans B Plötz, Christopher V Carman

Erschienen in: Critical Care | Ausgabe 1/2014

Abstract

Sepsis is a severe and life-threatening systemic inflammatory response to infection that affects all populations and age groups. The pathophysiology of sepsis is associated with aberrant interaction between leukocytes and the vascular endothelium. As inflammation progresses, the adhesion molecules that mediate these interactions become shed from cell surfaces and accumulate in the blood as soluble isoforms that are being explored as potential prognostic disease biomarkers. We critically review the studies that have tested the predictive value of soluble adhesion molecules in sepsis pathophysiology with emphasis on age, as well as the underlying mechanisms and potential roles for inflammatory shedding. Five soluble adhesion molecules are associated with sepsis, specifically, E-selectin, L-selectin and P-selectin, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. While increased levels of these soluble adhesion molecules generally correlate well with the presence of sepsis, their degree of elevation is still poorly predictive of sepsis severity scores, outcome and mortality. Separate analyses of neonates, children and adults demonstrate significant age-dependent discrepancies in both basal and septic levels of circulating soluble adhesion molecules. Additionally, a range of both clinical and experimental studies suggests protective roles for adhesion molecule shedding that raise important questions about whether these should positively or negatively correlate with mortality. In conclusion, while predictive properties of soluble adhesion molecules have been researched intensively, their levels are still poorly predictive of sepsis outcome and mortality. We propose two novel directions for improving clinical utility of soluble adhesion molecules: the combined simultaneous analysis of levels of adhesion molecules and their sheddases; and taking age-related discrepancies into account. Further attention to these issues may provide better understanding of sepsis pathophysiology and increase the usefulness of soluble adhesion molecules as diagnostic and predictive biomarkers.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​cc13733) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

RZ performed the literature search. RZ, RM, NIS, TWK, FBP and CVC helped draft and revise the manuscript. RZ and CVC prepared the figures. All authors helped to draft the manuscript. All authors read and approved the final manuscript.
Abkürzungen
ADAM
a disintegrin and metalloproteinase
ICAM-1
intercellular adhesion molecule-1
sE-selectin
soluble E-selectin
sICAM-1
soluble intercellular adhesion molecule-1
sL-selectin
Soluble L-selectin
sP-selectin
Soluble P-selectin
sVCAM-1
soluble vascular cell adhesion molecule-1
VCAM-1
vascular cell adhesion molecule-1.

Introduction

Sepsis [1], due to its detrimental sequelae and limited therapeutic options, continues to be responsible for many deaths amongst all age groups [24]. Growing evidence indicates that aberrant leukocyte activation and recruitment into host tissues plays a pivotal role in causing breakdown of the vascular endothelium [5], which in turn leads to organ failure and death [6]. Inflammatory leukocyte recruitment is initiated by soluble mediators (for example, cytokines or bacterial-derived lipopolysaccharide (endotoxin)), which upregulate adhesion molecule expression on both leukocytes and the endothelium. This upregulation results in a multistep adhesion cascade whereby circulating immune cells sequentially roll on, firmly adhere to, and transmigrate across the endothelium [79]. During the progression of inflammatory responses, soluble isoforms of the leukocyte recruitment adhesion molecules are shed from cell surfaces and accumulate within the circulating blood plasma [10]. These soluble isoforms have been considered promising prognostic biomarkers of severity of inflammation but the clinical utility of monitoring such changes remains poor [11].
One reason for the thus far limited clinical utility of these soluble isoforms is the fact that shedding in general is neither a passive nor an inevitable consequence of upregulated expression/cell activation. Most shedding is an active process, which is discretely regulated by diverse proteolytic enzymes, although cell damage can also variably contribute to soluble adhesion molecule levels [10]. Although still a matter of controversy, there is increasing evidence that shedding serves regulatory roles to dampen inflammation (and specifically to reduce leukocyte–endothelial interactions) and protect the host from excessive collateral damage [10, 12]. Furthermore, age-related differences in both levels of soluble adhesion molecules and the enzymes that mediate shedding have been observed in both healthy and septic patients (as discussed in detail below). The relationship between soluble adhesion molecule levels, underlying inflammatory and shedding activities and clinical outcomes may thus be more complex than once thought.
The goals of this review are therefore to summarize existing knowledge regarding the mechanisms and putative functions for shedding of cell surface adhesion molecules/generation of soluble isoforms, unequivocally identified to exist at elevated levels in the blood of septic patients, and to investigate how these levels and their shedding differ amongst healthy and septic neonates, children and adults to improve our understanding and clinical utility of soluble adhesion molecules.
We performed a comprehensive literature search in MEDLINE using medical subject headings and text words, supplemented by scanning the bibliographies of the recovered articles. We combined ‘endothelium’ and ‘leukocytes’ using the term ‘OR’. This search was subsequently combined with ‘sepsis’ using the Boolean operator ‘AND’. We used a similar search strategy, using the terms ‘soluble’ and ‘circulating adhesion molecules’. We combined these results with the terms ‘sepsis’, ‘septic shock’, ‘endothelium’, ‘leukocytes’, ‘monocytes’, ‘granulocytes’, ‘macrophages’, ‘neutrophils’, ‘lymphocytes’ and ‘inflammation’. We then combined these results with the terms ‘children’, ‘neonates’, ‘adults’ and ‘age’.

Soluble adhesion molecules: from cell surface to circulation

Five soluble adhesion molecules were associated with sepsis and their main characteristics are summarized in Table 1. Three adhesion molecules (E-selectin, L-selectin and P-selectin) belong to the selectin superfamily and function in leukocyte rolling (Figure 1). Two adhesion molecules (intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1)) belong to the immunoglobin domain superfamily cell adhesion molecules that are important for firm adhesion and transendothelial migration [13]. In all cases, inflammatory mediators (for example, cytokines, thrombin, lipopolysaccharide) first increase cell surface expression of these molecules followed by the later appearance of shed, soluble isoforms (Table 1 and Figure 2).
Table 1
Characteristics of adhesion molecules involved in sepsis
Adhesion molecule
Expression
Ligands
Inflammatory mediators
Mode of expression
Specific function
Sheddase
E-selectin
Endothelial cells
ESLG-1, PSGL-1
TNFα, LPS, IL-1
Inducible
Rolling
Caspase
L-selectin
Leukocytes
GlyCAM-1, MAdCAM-1
TNFα, LPS, IL-1, IL-6
Constitutive, inducible
Rolling
ADAM-17
P-selectin
Endothelial cells, platelets
PSGL-1
TNFα, IL-4, IL-13, histamine, thrombin
Constitutive
Rolling
MMP
ICAM-1
Endothelial cells
Mac-1, LFA-1
TNFα, LPS, IL-1
Constitutive, inducible
Firm adhesion, TEM
ADAM-17, NE
VCAM-1
Endothelial cells
VLA-4
TNFα, LPS, IL-1
Constitutive, inducible
Firm adhesion, TEM
ADAM-17, NE
ADAM, a disintegrin and metalloproteinase; ESGL-1, endothelial selectin glycoprotein ligand; GlyCAM-1, glycosylation dependent cell adhesion molecule; ICAM-1, intercellular adhesion molecule-1; IL, interleukin; LFA, leukocyte function antigen; LPS, lipopolysaccharide; Mac, macrophage antigen; MAdCAM, mucosal vascular addressin cell adhesion molecule; MMP, matrix metalloproteinase; NE, neutrophil elastase; PSGL, platelet selectin glycoprotein ligand; TEM, transendothelial migration; TNF, tumor necrosis factor; VCAM-1, vascular cell adhesion molecule-1; VLA, very late antigen.

E-selectin

Soluble isoforms of E-selectin can be found in the supernatant of endothelial cells cultured in vitro within 24 hours of cytokine activation and are generated through a largely caspase-dependent shedding process [10, 1416]. In healthy individuals low levels of soluble E-selectin (sE-selectin) are found in serum, but these levels are greatly elevated in septic patients [16, 17]. Importantly, shed sE-selectin from sera of septic patients retained the ability to adhere to granulocytes in vitro[16]. Shedding of E-selectin has thus been proposed to limit leukocyte–endothelial interactions both by decreasing the cell surface density on the endothelium and by generating an intravascular competitive inhibitor or decoy ligand (that is, sE-selectin) for leukocytes, thereby reducing collateral damage in the host [18]. Indeed, one clinical study found that while sE-selectin was elevated in septic children, those with the highest levels exhibited the best outcomes and survival rates [19].

L-selectin

Within approximately 10 to 15 minutes of leukocyte activation by cytokines (for example, tumor necrosis factor alpha) or lipopolysaccharide, soluble L-selectin (sL-selectin) is measurable in the blood plasma as a result of cleavage by a disintegrin and metalloproteinase (ADAM)-17 [10, 20, 21]. Clinical studies show that L-selectin is shed and detected at elevated levels in the plasma during the systemic inflammatory response [22]. Interestingly, Seidelin and colleagues [22] found that the greatest survival was among septic adults that presented with the highest levels of sL-selectin, and similar findings were made in another study focused on children [19]. Additionally, in an in vitro fluid shear flow model, exogenously added sL-selectin inhibited leukocyte rolling and firm adhesion to the endothelium in a dose-dependent manner, presumably by competing with cell surface L-selectin for binding of endothelial ligands [23]. Moreover, Ferri and colleagues have demonstrated that systemic administration of exogenous sL-selectin to mice in vivo reduced intravascular leukocyte rolling and adhesion, and as a consequence decreased vascular leak in models of both local inflammation and sepsis [2426]. Alternatively, addition of a small molecule inhibitor of shedding increased leukocyte adhesion and vascular leak in the same settings [26]. The authors thus propose a significant protective role for L-selectin shedding in sepsis.

P-selectin

P-selectin is found within both endothelial cells and platelets [27, 28]. As with the other selectins, P-selectin can be measured in its soluble form in cell culture supernatants and in blood plasma, with greater levels found in septic patient plasma [29]. Mechanisms for P-selectin shedding remain poorly characterized, although some experimental data show that shedding of P-selectin might occur through cleavage by matrix metalloproteinase in patients with cardiovascular disease or hypertension [30, 31]. The degree to which plasma soluble P-selectin (sP-selectin) is derived from endothelial cells versus platelets remains unclear. However, one study found a strong positive correlation between coagulation (disseminated intravascular coagulation, fibrinogen consumption and thrombin activation markers) and sP-selectin in septic patients, indicating a significant role for platelet shedding of P-selectin [32]. Independently of its sources, sP-selectin could negatively modulate direct leukocyte–endothelial interactions and/or indirect platelet-mediated secondary capture of leukocytes on the endothelium (both of which are dependent on P-selectin–platelet selectin glycoprotein ligand-1 adhesion), although this remains to be tested directly [28].

Intercellular adhesion molecule-1

In vitro 1 to 6 hours after activation of endothelial cells by cytokines, soluble ICAM-1 (sICAM-1) can be measured in culture supernatants, after shedding mediated by neutrophil elastase-dependent, ADAM-17-dependent and matrix metalloproteinase-9-dependent shedding [10, 3335]. Shedding of ICAM-1 is thought to promote detachment of leukocytes from the endothelium, thus limiting local inflammation [10]. Indeed, addition of exogenous neutrophil elastase was shown to be highly effective at cleaving surface-bound human ICAM-1 in vitro, which in turn abrogated Mac-1-dependent leukocyte adhesion [36]. Evidence supports a potentially protective role for ICAM-1 shedding during sepsis. Elevated levels of sICAM-1 are well documented in human sepsis [5, 6, 11], and studies performed in both humans and mice demonstrate that this is induced within ~4 hours of endotoxin challenge [3739]. Significantly, septic children with the highest levels of sICAM-1 had better outcomes/survival rates [19], suggesting that shedding and loss of cell surface ICAM-1 from the endothelium may serve a protective function. Interestingly, in a cecal ligation puncture model of sepsis, ICAM-1-knockout mice – whereby cell-surface ICAM-1 is completely abolished – exhibited a significant decrease in leukocyte tissue invasion, organ damage and mortality compared with wild-type mice [37].

Vascular cell adhesion molecule-1

In vitro 1 to 6 hours after cytokine activation, VCAM-1 is measurable in its soluble form (sVCAM-1) in endothelial cell supernatant through shedding mediated by ADAM-17, cathepsin G and neutrophil elastase [10]. Singh and colleagues demonstrate that this may be achieved, at least in part, through the cytokine-mediated (that is, interleukin-1β-mediated and tumor necrosis factor alpha-mediated) downregulation of tissue inhibitor metalloproteinase-3, which they showed to function as a tonic suppressor of ADAM-17-mediated VCAM-1 shedding [40]. In response to endotoxin, sVCAM-1 was observed to be markedly elevated in mice [38] and humans [39]. Furthermore, increased levels of sVCAM-1 are reported in human sepsis, and higher levels seem to be associated with increased severity of disease and nonsurvival [5, 6]. Shedding of VCAM-1 is implicated to counteract the pro-adhesive state of leukocytes to the endothelium both by lowering endothelial receptor density [10] and by forming sVCAM-1 to act as a competitive inhibitor (or decoy receptor) of leukocyte very late antigen-4 [40, 41] (Figure 2). Interestingly, prednisolone – a synthetic glucocorticoid shown to be beneficial in the treatment of sepsis – was shown to enhance sVCAM-1 levels, suggesting the intriguing possibility that its mechanism of action may be at least partially related to potentiation of VCAM-1 shedding [39].

Levels of soluble adhesion molecules: impact of age

Neonates

Basal levels of all soluble adhesion molecules of healthy neonates are comparable with (sICAM-1) or higher than (sE-selectin, sP-selectin and sVCAM-1) basal levels in children or adults (Tables 2, 3, 4, 5 and 6 and Figure 3). Only the levels of sL-selectin are lower in neonates than in children or adults. Importantly, in neonatal sepsis, levels of all soluble molecules are increased, but both the relative and absolute extent of increase is remarkably lower compared with adults or children (Tables 2, 3, 4, 5 and 6 and Figure 3). This raises the important question of whether neonates are less effective at shedding or less avidly upregulate adhesion molecules in the first place. Indeed, some studies have been conducted to directly address this issue, which suggests contributions from both of these mechanisms. Cell surface levels of L-selectin on neutrophils and sL-selectin levels from cord blood were both lower than the cell surface and the circulating form of L-selectin found in adult blood [4244]. Interestingly, when challenged with neutrophil-activating chemoattractants, neonatal neutrophils exhibited a significantly lower shedding response compared with adult neutrophils [42, 43]. Austgulen and colleagues suggest that these differences may be a reflection of a developing immune system [45] that shows features of hyporesponsiveness [46]. Since neonatal sepsis/infection is particularly difficult to diagnose and no dependable predictors exist, sE-selectin [45, 47, 48], sL-selectin [49, 50] and sP-selectin [48, 49] as well as sICAM-1 [5059] and sVCAM-1 [49] were evaluated as markers for the presence of infection in neonates. However, none of these soluble isoforms were introduced in a clinical setting because they did not reach predictive ability. The above discussion (and additional elaborations below) points toward complexities that need to be resolved before meaningful interpretations can be made.
Table 2
Levels of soluble E-selectin in neonates, children and adults
Study (reference)
Mean age
Sepsis criteria
Healthy (μg/ml)a
Number of patients (healthy)
Sepsis (μg/ml)a
Number of patients (sepsis)
Neonates
      
Dollner and colleagues [52]
0 to 7 days
Clinical
91.4 (2 to 217.8)
24
151.7 (37 to 362.2)
18
Austgulen and colleagues [45]
Pre/at term
Clinical
134.1 (69.5 to 280)
168
187.7 (118.4 to 262.2)
24
Edgar and colleagues [57]
0 to 7 days
Clinical
71 (51 to 118)
27
135 (94 to 192)
192
Giannaki and colleagues [47]
At term
Clinical
139 ± 48
40
  
Edgar and colleagues [55]
At term
Clinical
71 (51 to 118)
46
158 (94 to 207)
46
Children
      
Andrys and colleagues [60]
6 to 10
 
57.6 (36.7 to 152.2)
68
  
 
11 to 15
 
42.1 (29.9 to 114.1)
90
  
Paize and colleagues [61]
2 to 16
PRISM
100 (90 to 110)
40
230 (100 to 380)
20
Krueger and colleagues [62]
3.5 (0.2 to 16)
ACCP/SCCM
68 (49 to 105)
22
131 (112 to 146)
22
Whalen and colleagues [63]
1 day to 17 years
Criteria of Doughty and colleaguesb
46 ± 6
14
230
77
Nash and colleagues [64]
9
 
70 (35 to 121)
81
  
 
15
 
59 (25 to 119)
   
Briassoulis and colleagues [19]
6.5 (2.8)
PRISM
161 ± 43
10
936 ± 399
10
Adults
      
Presterl and colleagues [65]
51 (30 to 67)
APACHE II
48.9 (14.3 to 89.9)
20
130 (40 to 570)
20
Weigand and colleagues [66]
58.7 (4.4)
ACCP/SCCM
29 (14.3 to 89.9)
7
85
14
Hynninen and colleagues [67]
49 (17.2)
APACHE II
  
73 (62 to 89)
11
Knapp and colleagues [68]
51 (21 to 96)
APACHE III
43.7 ± 20.3
15
94.5 ± 54
28
Osmanovic and colleagues [69]
Adult
 
28.5 ± 14.3
18
118 ± 84
9
Soderquist and colleagues [70]
71 (10 to 91)
Unknown
48 (20 to 97)
15
80 (22 to 200)
41
Takala and colleagues [71]
44 to 59 (17 to 86)
APACHE II
45 (10 to 100)
Unknown
154 (61 to 394)
20
Geppert and colleagues [72]
59 (35 to 85)
SIRS
42.8 ± 19.4
7
96.2 ± 47.3
27
De Pablo and colleagues [73]
61.2 (3.2)
APACHE II
48
36
98
52
Kayal and colleagues [74]
57.2 (3.9)
ACCP/SCCM
40.5 ± 4.5
9
231 ± 41.8
25
Shapiro and colleagues [6]
57 (19)
APACHE III
49
207
95
13
Andrys and colleagues [60]
46
 
54.3 (8.3 to 116.9)
68
  
Giannaki and colleagues [47]
Adult
 
48 ± 13
40
  
ACCP/SCCM, American college of chest physicians/society of critical care medicine; APACHE, acute physiology and chronic health evaluation; PRISM, pediatric risk of mortality; SIRS, systemic inflammatory response syndrome. aData presented as mean (range) or mean ± standard deviation. bCriteria from [75]. Ages expressed in years unless otherwise stated.
Table 3
Levels of soluble L-selectin in neonates, children and adults
Study (reference)
Mean age
Sepsis criteria
Healthy (μg/ml)a
Number of patients (healthy)
Sepsis (μg/ml)a
Number of patients (sepsis)
Neonates
      
Figueras-Aloy and colleagues [49]
0 to 14 days
SNAP-II
580 (523 to 717)
12
681 (541 to 757)
15
Kourtis and colleagues [50]
0 to 2 days
Clinical
1,155
75
1,331 (1,123 to 1,427)
14
Giannaki and colleagues [47]
At term
 
674 ± 223
40
  
Rebuck and colleagues [43]
At term
 
463 (338 to 557)
22
  
Koenig and colleagues [42]
0 to 7 days
 
324 ± 24
10
  
Children
      
Kourtis and colleagues [59]
Children
 
3,356 (2,818 to 3,894)
100
  
Briassoulis and colleagues [19]
6.5 (2.8)
PRISM
3,750 ± 321
10
6,263 ± 3,813
10
Adults
      
Weigand and colleagues [66]
58.7 (4.4)
ACCP/SCCM
460
7
400
14
Kourtis and colleagues [50]
Adult
 
950 (700 to 1,220)
75
  
Schleiffenbaum and colleagues [23]
Adult
 
1,600 ± 800
63
  
Giannaki and colleagues [47]
Adult
 
938 ± 181
40
  
Rebuck and colleagues [43]
Adult
 
717 (410 to 822)
22
  
Koenig and colleagues [42]
Adult
 
537 ± 28
9
  
ACCP/SCCM, American college of chest physicians/society of critical care medicine; PRISM, pediatric risk of mortality; SNAP, score for neonatal acute physiology. aData presented as mean (range) or mean ± standard deviation. Ages expressed in years unless otherwise stated.
Table 4
Levels of soluble P-selectin in neonates, children and adults
Study (reference)
Mean age
Sepsis criteria
Healthy (μg/ml)a
Number of patients (healthy)
Sepsis (μg/ml)a
Number of patients (sepsis)
Neonates
      
Figueras-Aloy and colleagues [49]
0 to 14 days
SNAP-II
272 (152 to 288)
12
244 (170 to 324)
15
Sitaru and colleagues [48]
0 days
Clinical
104 ± 71
10
222 ± 128
9
Children
      
Paize and colleagues [61]
2 to 16
PRISM
50 (44 to 60)
40
61 (47 to 119)
20
Adults
      
Mosad and colleagues [32]
3
SIRS/SOFA
28.6 ± 6
 
63 ± 9
176
Fijnheer and colleagues [29]
Adult
SIRS
122 ± 38
10
398 ± 203
26
Weigand and colleagues [66]
58.7 (4.4)
ACCP/SCCM
32.1 ± 5.1
7
296 ±56
14
Osmanovic and colleagues [69]
Adult
Unknown
181 ± 44
18
305 ± 158
9
Geppert and colleagues [72]
59 (35 to 85)
SIRS
116.9 ± 33.4
7
291 ± 227.4
27
Leone and colleagues [76]
45 to 47 (16 to 21)
SIRS
62 ± 20
26
129 ± 98
11
ACCP/SCCM, American college of chest physicians/society of critical care medicine; PRISM, pediatric risk of mortality; SIRS, systemic inflammatory response syndrome; SNAP, score for neonatal acute physiology; SOFA, sequential organ failure assessment. aData presented as mean (range) or mean ± standard deviation. Ages expressed in years unless otherwise stated.
Table 5
Levels of soluble intercellular adhesion molecule-1 in neonates, children and adults
Study (reference)
Mean age
Sepsis criteria
Healthy (μg/ml)a
Number of patients (healthy)
Sepsis (μg/ml)a
Number of patients (sepsis)
Neonates
      
Figueras-Aloy and colleagues [49]
0 to 14 days
SNAP-II
215 (156 to 274)
12
426 (394 to 458)
15
Apostolou and colleagues [58]
At term
Clinical
358.4 ± 28.9
10
710.7 ± 56.6
10
Dollner and colleagues [52]
0 to 7 days
Clinical
244 (95.2 to 500)
24
413 (255.6 to 500)
18
Austgulen and colleagues [45]
Pre/at term
Clinical
258.8 (94 to 500)
168
394.2 (197.5 to 500)
24
Berner and colleagues [51]
0 to 3 days
Clinical
421 (291 to 459)
35
446 (171 to 534)
136
Edgar and colleagues [57]
0 to 7 days
Clinical
165 (130 to 290)
27
341 (236 to 554)
192
Edgar and colleagues [56]
0 to 7 days
Clinical
205
46
406
46
Children
      
Andrys and colleagues [60]
6 to 10
 
346.8 (206.8 to 486.8)
68
  
 
11 to 15
 
269 (184.1 to 354)
90
  
Paize and colleagues [61]
2 to 16
PRISM
260 (240 to 300)
40
705 (400 to 850)
20
Whalen and colleagues [63]
1 day to 17 years
Criteria of Doughty and colleaguesb
205 ± 29
14
595
77
Nash and colleagues [64]
9
 
310 (280 to 410)
81
  
 
15
 
300 (270 to 390)
   
Briassoulis and colleagues [19]
6.5 (2.8)
PRISM
199 ± 98
10
172 ± 93
10
Adults
      
Weigand and colleagues [66]
58.7 (4.4)
ACCP/SCCM
190
7
1,100
14
Soderquist and colleagues [70]
71 (10 to 91)
Unknown
202 (62 to 392)
15
451 (216 to 1,030)
41
Scherpereel and colleagues [77]
58.9 (14.9)
SAPS II
  
2,130
63
Hofer and colleagues [78]
65.9 (12.4)
APACHE II
219.6 (195.2 to 285.1)
108
444.7 (330 to 665.5)
18
De Pablo and colleagues [73]
61.2 (3.2)
APACHE II
480
36
1100
52
Kayal and colleagues [74]
57.2 (3.9)
ACCP/SCCM
208 ± 20.5
9
868 ± 131
25
Shapiro and colleagues [6]
57 (19)
APACHE III
185
207
240
13
Andrys and colleagues [60]
46
 
140 (60.2 to 218.4)
68
  
Leone and colleagues [76]
45 to 47 (16 to 21)
SIRS
151
26
824
11
ACCP/SCCM, American college of chest physicians/ society of critical care medicine; APACHE, acute physiology and chronic health evaluation; PRISM, pediatric risk of mortality; SAPS, simplified acute physiology score; SIRS, systemic inflammatory response syndrome; SNAP, score for neonatal acute physiology. aData presented as mean (range) or mean ± standard deviation. bCriteria from [75]. Ages expressed in years unless otherwise stated.
Table 6
Levels of soluble vascular cell adhesion molecule-1 in neonates, children and adults
Study (reference)
Mean age
Sepsis criteria
Healthy (μg/ml)a
Number of patients (healthy)
Sepsis (μg/ml)a
Number of patients (sepsis)
Neonates
      
Figueras-Aloy and colleagues [49]
0 to 14 days
SNAP-II
928 (856 to 1,005)
12
1,112 (1,072 to 1,153)
15
Austgulen and colleagues [45]
0 to 7 days
Clinical
1,940 (1,100 to 3,500)
168
1,950 (1,190 to 3,495)
24
Children
      
Andrys and colleagues [60]
6 to 15 years
 
590.8 (359.6 to 822.0)
68
  
Paize and colleagues [61]
2.16
PRISM
600 (390 to 790)
40
1,550 (1,360 to 1,910)
20
Krueger and colleagues [62]
3.5 (0.2 to 16)
ACCP/SCCM
766 (644 to 915)
22
1,239 (928 to 1,615)
22
Whalen and colleagues [63]
1 day to 17 years
Criteria of Doughty and colleaguesb
231 ± 46
14
600
77
Nash and colleagues [64]
9 years
 
790 (580 to 1,060)
81
  
 
15 years
 
780 (420 to 1,000)
   
Adults
      
Presterl and colleagues [65]
51
APACHE II
545 (374 to 829)
20
2633
20
Knapp and colleagues [68]
51 to 55 (21 to 96)
APACHE III
569 ± 98
15
1,395 ± 801
28
Soderquist and colleagues [70]
71 (10 to 91)
Unknown
533 (354 to 1,018)
15
1,173 (525 to 3,500)
41
Hofer and colleagues [78]
65.9 (12.4)
APACHE II
1,524.7 (991.2 to 2,038)
108
1,147.9 (883.5 to 2,074.4)
18
De Pablo and colleagues [73]
61.2 (3.2)
APACHE II
890
48
1,600
52
Shapiro and colleagues [6]
57 (19)
APACHE III
1,050
49
1,550
95
Andrys and colleagues [60]
46
 
743 (338 to 1,148)
68
  
Leone and colleagues [76]
45 to 47 (16 to 21)
SIRS
458 ± 123
26
1,604 ± 940
11
ACCP/SCCM, American college of chest physicians/ society of critical care medicine; APACHE, acute physiology and chronic health evaluation; PRISM, pediatric risk of mortality; SIRS, systemic inflammatory response syndrome; SNAP, score for neonatal acute physiology. aData presented as mean (range) or mean ± standard deviation. bCriteria from [75]. Ages expressed in years unless otherwise stated.

Children

Generally speaking, the basal levels of soluble adhesion molecules in healthy children are similar to or lower than those of adults and neonates. However, both the relative amount and the absolute amount of sE-selectin and sL-selectin during sepsis seem much higher, whereas sP-selectin levels remain low. On the other hand, sICAM-1 and sVCAM-1 have similar basal levels and sepsis generates comparable or higher levels versus adults (Tables 2, 3, 4, 5 and 6 and Figure 3). Three studies assessed age-dependent differences in levels of selectins in healthy children [59, 60, 64]. Interestingly, infants had significantly lower levels of sL-selectin when compared with toddlers (average age 2 years) [59]. Additionally, healthy children (age 9 to 15.5 years) were found to have significantly decreasing sE-selectin levels with increasing age [64]. The authors of all three studies suggest that potential developmental changes exist in both expression and shedding of selectins, but that the physiological relevance of these observations remains to be determined.
During sepsis in children, studies show a significant increase in levels of soluble adhesion molecules [19, 6163]. Interestingly, Briassoulis and colleagues show significant increase of sE-selectin, as well as sL-selectin and ICAM-1, especially amongst survivors [19]. The authors conclude that inadequate or suppressed shedding during sepsis might be associated with increased mortality, and they hypothesize that the shedding process is indeed protective for the host. Similarly, in a large pediatric ICU study on microcirculatory dysfunction in meningococcal sepsis in children, levels of sE-selectin, sVCAM-1 and sICAM-1, but not sP-selectin, were significantly increased in septic patients but negatively correlated with the degree of microcirculatory dysfunction (a measure of sepsis severity), as assessed by sublingual imaging [61].

Adults

Generally, basal levels of soluble adhesion molecules in adults are similar to or somewhat lower than those of neonates and children (Tables 2, 3, 4, 5 and 6 and Figure 3). All molecules show increase during sepsis, with sICAM-1 and sP-selectin exhibiting the greatest increases compared with neonates and children. Age group stratification in levels of soluble adhesion molecules in adults is limited. Rudloff and colleagues determined sICAM-1 levels in healthy adults between 18 and 65 years old and reported no age-dependent differences [79].
As discussed above, in a large number of clinical sepsis studies in adults, higher levels of soluble adhesion molecules were generally related to severity of disease and mortality, although statistically significant correlations could not be made [5, 6, 1517, 37, 6574, 7682]. Some studies imply an alternate interpretation of these levels. For example, clinical studies have demonstrated that septic adults with modest levels of soluble adhesion molecules (putatively reflecting inadequate/aberrant shedding) had poorer outcome and higher mortality than those with the highest levels [22, 83]. Donnelly and colleagues found that critically ill patients with lower levels of sL-selectin had a higher chance of developing adult respiratory distress syndrome [83], and Seidelin and colleagues found that worse outcomes in septic patients correlated with lesser increases in sL-selectin levels [22]. Interestingly, one experimental study found significantly decreased leukocyte–endothelial interaction in a murine cecal ligation model of sepsis upon addition of exogenous sL-selectin into the circulation at levels comparable with those found in septic adults [27].

Adhesion molecule sheddases in sepsis: a delicate balance

The levels of adhesion molecules are an indirect result of protein cellular expression levels and a direct result of the proteolytic activity of sheddases. Thus, as discussed above (for example, see [4244]), expression and shedding activities can both independently contribute to overall levels of soluble adhesion molecules in circulation. Several studies have independently assessed levels of circulating sheddases and sheddase antagonists (that is, tissue inhibitor metalloproteinases) in clinical and experimental sepsis in efforts to clarify their contribution to pathology. However, so far these have yielded diverse and inconsistent results showing varied correlation of levels with protection and pathology [8488], suggesting a delicate balance is required.
The sensitive relationship between levels/activity of sheddases and outcome/effects in the host during sepsis is best reflected by studies from Long and colleagues investigating the role of ADAM-17 in L-selectin shedding in murine sepsis [12, 89]. They found that ADAM-17 in mice acts as a homeostatic (rheostat) molecule to control their neutrophil infiltration at sites of inflammation by regulating surface density of L-selectin. Low ADAM-17 activity results in little L-selectin shedding and too much neutrophil infiltration with subsequent collateral tissue damage. However, excessive activity of ADAM-17 promotes excessive L-selectin shedding and subsequently impairs neutrophil infiltration, which is needed to clear inflammation and infection.
Finally, evidence of age-related changes in sheddases and sheddase antagonists (that is, tissue inhibitor metalloproteinases) has been observed. It is interesting to speculate that these differences could partially underlie the observed age-related discrepancies in levels of soluble adhesion molecules [90, 91].

Conclusion

Increased levels of soluble adhesion molecules generally correlate well with the presence of sepsis in neonates, children and adults. However, their levels are still poorly predictive of sepsis severity scores, outcome and mortality. Our review raises important issues that need further attention, including age-related discrepancies in soluble adhesion molecule levels and even basic questions about whether these should correlate positively or negatively with mortality.
First, there is a well-articulated hypothesis (and significant experimental support) that shedding is indeed principally a homeostatic process that works to reduce inflammation and promote resolution of inflammation (Figure 4). This is thought to act at two complementary levels: removal of adhesion molecules from cell surfaces directly reduces the ability for cell–cell interaction; and the resulting soluble isoforms serve as competitive antagonists (or decoy ligands) for the remaining cell surface adhesion molecules.
Second, there is substantial evidence that disruption of shedding during sepsis, resulting in substantially lower levels of soluble adhesion molecules (that is, retention of elevated cell surface adhesion molecule levels), could lead to exacerbation of inflammation or promotion of mortality (Figure 4C). Thus, as illustrated in Figure 4, there are many points during the progression of an inflammatory response whereby the functional significance (with respect to the severity of the underlying inflammation) of a given level of soluble adhesion molecule varies greatly. In addition, levels of sheddases are also altered in human and experimental sepsis, suggesting putative functional contribution for these changes in regulating disease progression. The interaction of adhesion molecules and sheddases in the dynamic microenvironment of the cellular surfaces implicates a strong interdependence of these molecules. However, to our knowledge, no studies exist that combine the assessment of both adhesion molecules and their sheddases to assess clinical outcome. Thus, a novel and potentially critical opportunity to enhance clinical efficacy of soluble adhesion molecules exists that remains untapped. Such a combinatorial approach might be particularly useful for improving both sepsis diagnosis (which is greatly needed for the challenging situations in the febrile neonate or extreme older person) and our ability to track efficacy of therapies. Furthermore, serial assessment of the combination of these markers might even be effective in determining morbidity or mortality risk. Finally, it is interesting to consider whether regulation of sheddases and adhesion molecules might be regulated in sepsis at the epigenetic level, potentially offering additional ways to assess disease severity and predict outcomes [92].
Additionally, the age-related and comorbidity-related heterogeneity in levels of soluble adhesion molecules, as well as sheddases, in healthy individuals and septic patients could be an expression of a different basal state, as well as different responsiveness in sepsis, potentially leading to discrepancies in pathophysiology and disease progression between neonates, children or adults. Interestingly, epidemiological research shows a biphasic pattern in age-related differences in incidence and mortality [24]. The incidence of neonatal sepsis is 1 to 8 per 1,000 live births with mortality rates of 16%. These rates decrease during childhood (0.2/1,000 children, mortality 10%) and then increase in adults (26.2/1,000 in those over 85 years old, mortality 38.4%) [24]. A direct correlation between these rates and levels of soluble adhesion molecules remains speculative, but further attention to this could provide new insights.
In conclusion, while predictive properties of soluble adhesion molecules have been researched intensively, their levels are still poorly predictive of sepsis outcome and mortality. We propose two novel directions for improving clinical utility of soluble adhesion molecules: the combined simultaneous analysis of levels of adhesion molecules and their sheddases; and taking age-related discrepancies into account. Additional investigation of these issues may provide better understanding of the pathophysiology of sepsis and increased usefulness of soluble adhesion molecules as diagnostic and predictive biomarkers.

Acknowledgements

RZ was supported by stipends from the Tergooi Hospitals, Blaricum, the Drie Lichten foundation, and the Ter Meulen Fund, Royal Netherlands Academy of Arts and Sciences and the IPRF Early Investigators Exchange Program Award of the European Society for Pediatric Research. CVC was supported by a grant from the National Institutes of Health (HL104006).

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

RZ performed the literature search. RZ, RM, NIS, TWK, FBP and CVC helped draft and revise the manuscript. RZ and CVC prepared the figures. All authors helped to draft the manuscript. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM, Surviving Sepsis Campaign Management Guidelines Committee: Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004, 32: 858-873. 10.1097/01.CCM.0000117317.18092.E4.CrossRefPubMed Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM, Surviving Sepsis Campaign Management Guidelines Committee: Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004, 32: 858-873. 10.1097/01.CCM.0000117317.18092.E4.CrossRefPubMed
2.
Zurück zum Zitat Lukacs SL, Schoendorf KC, Schuchat A: Trends in sepsis-related neonatal mortality in the United States. 1985–1998. Pediatr Infect Dis J. 2004, 23: 599-603. 10.1097/01.inf.0000131633.74921.90.CrossRefPubMed Lukacs SL, Schoendorf KC, Schuchat A: Trends in sepsis-related neonatal mortality in the United States. 1985–1998. Pediatr Infect Dis J. 2004, 23: 599-603. 10.1097/01.inf.0000131633.74921.90.CrossRefPubMed
3.
Zurück zum Zitat Stoll BJ, Hansen NI, Sánchez PJ, Faix RG, Poindexter BB, Van Meurs KP, Bizzarro MJ, Goldberg RN, Frantz ID, Hale EC, Shankaran S, Kennedy K, Carlo WA, Watterberg KL, Bell EF, Walsh MC, Schibler K, Laptook AR, Shane AL, Schrag SJ, Das A, Higgins RD, Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network: Early onset neonatal sepsis: the burden of group B-streptococcal and E. coli disease continues. Pediatrics. 2011, 127: 817-826. 10.1542/peds.2010-2217.PubMedCentralCrossRefPubMed Stoll BJ, Hansen NI, Sánchez PJ, Faix RG, Poindexter BB, Van Meurs KP, Bizzarro MJ, Goldberg RN, Frantz ID, Hale EC, Shankaran S, Kennedy K, Carlo WA, Watterberg KL, Bell EF, Walsh MC, Schibler K, Laptook AR, Shane AL, Schrag SJ, Das A, Higgins RD, Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network: Early onset neonatal sepsis: the burden of group B-streptococcal and E. coli disease continues. Pediatrics. 2011, 127: 817-826. 10.1542/peds.2010-2217.PubMedCentralCrossRefPubMed
4.
Zurück zum Zitat Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR: Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001, 29: 1303-1310. 10.1097/00003246-200107000-00002.CrossRefPubMed Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR: Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001, 29: 1303-1310. 10.1097/00003246-200107000-00002.CrossRefPubMed
5.
Zurück zum Zitat Aird WC: The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood. 2003, 101: 3765-3777. 10.1182/blood-2002-06-1887.CrossRefPubMed Aird WC: The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood. 2003, 101: 3765-3777. 10.1182/blood-2002-06-1887.CrossRefPubMed
6.
Zurück zum Zitat Shapiro NI, Schuetz P, Yano K, Sorasaki M, Parikh SM, Jones AE, Trzeciak S, Ngo L, Aird WC: The association of endothelial cell signalling, severity of illness, and organ dysfunction in sepsis. Crit Care. 2010, 14: R182-10.1186/cc9290.PubMedCentralCrossRefPubMed Shapiro NI, Schuetz P, Yano K, Sorasaki M, Parikh SM, Jones AE, Trzeciak S, Ngo L, Aird WC: The association of endothelial cell signalling, severity of illness, and organ dysfunction in sepsis. Crit Care. 2010, 14: R182-10.1186/cc9290.PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Carman CV, Springer TA: Trans-cellular migration: cell–cell contacts get intimate. Curr Opin Cell Biol. 2008, 20: 533-534. 10.1016/j.ceb.2008.05.007.PubMedCentralCrossRefPubMed Carman CV, Springer TA: Trans-cellular migration: cell–cell contacts get intimate. Curr Opin Cell Biol. 2008, 20: 533-534. 10.1016/j.ceb.2008.05.007.PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Springer TA: Adhesion receptors of the immune system. Nature. 1990, 346: 425-433. 10.1038/346425a0.CrossRefPubMed Springer TA: Adhesion receptors of the immune system. Nature. 1990, 346: 425-433. 10.1038/346425a0.CrossRefPubMed
9.
Zurück zum Zitat Springer TA: Traffic signals for lymphocyte recirculation and leukocyte emigration: the multi-step paradigm. Cell. 1994, 76: 301-314. 10.1016/0092-8674(94)90337-9.CrossRefPubMed Springer TA: Traffic signals for lymphocyte recirculation and leukocyte emigration: the multi-step paradigm. Cell. 1994, 76: 301-314. 10.1016/0092-8674(94)90337-9.CrossRefPubMed
10.
Zurück zum Zitat Garton KJ, Gough PJ, Raines EW: Emerging roles for ectodomain shedding in the regulation of inflammatory responses. J Leukoc Biol. 2006, 79: 1105-1116. 10.1189/jlb.0106038.CrossRefPubMed Garton KJ, Gough PJ, Raines EW: Emerging roles for ectodomain shedding in the regulation of inflammatory responses. J Leukoc Biol. 2006, 79: 1105-1116. 10.1189/jlb.0106038.CrossRefPubMed
11.
Zurück zum Zitat Xing K, Murthy S, Liles WC, Singh JM: Clinical utility of biomarkers of endothelial activation in sepsis – a systematic review. Crit Care. 2012, 16: R7-10.1186/cc11145.PubMedCentralCrossRefPubMed Xing K, Murthy S, Liles WC, Singh JM: Clinical utility of biomarkers of endothelial activation in sepsis – a systematic review. Crit Care. 2012, 16: R7-10.1186/cc11145.PubMedCentralCrossRefPubMed
12.
Zurück zum Zitat Long C, Wang Y, Herrera AH, Horiuchi K, Walcheck B: In vivo role of leukocyte ADAM17 in the inflammatory and host responses during E. coli-mediated peritonitis. J Leukoc Biol. 2010, 87: 1097-1101. 10.1189/jlb.1109763.PubMedCentralCrossRefPubMed Long C, Wang Y, Herrera AH, Horiuchi K, Walcheck B: In vivo role of leukocyte ADAM17 in the inflammatory and host responses during E. coli-mediated peritonitis. J Leukoc Biol. 2010, 87: 1097-1101. 10.1189/jlb.1109763.PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Ley K, Laudanna C, Cybulsky MI, Nourshargh S: Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007, 7: 678-689. 10.1038/nri2156.CrossRefPubMed Ley K, Laudanna C, Cybulsky MI, Nourshargh S: Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007, 7: 678-689. 10.1038/nri2156.CrossRefPubMed
14.
Zurück zum Zitat Harrington EO, Stefanec T, Newton J, Rounds S: Release of soluble E-selectin from activated endothelial cells upon apoptosis. Lung. 2006, 184: 259-266. 10.1007/s00408-005-2589-5.CrossRefPubMed Harrington EO, Stefanec T, Newton J, Rounds S: Release of soluble E-selectin from activated endothelial cells upon apoptosis. Lung. 2006, 184: 259-266. 10.1007/s00408-005-2589-5.CrossRefPubMed
15.
Zurück zum Zitat Pigot R, Dillon LP, Hemingway IH, Gearing AJ: Soluble forms of E-selectin, ICAM-1 and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biophys Res Commun. 1992, 187: 584-589. 10.1016/0006-291X(92)91234-H.CrossRef Pigot R, Dillon LP, Hemingway IH, Gearing AJ: Soluble forms of E-selectin, ICAM-1 and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biophys Res Commun. 1992, 187: 584-589. 10.1016/0006-291X(92)91234-H.CrossRef
16.
Zurück zum Zitat Newman W, Beall LD, Carson CW, Hunder GG, Graben N, Randhawa ZI, Gopal TV, Wiener-Kronish J, Matthay MA: Soluble E-selectin is found in supernatants of activated endothelial cells and is elevated in the serum of patients with septic shock. J Immunol. 1993, 150: 644-654.PubMed Newman W, Beall LD, Carson CW, Hunder GG, Graben N, Randhawa ZI, Gopal TV, Wiener-Kronish J, Matthay MA: Soluble E-selectin is found in supernatants of activated endothelial cells and is elevated in the serum of patients with septic shock. J Immunol. 1993, 150: 644-654.PubMed
17.
Zurück zum Zitat Cummings CJ, Sessler CN, Beall LD, Fisher BJ, Best AM, Fowler AA: Soluble E-selectin levels in sepsis and critical illness. Correlation with infection and hemodynamic dysfunction. Am J Respir Crit Care Med. 1997, 156: 431-437. 10.1164/ajrccm.156.2.9509017.CrossRefPubMed Cummings CJ, Sessler CN, Beall LD, Fisher BJ, Best AM, Fowler AA: Soluble E-selectin levels in sepsis and critical illness. Correlation with infection and hemodynamic dysfunction. Am J Respir Crit Care Med. 1997, 156: 431-437. 10.1164/ajrccm.156.2.9509017.CrossRefPubMed
18.
Zurück zum Zitat Smith CW: Potential significance of circulating E-selectin. Circulation. 1997, 95: 1986-1988. 10.1161/01.CIR.95.8.1986.CrossRefPubMed Smith CW: Potential significance of circulating E-selectin. Circulation. 1997, 95: 1986-1988. 10.1161/01.CIR.95.8.1986.CrossRefPubMed
19.
Zurück zum Zitat Briassoulis G, Papassotiriou I, Mavrikiou M, Lazaropoulou C, Margeli A: Longitudinal course and clinical significance of TGF-beta1, sL- and sE-Selectins and sICAM-1 levels during severe acute stress in children. Clin Biochem. 2007, 40: 299-304. 10.1016/j.clinbiochem.2006.11.015.CrossRefPubMed Briassoulis G, Papassotiriou I, Mavrikiou M, Lazaropoulou C, Margeli A: Longitudinal course and clinical significance of TGF-beta1, sL- and sE-Selectins and sICAM-1 levels during severe acute stress in children. Clin Biochem. 2007, 40: 299-304. 10.1016/j.clinbiochem.2006.11.015.CrossRefPubMed
20.
Zurück zum Zitat Smalley DM, Ley K: L-selectin: mechanisms and physiological significance of ectodomain cleavage. J Cell Mol Med. 2005, 9: 255-266. 10.1111/j.1582-4934.2005.tb00354.x.CrossRefPubMed Smalley DM, Ley K: L-selectin: mechanisms and physiological significance of ectodomain cleavage. J Cell Mol Med. 2005, 9: 255-266. 10.1111/j.1582-4934.2005.tb00354.x.CrossRefPubMed
21.
Zurück zum Zitat Venturi GM, Tu L, Kadono T, Khan AI, Fujimoto Y, Oshel P, Bock CB, Miller AS, Albrecht RM, Kubes P, Steeber DA, Tedder TF: Leukocyte migration is regulated by L-selectin endoproteolytic release. Immunity. 2003, 19: 713-724. 10.1016/S1074-7613(03)00295-4.CrossRefPubMed Venturi GM, Tu L, Kadono T, Khan AI, Fujimoto Y, Oshel P, Bock CB, Miller AS, Albrecht RM, Kubes P, Steeber DA, Tedder TF: Leukocyte migration is regulated by L-selectin endoproteolytic release. Immunity. 2003, 19: 713-724. 10.1016/S1074-7613(03)00295-4.CrossRefPubMed
22.
Zurück zum Zitat Seidelin JB, Nielsen OH, Strøm J: Soluble L-selectin levels predict survival in sepsis. Intensive Care Med. 2002, 28: 1613-1618. 10.1007/s00134-002-1501-5.CrossRefPubMed Seidelin JB, Nielsen OH, Strøm J: Soluble L-selectin levels predict survival in sepsis. Intensive Care Med. 2002, 28: 1613-1618. 10.1007/s00134-002-1501-5.CrossRefPubMed
23.
Zurück zum Zitat Schleiffenbaum B, Spertini O, Tedder TF: Soluble L-selectin is present in human plasma at high levels and retains functional activity. J Cell Biol. 1992, 119: 229-238. 10.1083/jcb.119.1.229.CrossRefPubMed Schleiffenbaum B, Spertini O, Tedder TF: Soluble L-selectin is present in human plasma at high levels and retains functional activity. J Cell Biol. 1992, 119: 229-238. 10.1083/jcb.119.1.229.CrossRefPubMed
24.
Zurück zum Zitat Ferri LE, Pascual J, Seely AJ, Chaudhury P, Christou NV: Soluble L-selectin attenuates tumor necrosis factor-α-mediated leukocyte adherence and vascular permeability: a protective role for elevated soluble L-selectin in sepsis. Crit Care Med. 2002, 30: 1842-1847. 10.1097/00003246-200208000-00028.CrossRefPubMed Ferri LE, Pascual J, Seely AJ, Chaudhury P, Christou NV: Soluble L-selectin attenuates tumor necrosis factor-α-mediated leukocyte adherence and vascular permeability: a protective role for elevated soluble L-selectin in sepsis. Crit Care Med. 2002, 30: 1842-1847. 10.1097/00003246-200208000-00028.CrossRefPubMed
25.
Zurück zum Zitat Ferri LE, Swartz D, Christou NV: Soluble L-selectin at levels present in septic patients diminishes leukocyte-endothelial cell interactions in mice in vivo: a mechanism for decreased leukocyte delivery to remote sites in sepsis. Crit Care Med. 2001, 29: 117-122. 10.1097/00003246-200101000-00024.CrossRefPubMed Ferri LE, Swartz D, Christou NV: Soluble L-selectin at levels present in septic patients diminishes leukocyte-endothelial cell interactions in mice in vivo: a mechanism for decreased leukocyte delivery to remote sites in sepsis. Crit Care Med. 2001, 29: 117-122. 10.1097/00003246-200101000-00024.CrossRefPubMed
26.
Zurück zum Zitat Ferri LE, Chia S, Benay C, Giannias B, Christou NV: L-selectin shedding in sepsis limits leukocyte mediated microvascular injury at remote sites. Surgery. 2009, 145: 384-391. 10.1016/j.surg.2008.12.011.CrossRefPubMed Ferri LE, Chia S, Benay C, Giannias B, Christou NV: L-selectin shedding in sepsis limits leukocyte mediated microvascular injury at remote sites. Surgery. 2009, 145: 384-391. 10.1016/j.surg.2008.12.011.CrossRefPubMed
27.
Zurück zum Zitat Easton AS, Dorovini-Zis K: The kinetics, function, and regulation of P-selectin expressed by human brain microvessel endothelial cells in primary culture. Microvasc Res. 2001, 62: 335-345. 10.1006/mvre.2001.2350.CrossRefPubMed Easton AS, Dorovini-Zis K: The kinetics, function, and regulation of P-selectin expressed by human brain microvessel endothelial cells in primary culture. Microvasc Res. 2001, 62: 335-345. 10.1006/mvre.2001.2350.CrossRefPubMed
28.
Zurück zum Zitat Zarbock A, Polanowska-Grabowska RK, Ley K: Platelet–neutrophil interactions: linking haemostasis and inflammation. Blood Rev. 2007, 21: 99-111. 10.1016/j.blre.2006.06.001.CrossRefPubMed Zarbock A, Polanowska-Grabowska RK, Ley K: Platelet–neutrophil interactions: linking haemostasis and inflammation. Blood Rev. 2007, 21: 99-111. 10.1016/j.blre.2006.06.001.CrossRefPubMed
29.
Zurück zum Zitat Fijnheer R, Frijns CJ, Korteweg J, Rommes H, Peters JH, Sixma JJ, Nieuwenhuis HK: The origin of P-selectin as a circulating plasma protein. Thromb Haemost. 1997, 77: 1081-1085.PubMed Fijnheer R, Frijns CJ, Korteweg J, Rommes H, Peters JH, Sixma JJ, Nieuwenhuis HK: The origin of P-selectin as a circulating plasma protein. Thromb Haemost. 1997, 77: 1081-1085.PubMed
30.
Zurück zum Zitat Chen AY, Ha JN, Delano FA, Schmid-Schönbein GW: Receptor cleavage and P-selectin-dependent reduction of leukocyte adhesion in the spontaneously hypertensive rat. J Leukoc Biol. 2012, 92: 183-194. 10.1189/jlb.0112010.PubMedCentralCrossRefPubMed Chen AY, Ha JN, Delano FA, Schmid-Schönbein GW: Receptor cleavage and P-selectin-dependent reduction of leukocyte adhesion in the spontaneously hypertensive rat. J Leukoc Biol. 2012, 92: 183-194. 10.1189/jlb.0112010.PubMedCentralCrossRefPubMed
31.
Zurück zum Zitat Füth R, Dinh W, Nickl W, Bansemir L, Barroso MC, Bufe A, Sause A, Scheffold T, Krahn T, Ellinghaus P, Lankisch M: Soluble P-selectin and matrix metalloproteinase 2 levels are elevated in patients with diastolic dysfunction independent of glucose metabolism disorder or coronary artery disease. Exp Clin Cardiol. 2009, 14: 76-79. Füth R, Dinh W, Nickl W, Bansemir L, Barroso MC, Bufe A, Sause A, Scheffold T, Krahn T, Ellinghaus P, Lankisch M: Soluble P-selectin and matrix metalloproteinase 2 levels are elevated in patients with diastolic dysfunction independent of glucose metabolism disorder or coronary artery disease. Exp Clin Cardiol. 2009, 14: 76-79.
32.
Zurück zum Zitat Mosad E, Elsayh KI, Eltayeb AA: Tissue factor pathway inhibitor and P-selectin as markers of sepsis-induced non-overt disseminated intravascular coagulopathy. Clin Appl Thromb Hemost. 2011, 17: 80-87. 10.1177/1076029609344981.CrossRefPubMed Mosad E, Elsayh KI, Eltayeb AA: Tissue factor pathway inhibitor and P-selectin as markers of sepsis-induced non-overt disseminated intravascular coagulopathy. Clin Appl Thromb Hemost. 2011, 17: 80-87. 10.1177/1076029609344981.CrossRefPubMed
33.
Zurück zum Zitat Tsakadze NL, Sithu SD, Sen U, English WR, Murphy G, D'Souza SE: Tumor necrosis factor-alpha-converting enzyme (TACE/ADAM-17) mediates the ectodomain cleavage of intercellular adhesion molecule-1 (ICAM-1). J Biol Chem. 2006, 281: 3157-3164. 10.1074/jbc.M510797200.CrossRefPubMed Tsakadze NL, Sithu SD, Sen U, English WR, Murphy G, D'Souza SE: Tumor necrosis factor-alpha-converting enzyme (TACE/ADAM-17) mediates the ectodomain cleavage of intercellular adhesion molecule-1 (ICAM-1). J Biol Chem. 2006, 281: 3157-3164. 10.1074/jbc.M510797200.CrossRefPubMed
34.
Zurück zum Zitat Sultan S, Gosling M, Nagase H, Powell JT: Shear stress-induced shedding of soluble intercellular adhesion molecule-1 from saphenous vein endothelium. FEBS Lett. 2004, 564: 161-165. 10.1016/S0014-5793(04)00337-0.CrossRefPubMed Sultan S, Gosling M, Nagase H, Powell JT: Shear stress-induced shedding of soluble intercellular adhesion molecule-1 from saphenous vein endothelium. FEBS Lett. 2004, 564: 161-165. 10.1016/S0014-5793(04)00337-0.CrossRefPubMed
35.
Zurück zum Zitat Fiore E, Fusco C, Romero P, Stamenkovic I: Matrix metalloproteinase 9 (MMP-9/gelatinase B) proteolytically cleaves ICAM-1 and participates in tumor cell resistance to natural killer cell-mediated cytotoxicity. Oncogene. 2002, 21: 5213-5223. 10.1038/sj.onc.1205684.CrossRefPubMed Fiore E, Fusco C, Romero P, Stamenkovic I: Matrix metalloproteinase 9 (MMP-9/gelatinase B) proteolytically cleaves ICAM-1 and participates in tumor cell resistance to natural killer cell-mediated cytotoxicity. Oncogene. 2002, 21: 5213-5223. 10.1038/sj.onc.1205684.CrossRefPubMed
36.
Zurück zum Zitat Champagne B, Tremblay P, Cantin A, St Pierre Y: Proteolytic cleavage of ICAM-1 by human neutrophil elastase. J Immunol. 1998, 161: 6398-6405.PubMed Champagne B, Tremblay P, Cantin A, St Pierre Y: Proteolytic cleavage of ICAM-1 by human neutrophil elastase. J Immunol. 1998, 161: 6398-6405.PubMed
37.
Zurück zum Zitat van Griensven M, Probst C, Müller K, Hoevel P, Pape HC: Leukocyte–endothelial interactions via ICAM-1 are detrimental in polymicrobial sepsis. Shock. 2006, 25: 254-259. 10.1097/01.shk.0000196497.49683.13.CrossRefPubMed van Griensven M, Probst C, Müller K, Hoevel P, Pape HC: Leukocyte–endothelial interactions via ICAM-1 are detrimental in polymicrobial sepsis. Shock. 2006, 25: 254-259. 10.1097/01.shk.0000196497.49683.13.CrossRefPubMed
38.
Zurück zum Zitat Shapiro NI, Yano K, Sorasaki M, Fischer C, Shih SC, Aird WC: Skin biopsies demonstrate site-specific endothelial activation in mouse models of sepsis. J Vasc Res. 2009, 46: 495-502. 10.1159/000210662.CrossRefPubMed Shapiro NI, Yano K, Sorasaki M, Fischer C, Shih SC, Aird WC: Skin biopsies demonstrate site-specific endothelial activation in mouse models of sepsis. J Vasc Res. 2009, 46: 495-502. 10.1159/000210662.CrossRefPubMed
39.
Zurück zum Zitat Lemaire LC, de Kruif MD, Giebelen IA, van Zoelen MA, van't Veer C, van der Poll T: Differential dose-dependent effects of prednisolone on shedding of endothelial adhesion molecules during human endotoxemia. Immunol Lett. 2008, 21: 93-96.CrossRef Lemaire LC, de Kruif MD, Giebelen IA, van Zoelen MA, van't Veer C, van der Poll T: Differential dose-dependent effects of prednisolone on shedding of endothelial adhesion molecules during human endotoxemia. Immunol Lett. 2008, 21: 93-96.CrossRef
40.
Zurück zum Zitat Singh RJ, Mason JC, Lidington EA, Edwards DR, Nuttall RK, Khokha R, Knauper V, Murphy G, Gavrilovic J: Cytokine stimulated vascular cell adhesion molecule-1 (VCAM-1) ectodomain release is regulated by TIMP-3. Cardiovasc Res. 2005, 67: 39-49. 10.1016/j.cardiores.2005.02.020.CrossRefPubMed Singh RJ, Mason JC, Lidington EA, Edwards DR, Nuttall RK, Khokha R, Knauper V, Murphy G, Gavrilovic J: Cytokine stimulated vascular cell adhesion molecule-1 (VCAM-1) ectodomain release is regulated by TIMP-3. Cardiovasc Res. 2005, 67: 39-49. 10.1016/j.cardiores.2005.02.020.CrossRefPubMed
41.
Zurück zum Zitat Newby AC: Studying mechanisms underlying shedding of endothelial membrane proteins could help patients at risk for myocardial infarction. Cardiovasc Res. 2005, 67: 4-5. 10.1016/j.cardiores.2005.04.024.CrossRefPubMed Newby AC: Studying mechanisms underlying shedding of endothelial membrane proteins could help patients at risk for myocardial infarction. Cardiovasc Res. 2005, 67: 4-5. 10.1016/j.cardiores.2005.04.024.CrossRefPubMed
42.
Zurück zum Zitat Koenig JM, Simon J, Anderson DC, Smith E, Smith CW: Diminished soluble and total cellular L-selectin in cord blood is associated with its impaired shedding from activated neutrophils. Pediatr Res. 1996, 39: 616-621. 10.1203/00006450-199604000-00009.CrossRefPubMed Koenig JM, Simon J, Anderson DC, Smith E, Smith CW: Diminished soluble and total cellular L-selectin in cord blood is associated with its impaired shedding from activated neutrophils. Pediatr Res. 1996, 39: 616-621. 10.1203/00006450-199604000-00009.CrossRefPubMed
43.
Zurück zum Zitat Rebuck N, Gibson A, Finn A: Neutrophil adhesion molecules in term and premature infants: normal or enhanced leucocyte integrins but defective L-selectin expression and shedding. Clin Exp Immunol. 1995, 101: 183-189.PubMedCentralCrossRefPubMed Rebuck N, Gibson A, Finn A: Neutrophil adhesion molecules in term and premature infants: normal or enhanced leucocyte integrins but defective L-selectin expression and shedding. Clin Exp Immunol. 1995, 101: 183-189.PubMedCentralCrossRefPubMed
44.
Zurück zum Zitat Török C, Lundahl J, Hed J, Lagercrantz H: Diversity in regulation of adhesion molecules (Mac-1 and L-selectin) in monocytes and neutrophils from neonates and adults. Arch Dis Child. 1993, 68: 561-565. 10.1136/adc.68.5_Spec_No.561.PubMedCentralCrossRefPubMed Török C, Lundahl J, Hed J, Lagercrantz H: Diversity in regulation of adhesion molecules (Mac-1 and L-selectin) in monocytes and neutrophils from neonates and adults. Arch Dis Child. 1993, 68: 561-565. 10.1136/adc.68.5_Spec_No.561.PubMedCentralCrossRefPubMed
45.
Zurück zum Zitat Austgulen R, Arntzen KJ, Haereid PE, Aag S, Døllner H: Infections in neonates delivered at term are associated with increased serum levels of ICAM-1 and E-selectin. Acta Pediatr. 1997, 86: 274-280. 10.1111/j.1651-2227.1997.tb08889.x.CrossRef Austgulen R, Arntzen KJ, Haereid PE, Aag S, Døllner H: Infections in neonates delivered at term are associated with increased serum levels of ICAM-1 and E-selectin. Acta Pediatr. 1997, 86: 274-280. 10.1111/j.1651-2227.1997.tb08889.x.CrossRef
46.
Zurück zum Zitat Levy O: Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol. 2007, 7: 379-390. 10.1038/nri2075.CrossRefPubMed Levy O: Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol. 2007, 7: 379-390. 10.1038/nri2075.CrossRefPubMed
47.
Zurück zum Zitat Giannaki G, Rizos D, Xyni K, Sarandakou A, Protonotariou E, Phocas I, Creatsas G: Serum soluble E-and L-selectin in the very early neonatal period. Early Hum Develop. 2000, 60: 149-155. 10.1016/S0378-3782(00)00115-8.CrossRef Giannaki G, Rizos D, Xyni K, Sarandakou A, Protonotariou E, Phocas I, Creatsas G: Serum soluble E-and L-selectin in the very early neonatal period. Early Hum Develop. 2000, 60: 149-155. 10.1016/S0378-3782(00)00115-8.CrossRef
48.
Zurück zum Zitat Sitaru AG, Speer CP, Holzhauer S, Obergfell A, Walter U, Grossmann R: Chorioamnionitis is associated with increased CD40L expression on cord blood platelets. Thromb Haemost. 2005, 94: 1219-1223.PubMed Sitaru AG, Speer CP, Holzhauer S, Obergfell A, Walter U, Grossmann R: Chorioamnionitis is associated with increased CD40L expression on cord blood platelets. Thromb Haemost. 2005, 94: 1219-1223.PubMed
49.
Zurück zum Zitat Figueras-Aloy J, Gómez-López L, Rodríguez-Miguélez JM, Salvia-Roiges MD, Jordán-García I, Ferrer-Codina I, Carbonell-Estrany X, Jiménez-González R: Serum soluble ICAM-1, VCAM-1, L-selectin and P-selectin levels as markers of infection and their relation to clinical severity in neonatal sepsis. Am J Perinat. 2007, 24: 331-338. 10.1055/s-2007-981851.CrossRef Figueras-Aloy J, Gómez-López L, Rodríguez-Miguélez JM, Salvia-Roiges MD, Jordán-García I, Ferrer-Codina I, Carbonell-Estrany X, Jiménez-González R: Serum soluble ICAM-1, VCAM-1, L-selectin and P-selectin levels as markers of infection and their relation to clinical severity in neonatal sepsis. Am J Perinat. 2007, 24: 331-338. 10.1055/s-2007-981851.CrossRef
50.
Zurück zum Zitat Kourtis AP, Lee FK, Stoll BJ: Soluble L-selectin, a marker of immune activation, in neonatal infection. Clin Immunol. 2003, 109: 224-228. 10.1016/S1521-6616(03)00209-2.CrossRefPubMed Kourtis AP, Lee FK, Stoll BJ: Soluble L-selectin, a marker of immune activation, in neonatal infection. Clin Immunol. 2003, 109: 224-228. 10.1016/S1521-6616(03)00209-2.CrossRefPubMed
51.
Zurück zum Zitat Berner R, Niemeyer CM, Leititis JU, Funke A, Schwab C, Rau U, Richter K, Tawfeek MS, Clad A, Brandis M: Plasma levels and gene expression of granulocyte colony-stimulating factor, tumor necrosis factor-(alpha), interleukin (IL)-1(beta), IL-6, IL-8, and soluble intercellular adhesion molecule-1 in neonatal early onset sepsis. Pediatr Res. 1998, 44: 469-477. 10.1203/00006450-199810000-00002.CrossRefPubMed Berner R, Niemeyer CM, Leititis JU, Funke A, Schwab C, Rau U, Richter K, Tawfeek MS, Clad A, Brandis M: Plasma levels and gene expression of granulocyte colony-stimulating factor, tumor necrosis factor-(alpha), interleukin (IL)-1(beta), IL-6, IL-8, and soluble intercellular adhesion molecule-1 in neonatal early onset sepsis. Pediatr Res. 1998, 44: 469-477. 10.1203/00006450-199810000-00002.CrossRefPubMed
52.
Zurück zum Zitat Dollner H, Vatten L, Austgulen R: Early diagnostic markers for neonatal sepsis: comparing C-reactive protein, interleukin-6, soluble tumor necrosis factor receptors and soluble adhesion molecules. J Clin Epidemiol. 2001, 54: 1251-1257. 10.1016/S0895-4356(01)00400-0.CrossRefPubMed Dollner H, Vatten L, Austgulen R: Early diagnostic markers for neonatal sepsis: comparing C-reactive protein, interleukin-6, soluble tumor necrosis factor receptors and soluble adhesion molecules. J Clin Epidemiol. 2001, 54: 1251-1257. 10.1016/S0895-4356(01)00400-0.CrossRefPubMed
53.
Zurück zum Zitat Hansen AB, Verder H, Staun-Olsen P: Soluble intercellular adhesion molecule and C-reactive protein as early markers of infection in newborns. J Perinat Med. 2000, 28: 97-103.CrossRefPubMed Hansen AB, Verder H, Staun-Olsen P: Soluble intercellular adhesion molecule and C-reactive protein as early markers of infection in newborns. J Perinat Med. 2000, 28: 97-103.CrossRefPubMed
54.
Zurück zum Zitat Edgar JDM: Serum sICAM-1 levels in the diagnosis of neonatal infection. Pediatr Res. 1998, 44: 430- Edgar JDM: Serum sICAM-1 levels in the diagnosis of neonatal infection. Pediatr Res. 1998, 44: 430-
55.
Zurück zum Zitat Edgar JDM, Wilson DC, McMillan SA, Crockard AD, Halliday MI, Gardiner KR, Rowlands BJ, Halliday HL, McNeill TA: Predictive value of soluble immunological mediators in neonatal infection. Clin Sci. 1994, 87: 165-CrossRefPubMed Edgar JDM, Wilson DC, McMillan SA, Crockard AD, Halliday MI, Gardiner KR, Rowlands BJ, Halliday HL, McNeill TA: Predictive value of soluble immunological mediators in neonatal infection. Clin Sci. 1994, 87: 165-CrossRefPubMed
56.
Zurück zum Zitat Edgar JDM, Gabriel V, Craig A, Wheeler D, Thomas M, Grant J: A low serum sICAM-1 level may assist in the exclusion of neonatal infection. Biol Neonate. 2002, 81: 105-108. 10.1159/000047193.CrossRefPubMed Edgar JDM, Gabriel V, Craig A, Wheeler D, Thomas M, Grant J: A low serum sICAM-1 level may assist in the exclusion of neonatal infection. Biol Neonate. 2002, 81: 105-108. 10.1159/000047193.CrossRefPubMed
57.
Zurück zum Zitat Edgar JDM, Gabriel V, Gallimore JR, McMillan SA, Grant J: A prospective study of the sensitivity, specificity and diagnostic performance of soluble intercellular adhesion molecule 1, highly sensitive C-reactive protein, soluble E-selectin and serum amyloid A in the diagnosis of neonatal infection. BMC Pediatr. 2010, 16: 10-22. Edgar JDM, Gabriel V, Gallimore JR, McMillan SA, Grant J: A prospective study of the sensitivity, specificity and diagnostic performance of soluble intercellular adhesion molecule 1, highly sensitive C-reactive protein, soluble E-selectin and serum amyloid A in the diagnosis of neonatal infection. BMC Pediatr. 2010, 16: 10-22.
58.
Zurück zum Zitat Apostolou M, Dimitriou H, Kaleyias J, Perdikogianni C, Stiakaki E, Costalos C, Kalmanti MC: Levels of soluble ICAM-1 in premature and full-term neonates with infection. Mediators Inflamm. 2002, 11: 95-98. 10.1080/09629350220131944.PubMedCentralCrossRefPubMed Apostolou M, Dimitriou H, Kaleyias J, Perdikogianni C, Stiakaki E, Costalos C, Kalmanti MC: Levels of soluble ICAM-1 in premature and full-term neonates with infection. Mediators Inflamm. 2002, 11: 95-98. 10.1080/09629350220131944.PubMedCentralCrossRefPubMed
59.
Zurück zum Zitat Kourtis AP, Nesheim SR, Thea D, Ibegbu C, Nahmias AJ, Lee FK: Correlation of virus load and soluble L-selectin, a marker of immune activation, in pediatric HIV infection. AIDS. 2000, 14: 2429-2436. 10.1097/00002030-200011100-00003.CrossRefPubMed Kourtis AP, Nesheim SR, Thea D, Ibegbu C, Nahmias AJ, Lee FK: Correlation of virus load and soluble L-selectin, a marker of immune activation, in pediatric HIV infection. AIDS. 2000, 14: 2429-2436. 10.1097/00002030-200011100-00003.CrossRefPubMed
60.
Zurück zum Zitat Andrys C, Pozler O, Krejsek J, Derner V, Drahosová M, Kopecký O: Serum soluble adhesion molecules (sICAM-1, sVCAM and E-selectin) in healthy school aged children and adults. Acta Medica (Hradec Kralove). 2000, 43: 103-106. Andrys C, Pozler O, Krejsek J, Derner V, Drahosová M, Kopecký O: Serum soluble adhesion molecules (sICAM-1, sVCAM and E-selectin) in healthy school aged children and adults. Acta Medica (Hradec Kralove). 2000, 43: 103-106.
61.
Zurück zum Zitat Paize F, Sarginson R, Makwana N, Baines PB, Thomson AP, Sinha I, Hart CA, Riordan A, Hawkins KC, Carrol ED, Parry CM: Changes in the sublingual microcirculation and endothelial adhesion molecules during the course of severe meningococcal disease treated in the paediatric intensive care unit. Intensive Care Med. 2012, 38: 863-871. 10.1007/s00134-012-2476-5.CrossRefPubMed Paize F, Sarginson R, Makwana N, Baines PB, Thomson AP, Sinha I, Hart CA, Riordan A, Hawkins KC, Carrol ED, Parry CM: Changes in the sublingual microcirculation and endothelial adhesion molecules during the course of severe meningococcal disease treated in the paediatric intensive care unit. Intensive Care Med. 2012, 38: 863-871. 10.1007/s00134-012-2476-5.CrossRefPubMed
62.
Zurück zum Zitat Krueger M, Heinzmann A, Nauck M: Adhesion molecules in pediatric intensive care patients with organ dysfunction syndrome. Int Care Med. 2007, 33: 359-363. 10.1007/s00134-006-0453-6.CrossRef Krueger M, Heinzmann A, Nauck M: Adhesion molecules in pediatric intensive care patients with organ dysfunction syndrome. Int Care Med. 2007, 33: 359-363. 10.1007/s00134-006-0453-6.CrossRef
63.
Zurück zum Zitat Whalen MJ, Doughty LA, Carlos TM, Wisniewski SR, Kochanek PM, Carcillo JA: Intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 are increased in the plasma of children with sepsis-induced multiple organ failure. Crit Care Med. 2000, 28: 2600-2607.CrossRefPubMed Whalen MJ, Doughty LA, Carlos TM, Wisniewski SR, Kochanek PM, Carcillo JA: Intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 are increased in the plasma of children with sepsis-induced multiple organ failure. Crit Care Med. 2000, 28: 2600-2607.CrossRefPubMed
64.
Zurück zum Zitat Nash MC, Wade AM, Shah V, Dillon MJ: Normal levels of soluble E-selectin, soluble intercellular adhesion molecule-1 (sICAM-1), and soluble vascular adhesion molecule-1 (sVCAM-1) decrease with age. Clin Exp Immunol. 1996, 103: 167-170. 10.1046/j.1365-2249.1996.925616.x.PubMedCentralCrossRefPubMed Nash MC, Wade AM, Shah V, Dillon MJ: Normal levels of soluble E-selectin, soluble intercellular adhesion molecule-1 (sICAM-1), and soluble vascular adhesion molecule-1 (sVCAM-1) decrease with age. Clin Exp Immunol. 1996, 103: 167-170. 10.1046/j.1365-2249.1996.925616.x.PubMedCentralCrossRefPubMed
65.
Zurück zum Zitat Presterl E, Lassnigg A, Mueller-Uri P, El-Menyawi I, Graninger W: Cytokines in sepsis due to Candida albicans and in bacterial sepsis. Eur Cytokine Netw. 1999, 10: 423-430.PubMed Presterl E, Lassnigg A, Mueller-Uri P, El-Menyawi I, Graninger W: Cytokines in sepsis due to Candida albicans and in bacterial sepsis. Eur Cytokine Netw. 1999, 10: 423-430.PubMed
66.
Zurück zum Zitat Weigand MA, Schmidt H, Pourmahmoud M, Zhao Q, Martin E, Bardenheuer HJ: Circulating intercellular adhesion molecule-1 as an early predictor of hepatic failure in patients with septic shock. Crit Care Med. 1999, 27: 2656-2661. 10.1097/00003246-199912000-00008.CrossRefPubMed Weigand MA, Schmidt H, Pourmahmoud M, Zhao Q, Martin E, Bardenheuer HJ: Circulating intercellular adhesion molecule-1 as an early predictor of hepatic failure in patients with septic shock. Crit Care Med. 1999, 27: 2656-2661. 10.1097/00003246-199912000-00008.CrossRefPubMed
67.
Zurück zum Zitat Hynninen M, Valtonen M, Markkanen H, Vaara M, Kuusela P, Jousela I, Piilonen A, Takkunen O: Interleukin 1 receptor antagonist and E-selectin concentrations: a comparison in patients with severe acute pancreatitis and severe sepsis. J Crit Care. 1999, 14: 63-68. 10.1016/S0883-9441(99)90015-1.CrossRefPubMed Hynninen M, Valtonen M, Markkanen H, Vaara M, Kuusela P, Jousela I, Piilonen A, Takkunen O: Interleukin 1 receptor antagonist and E-selectin concentrations: a comparison in patients with severe acute pancreatitis and severe sepsis. J Crit Care. 1999, 14: 63-68. 10.1016/S0883-9441(99)90015-1.CrossRefPubMed
68.
Zurück zum Zitat Knapp S, Thalhammer F, Locker GJ, Laczika K, Hollenstein U, Frass M, Winkler S, Stoiser B, Wilfing A, Burgmann H: Prognostic value of MIP-1α, TGF-β2, sELAM-1, and sVCAM-1 in patients with gram-positive sepsis. Clin Immunol Immunopathol. 1998, 7: 139-144.CrossRef Knapp S, Thalhammer F, Locker GJ, Laczika K, Hollenstein U, Frass M, Winkler S, Stoiser B, Wilfing A, Burgmann H: Prognostic value of MIP-1α, TGF-β2, sELAM-1, and sVCAM-1 in patients with gram-positive sepsis. Clin Immunol Immunopathol. 1998, 7: 139-144.CrossRef
69.
Zurück zum Zitat Osmanovic N, Romijn FP, Joop K, Sturk A, Nieuwland R: Soluble selectins in sepsis: microparticle-associated, but only to a minor degree. Thromb Haemost. 2000, 84: 731-732.PubMed Osmanovic N, Romijn FP, Joop K, Sturk A, Nieuwland R: Soluble selectins in sepsis: microparticle-associated, but only to a minor degree. Thromb Haemost. 2000, 84: 731-732.PubMed
70.
Zurück zum Zitat Soderquist B, Sundqvist KG, Vikerfors T: Adhesion molecules E-selectin, intercellular adhesion molecules-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in sera from patients with Staphylococcus aureus bacteremia with or without endocarditis. Clin Exp Immunol. 1999, 118: 408-411. 10.1046/j.1365-2249.1999.01081.x.PubMedCentralCrossRefPubMed Soderquist B, Sundqvist KG, Vikerfors T: Adhesion molecules E-selectin, intercellular adhesion molecules-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in sera from patients with Staphylococcus aureus bacteremia with or without endocarditis. Clin Exp Immunol. 1999, 118: 408-411. 10.1046/j.1365-2249.1999.01081.x.PubMedCentralCrossRefPubMed
71.
Zurück zum Zitat Takala A, Jousela I, Jansson SE, Olkkola KT, Takkunen O, Orpana A, Karonen SL, Repo H: Markers of systemic inflammation predicting organ failure in community-acquired septic shock. Clin Sci (Lond). 1999, 97: 529-538. 10.1042/CS19990073.CrossRef Takala A, Jousela I, Jansson SE, Olkkola KT, Takkunen O, Orpana A, Karonen SL, Repo H: Markers of systemic inflammation predicting organ failure in community-acquired septic shock. Clin Sci (Lond). 1999, 97: 529-538. 10.1042/CS19990073.CrossRef
72.
Zurück zum Zitat Geppert A, Zorn G, Karth GD, Haumer M, Gwechenberger M, Koller-Strametz J, Heinz G, Huber K, Siostrzonek P: Soluble selectins and the systemic inflammatory response syndrome after successful cardiopulmonary resuscitation. Crit Care Med. 2000, 28: 2360-2365.CrossRefPubMed Geppert A, Zorn G, Karth GD, Haumer M, Gwechenberger M, Koller-Strametz J, Heinz G, Huber K, Siostrzonek P: Soluble selectins and the systemic inflammatory response syndrome after successful cardiopulmonary resuscitation. Crit Care Med. 2000, 28: 2360-2365.CrossRefPubMed
73.
Zurück zum Zitat De Pablo R, Monserrat J, Reyes E, Diaz D, Rodriguez-Zapata M, de la Hera A, Prieto A, Alvarez-Mon M: Circulating sICAM-1 and sE-selectin as biomarker of infection and prognosis in patients with systemic inflammatory response syndrome. Eur J Intern Med. 2013, 24: 132-138. 10.1016/j.ejim.2012.10.009.CrossRefPubMed De Pablo R, Monserrat J, Reyes E, Diaz D, Rodriguez-Zapata M, de la Hera A, Prieto A, Alvarez-Mon M: Circulating sICAM-1 and sE-selectin as biomarker of infection and prognosis in patients with systemic inflammatory response syndrome. Eur J Intern Med. 2013, 24: 132-138. 10.1016/j.ejim.2012.10.009.CrossRefPubMed
74.
Zurück zum Zitat Kayal S, Jaïs JP, Aguini N, Chaudière J, Labrousse J: Elevated circulating E-selectin, intercellular adhesion molecule 1, and von Willebrand factor in patients with severe infection. Am J Respir Crit Care Med. 1998, 157: 776-784. 10.1164/ajrccm.157.3.9705034.CrossRefPubMed Kayal S, Jaïs JP, Aguini N, Chaudière J, Labrousse J: Elevated circulating E-selectin, intercellular adhesion molecule 1, and von Willebrand factor in patients with severe infection. Am J Respir Crit Care Med. 1998, 157: 776-784. 10.1164/ajrccm.157.3.9705034.CrossRefPubMed
75.
Zurück zum Zitat Doughty LA, Kaplan SS, Carcillo JA: Inflammatory cytokine and nitric oxide responses in pediatric sepsis and organ failure. Crit Care Med. 1996, 24: 1137-1143. 10.1097/00003246-199607000-00012.CrossRefPubMed Doughty LA, Kaplan SS, Carcillo JA: Inflammatory cytokine and nitric oxide responses in pediatric sepsis and organ failure. Crit Care Med. 1996, 24: 1137-1143. 10.1097/00003246-199607000-00012.CrossRefPubMed
76.
Zurück zum Zitat Leone M, Boutière B, Camoin-Jau L, Albanèse J, Horschowsky N, Mège JL, Martin C, Dignat-George F: Systemic endothelial activation is greater in septic than in traumatic-hemorrhagic shock but does not correlate with endothelial activation in skin biopsies. Crit Care Med. 2002, 30: 808-814. 10.1097/00003246-200204000-00015.CrossRefPubMed Leone M, Boutière B, Camoin-Jau L, Albanèse J, Horschowsky N, Mège JL, Martin C, Dignat-George F: Systemic endothelial activation is greater in septic than in traumatic-hemorrhagic shock but does not correlate with endothelial activation in skin biopsies. Crit Care Med. 2002, 30: 808-814. 10.1097/00003246-200204000-00015.CrossRefPubMed
77.
Zurück zum Zitat Scherpereel A, Depontieu F, Grigoriu B, Cavestri B, Tsicopoulos A, Gentina T, Jourdain M, Pugin J, Tonnel AB, Lassalle P: Endocan, a new endothelial marker in human sepsis. Crit Care Med. 2006, 34: 532-537. 10.1097/01.CCM.0000198525.82124.74.CrossRefPubMed Scherpereel A, Depontieu F, Grigoriu B, Cavestri B, Tsicopoulos A, Gentina T, Jourdain M, Pugin J, Tonnel AB, Lassalle P: Endocan, a new endothelial marker in human sepsis. Crit Care Med. 2006, 34: 532-537. 10.1097/01.CCM.0000198525.82124.74.CrossRefPubMed
78.
Zurück zum Zitat Hofer S, Brenner T, Bopp C, Steppan J, Lichtenstern C, Weitz J, Bruckner T, Martin E, Hoffmann U, Weigand MA: Cell death serum biomarkers are early predictors for survival in severe septic patients with hepatic dysfunction. Crit Care. 2009, 13: R93-10.1186/cc7923.PubMedCentralCrossRefPubMed Hofer S, Brenner T, Bopp C, Steppan J, Lichtenstern C, Weitz J, Bruckner T, Martin E, Hoffmann U, Weigand MA: Cell death serum biomarkers are early predictors for survival in severe septic patients with hepatic dysfunction. Crit Care. 2009, 13: R93-10.1186/cc7923.PubMedCentralCrossRefPubMed
79.
Zurück zum Zitat Rudloff S, Thomas C, Kunz C: Variations of soluble intercellular cell adhesion molecule. Eur J Med Res. 1995, 1: 171-172.PubMed Rudloff S, Thomas C, Kunz C: Variations of soluble intercellular cell adhesion molecule. Eur J Med Res. 1995, 1: 171-172.PubMed
80.
Zurück zum Zitat Gearing JH, Newman W: Circulating adhesion molecules in disease. Immunol Today. 1993, 14: 506-512. 10.1016/0167-5699(93)90267-O.CrossRefPubMed Gearing JH, Newman W: Circulating adhesion molecules in disease. Immunol Today. 1993, 14: 506-512. 10.1016/0167-5699(93)90267-O.CrossRefPubMed
81.
Zurück zum Zitat Pierrakos C, Vincent JL: Sepsis biomarkers: a review. Crit Care Med. 2010, 14: 15- Pierrakos C, Vincent JL: Sepsis biomarkers: a review. Crit Care Med. 2010, 14: 15-
82.
Zurück zum Zitat Schuetz P, Jones AE, Aird WC, Shapiro NI: Endothelial cell activation in emergency department patients with sepsis-related and non-sepsis related hypotension. Shock. 2011, 36: 104-108. 10.1097/SHK.0b013e31821e4e04.PubMedCentralCrossRefPubMed Schuetz P, Jones AE, Aird WC, Shapiro NI: Endothelial cell activation in emergency department patients with sepsis-related and non-sepsis related hypotension. Shock. 2011, 36: 104-108. 10.1097/SHK.0b013e31821e4e04.PubMedCentralCrossRefPubMed
83.
Zurück zum Zitat Donnelly SC, Haslett C, Robertson CE, Carter DC, Ross JA, Grant IS, Tedder TF: Role of selectins in development of adult respiratory distress syndrome. Lancet. 1994, 344: 215-219. 10.1016/S0140-6736(94)92995-5.CrossRefPubMed Donnelly SC, Haslett C, Robertson CE, Carter DC, Ross JA, Grant IS, Tedder TF: Role of selectins in development of adult respiratory distress syndrome. Lancet. 1994, 344: 215-219. 10.1016/S0140-6736(94)92995-5.CrossRefPubMed
84.
Zurück zum Zitat Hoffmann U, Brueckmann M, Borggrefe M: Matrix metalloproteinases and their inhibitors: promising novel biomarkers in severe sepsis?. Crit Care. 2009, 13: 1006-10.1186/cc8156.PubMedCentralCrossRefPubMed Hoffmann U, Brueckmann M, Borggrefe M: Matrix metalloproteinases and their inhibitors: promising novel biomarkers in severe sepsis?. Crit Care. 2009, 13: 1006-10.1186/cc8156.PubMedCentralCrossRefPubMed
85.
Zurück zum Zitat Lauhio A, Hästbacka J, Pettilä V, Tervahartiala T, Karlsson S, Varpula T, Varpula M, Ruokonen E, Sorsa T, Kolho E: Serum MMP-8, -9 and TIMP-1 in sepsis: high serum levels of MMP-8 and TIMP-1 are associated with fatal outcome in a multicentre, prospective cohort study. Hypothetical impact of tetracyclines. Pharmacol Res. 2011, 64: 590-594. 10.1016/j.phrs.2011.06.019.CrossRefPubMed Lauhio A, Hästbacka J, Pettilä V, Tervahartiala T, Karlsson S, Varpula T, Varpula M, Ruokonen E, Sorsa T, Kolho E: Serum MMP-8, -9 and TIMP-1 in sepsis: high serum levels of MMP-8 and TIMP-1 are associated with fatal outcome in a multicentre, prospective cohort study. Hypothetical impact of tetracyclines. Pharmacol Res. 2011, 64: 590-594. 10.1016/j.phrs.2011.06.019.CrossRefPubMed
86.
Zurück zum Zitat Lorente L, Martín MM, Labarta L, Díaz C, Solé-Violán J, Blanquer J, Orbe J, Rodríguez JA, Jiménez A, Borreguero-León JM, Belmonte F, Medina JC, Llimiñana MC, Ferrer-Agüero JM, Ferreres J, Mora ML, Lubillo S, Sánchez M, Barrios Y, Sierra A, Páramo JA: Matrix metalloproteinase-9, -10, and tissue inhibitor of matrix metalloproteinases-1 blood levels as biomarkers of severity and mortality in sepsis. Crit Care. 2009, 13: R158-10.1186/cc8115.PubMedCentralCrossRefPubMed Lorente L, Martín MM, Labarta L, Díaz C, Solé-Violán J, Blanquer J, Orbe J, Rodríguez JA, Jiménez A, Borreguero-León JM, Belmonte F, Medina JC, Llimiñana MC, Ferrer-Agüero JM, Ferreres J, Mora ML, Lubillo S, Sánchez M, Barrios Y, Sierra A, Páramo JA: Matrix metalloproteinase-9, -10, and tissue inhibitor of matrix metalloproteinases-1 blood levels as biomarkers of severity and mortality in sepsis. Crit Care. 2009, 13: R158-10.1186/cc8115.PubMedCentralCrossRefPubMed
87.
Zurück zum Zitat Yazdan-Ashoori P, Liaw P, Toltl L, Webb B, Kilmer G, Carter DE, Fraser DD: Elevated plasma matrix metalloproteinases and their tissue inhibitors in patients with severe sepsis. J Crit Care. 2011, 26: 556-565. 10.1016/j.jcrc.2011.01.008.CrossRefPubMed Yazdan-Ashoori P, Liaw P, Toltl L, Webb B, Kilmer G, Carter DE, Fraser DD: Elevated plasma matrix metalloproteinases and their tissue inhibitors in patients with severe sepsis. J Crit Care. 2011, 26: 556-565. 10.1016/j.jcrc.2011.01.008.CrossRefPubMed
88.
Zurück zum Zitat Belaaouaj A, McCarthy R, Baumann M, Gao Z, Ley TJ, Abraham SN, Shapiro SD: Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat Med. 1998, 4: 615-618. 10.1038/nm0598-615.CrossRefPubMed Belaaouaj A, McCarthy R, Baumann M, Gao Z, Ley TJ, Abraham SN, Shapiro SD: Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat Med. 1998, 4: 615-618. 10.1038/nm0598-615.CrossRefPubMed
89.
Zurück zum Zitat Long C, Hosseinkhani MR, Wang Y, Sriramarao P, Walcheck B: ADAM17 activation in circulating neutrophils following bacterial challenge impairs their recruitment. J Leukoc Biol. 2012, 92: 667-672. 10.1189/jlb.0312112.PubMedCentralCrossRefPubMed Long C, Hosseinkhani MR, Wang Y, Sriramarao P, Walcheck B: ADAM17 activation in circulating neutrophils following bacterial challenge impairs their recruitment. J Leukoc Biol. 2012, 92: 667-672. 10.1189/jlb.0312112.PubMedCentralCrossRefPubMed
90.
Zurück zum Zitat Bonnema DD, Webb CS, Pennington WR, Stroud RE, Leonardi AE, Clark LL, McClure CD, Finklea L, Spinale FG, Zile MR: Effects of age on plasma matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs). J Card Fail. 2007, 13: 530-540. 10.1016/j.cardfail.2007.04.010.PubMedCentralCrossRefPubMed Bonnema DD, Webb CS, Pennington WR, Stroud RE, Leonardi AE, Clark LL, McClure CD, Finklea L, Spinale FG, Zile MR: Effects of age on plasma matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs). J Card Fail. 2007, 13: 530-540. 10.1016/j.cardfail.2007.04.010.PubMedCentralCrossRefPubMed
91.
Zurück zum Zitat Tayebjee MH, Lip GY, Blann AD, Macfadyen RJ: Effects of age, gender, ethnicity, diurnal variation and exercise on circulating levels of matrix metalloproteinases (MMP)-2 and −9, and their inhibitors, tissue inhibitors of matrix metalloproteinases (TIMP)-1 and −2. Thromb Res. 2005, 115: 205-210. 10.1016/j.thromres.2004.08.023.CrossRefPubMed Tayebjee MH, Lip GY, Blann AD, Macfadyen RJ: Effects of age, gender, ethnicity, diurnal variation and exercise on circulating levels of matrix metalloproteinases (MMP)-2 and −9, and their inhibitors, tissue inhibitors of matrix metalloproteinases (TIMP)-1 and −2. Thromb Res. 2005, 115: 205-210. 10.1016/j.thromres.2004.08.023.CrossRefPubMed
92.
Metadaten
Titel
Soluble adhesion molecules as markers for sepsis and the potential pathophysiological discrepancy in neonates, children and adults
verfasst von
Rens Zonneveld
Roberta Martinelli
Nathan I Shapiro
Taco W Kuijpers
Frans B Plötz
Christopher V Carman
Publikationsdatum
01.02.2014
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 1/2014
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/cc13733

Weitere Artikel der Ausgabe 1/2014

Critical Care 1/2014 Zur Ausgabe

Delir bei kritisch Kranken – Antipsychotika versus Placebo

16.05.2024 Delir Nachrichten

Um die Langzeitfolgen eines Delirs bei kritisch Kranken zu mildern, wird vielerorts auf eine Akuttherapie mit Antipsychotika gesetzt. Eine US-amerikanische Forschungsgruppe äußert jetzt erhebliche Vorbehalte gegen dieses Vorgehen. Denn es gibt neue Daten zum Langzeiteffekt von Haloperidol bzw. Ziprasidon versus Placebo.

Eingreifen von Umstehenden rettet vor Erstickungstod

15.05.2024 Fremdkörperaspiration Nachrichten

Wer sich an einem Essensrest verschluckt und um Luft ringt, benötigt vor allem rasche Hilfe. Dass Umstehende nur in jedem zweiten Erstickungsnotfall bereit waren, diese zu leisten, ist das ernüchternde Ergebnis einer Beobachtungsstudie aus Japan. Doch es gibt auch eine gute Nachricht.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.