Skip to main content
Erschienen in: Clinical Pharmacokinetics 7/2007

01.07.2007 | Review Article

Strategies to Improve Drug Delivery Across the Blood-Brain Barrier

verfasst von: Dr Albertus G. de Boer, Pieter J. Gaillard

Erschienen in: Clinical Pharmacokinetics | Ausgabe 7/2007

Einloggen, um Zugang zu erhalten

Abstract

The blood-brain barrier (BBB), together with the blood-cerebrospinal-fluid barrier, protects and regulates the homeostasis of the brain. However, these barriers also limit the transport of small-molecule and, particularly, biopharmaceutical drugs such as proteins, genes and interference RNA to the brain, thereby limiting the treatment of many brain diseases. As a result, various drug delivery and targeting strategies are currently being developed to enhance the transport and distribution of drugs into the brain. In this review, we discuss briefly the biology and physiology of the BBB as the most important barrier for drug transport to the brain and, in more detail, the possibilities for delivering large-molecule drugs, particularly genes, by receptor-mediated nonviral drug delivery to the (human) brain. In addition, the systemic and intracellular pharmacokinetics of nonviral gene delivery, together with targeted brain imaging, are reviewed briefly.
Fußnoten
1
The use of trade names is for product identification purposes only and does not imply endorsement.
 
Literatur
1.
Zurück zum Zitat Keep RG, Jones HC. A morphometric study on the development of the lateral ventricle choroids plexus, choroids plexus capillaries and ventricular ependyma in the rat. Brain Res Dev Brain Res 1990; 56: 47–53PubMedCrossRef Keep RG, Jones HC. A morphometric study on the development of the lateral ventricle choroids plexus, choroids plexus capillaries and ventricular ependyma in the rat. Brain Res Dev Brain Res 1990; 56: 47–53PubMedCrossRef
2.
Zurück zum Zitat Ehrlich P. Das Sauerstoff-Bedurfnis des Organismus: eine farbenanalytische Studie. Berlin: Hirschwald, 1885 Ehrlich P. Das Sauerstoff-Bedurfnis des Organismus: eine farbenanalytische Studie. Berlin: Hirschwald, 1885
3.
Zurück zum Zitat Goldman EE. Vitalfarbung am Zentralnervensystem. Abh Preuss Akad Wiss Phys Math 1913; K1: 1–60 Goldman EE. Vitalfarbung am Zentralnervensystem. Abh Preuss Akad Wiss Phys Math 1913; K1: 1–60
4.
Zurück zum Zitat Abbott NJ. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 2005; 25(1): 5–23PubMedCrossRef Abbott NJ. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 2005; 25(1): 5–23PubMedCrossRef
5.
Zurück zum Zitat Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. Prog Drug Res 2003; 61: 39–78PubMed Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. Prog Drug Res 2003; 61: 39–78PubMed
6.
Zurück zum Zitat Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57(2): 173–85PubMedCrossRef Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57(2): 173–85PubMedCrossRef
7.
Zurück zum Zitat Abbott NJ. Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol 2000; 20(2): 131–47PubMedCrossRef Abbott NJ. Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol 2000; 20(2): 131–47PubMedCrossRef
8.
Zurück zum Zitat Gaillard PJ, de Boer AG, Breimer DD. Pharmacological investigations on lipopolysaccharide-induced permeability changes in the blood-brain barrier in vitro. Microvasc Res 2003; 65(1): 24–31PubMedCrossRef Gaillard PJ, de Boer AG, Breimer DD. Pharmacological investigations on lipopolysaccharide-induced permeability changes in the blood-brain barrier in vitro. Microvasc Res 2003; 65(1): 24–31PubMedCrossRef
9.
Zurück zum Zitat Pardridge WM. Molecular biology of the blood-brain barrier. Mol Biotechnol 2005; 30(1): 57–70PubMedCrossRef Pardridge WM. Molecular biology of the blood-brain barrier. Mol Biotechnol 2005; 30(1): 57–70PubMedCrossRef
10.
Zurück zum Zitat de Vries HE, Kuiper J, de Boer AG, et al. The role of the blood-brain barrier in neuroinflammatory diseases. Pharmacol Rev 1997; 49(2): 143–55PubMed de Vries HE, Kuiper J, de Boer AG, et al. The role of the blood-brain barrier in neuroinflammatory diseases. Pharmacol Rev 1997; 49(2): 143–55PubMed
11.
Zurück zum Zitat Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 2004; 104(1): 29–45PubMedCrossRef Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 2004; 104(1): 29–45PubMedCrossRef
12.
Zurück zum Zitat Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci 1999; 22: 11–28PubMedCrossRef Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci 1999; 22: 11–28PubMedCrossRef
13.
Zurück zum Zitat Janzer RC, Raff MC. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 1987; 325(6101): 253–7PubMedCrossRef Janzer RC, Raff MC. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 1987; 325(6101): 253–7PubMedCrossRef
14.
Zurück zum Zitat Gaillard PJ, van der Sandt IC, Voorwinden LH, et al. Astrocytes increase the functional expression of P-glycoprotein in an in vitro model of the blood-brain barrier. Pharm Res 2000; 17(10): 1198–205PubMedCrossRef Gaillard PJ, van der Sandt IC, Voorwinden LH, et al. Astrocytes increase the functional expression of P-glycoprotein in an in vitro model of the blood-brain barrier. Pharm Res 2000; 17(10): 1198–205PubMedCrossRef
15.
Zurück zum Zitat Lai CH, Kuo KH. The critical component to establish in vitro BBB model: pericyte. Brain Res Dev Brain Res 2005; 50(2): 258–65 Lai CH, Kuo KH. The critical component to establish in vitro BBB model: pericyte. Brain Res Dev Brain Res 2005; 50(2): 258–65
16.
Zurück zum Zitat Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 1969; 40(3): 648–77PubMedCrossRef Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 1969; 40(3): 648–77PubMedCrossRef
17.
Zurück zum Zitat Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 1967; 34(1): 207–17PubMedCrossRef Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 1967; 34(1): 207–17PubMedCrossRef
18.
Zurück zum Zitat Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 2005; 61: 79–87CrossRef Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 2005; 61: 79–87CrossRef
19.
Zurück zum Zitat el-Bacha RS, Minn A. Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cell Mol Biol 1999; 45(1): 15–23PubMed el-Bacha RS, Minn A. Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cell Mol Biol 1999; 45(1): 15–23PubMed
20.
Zurück zum Zitat Wekerle H. Immune protection of the brain — efficient and delicate. J Infect Dis 2002; 186 Suppl. 2: S140–4PubMedCrossRef Wekerle H. Immune protection of the brain — efficient and delicate. J Infect Dis 2002; 186 Suppl. 2: S140–4PubMedCrossRef
21.
Zurück zum Zitat Bechmann I, Galea I, Perry VH. What is the blood-brain barrier (not)? Trends Immunol 2007; 28(1): 5–11PubMedCrossRef Bechmann I, Galea I, Perry VH. What is the blood-brain barrier (not)? Trends Immunol 2007; 28(1): 5–11PubMedCrossRef
22.
Zurück zum Zitat Biessels GJ, Bravenboer B, Gispen WH. Glucose, insulin and the brain: modulation of cognition and synaptic plasticityin health and disease: a preface. Eur J Pharmacol 2004; 490(1–3): 1–4PubMedCrossRef Biessels GJ, Bravenboer B, Gispen WH. Glucose, insulin and the brain: modulation of cognition and synaptic plasticityin health and disease: a preface. Eur J Pharmacol 2004; 490(1–3): 1–4PubMedCrossRef
23.
Zurück zum Zitat Herz J, Strickland DK. LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 2001; 108(6): 779–84PubMed Herz J, Strickland DK. LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 2001; 108(6): 779–84PubMed
24.
Zurück zum Zitat Hendry SH, Jones EG, Beinfeld MC. Cholecystokinin-immu-noreactive neurons in rat and monkey cerebral cortex make symmetric synapses and have intimate associations with blood vessels. Proc Natl Acad Sci U S A 1983; 80(8): 2400–4PubMedCrossRef Hendry SH, Jones EG, Beinfeld MC. Cholecystokinin-immu-noreactive neurons in rat and monkey cerebral cortex make symmetric synapses and have intimate associations with blood vessels. Proc Natl Acad Sci U S A 1983; 80(8): 2400–4PubMedCrossRef
25.
Zurück zum Zitat Balabanov R, Dore-Duffy P. Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res 1998; 53(6): 637–44PubMedCrossRef Balabanov R, Dore-Duffy P. Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res 1998; 53(6): 637–44PubMedCrossRef
26.
Zurück zum Zitat Kim JA, Tran ND, Li Z, et al. Brain endothelial hemostasis regulation by pericytes. J Cereb Blood Flow Metab 2005; 26(2): 209–17CrossRef Kim JA, Tran ND, Li Z, et al. Brain endothelial hemostasis regulation by pericytes. J Cereb Blood Flow Metab 2005; 26(2): 209–17CrossRef
27.
Zurück zum Zitat Cordon-Cardo CJ, O’Brien JP, Casals D, et al. Multidrug-resistance gene P-glycoprotein is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci U S A 1989; 86: 695–8PubMedCrossRef Cordon-Cardo CJ, O’Brien JP, Casals D, et al. Multidrug-resistance gene P-glycoprotein is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci U S A 1989; 86: 695–8PubMedCrossRef
28.
Zurück zum Zitat Schinkel AH, Wagenaar E, van Deemter L, et al. Absence of the mdrla P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 1995; 96(4): 1698–705PubMedCrossRef Schinkel AH, Wagenaar E, van Deemter L, et al. Absence of the mdrla P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 1995; 96(4): 1698–705PubMedCrossRef
29.
Zurück zum Zitat Borst P, Evers R, Kool M, et al. The multidrug resistance protein family. Biochem Biophys Acta 1999; 1461: 347–57PubMedCrossRef Borst P, Evers R, Kool M, et al. The multidrug resistance protein family. Biochem Biophys Acta 1999; 1461: 347–57PubMedCrossRef
30.
Zurück zum Zitat de Boer AG, van der Sandt IC, Gaillard PJ. The role of drug transporters at the blood-brain barrier. Annu Rev Pharmacol Toxicol 2003; 43: 629–56PubMedCrossRef de Boer AG, van der Sandt IC, Gaillard PJ. The role of drug transporters at the blood-brain barrier. Annu Rev Pharmacol Toxicol 2003; 43: 629–56PubMedCrossRef
31.
Zurück zum Zitat Lee G, Dallas S, Hong M, et al. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev 2001; 53(4): 569–96PubMed Lee G, Dallas S, Hong M, et al. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev 2001; 53(4): 569–96PubMed
32.
Zurück zum Zitat Loscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 2005; 76(1): 22–76PubMedCrossRef Loscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 2005; 76(1): 22–76PubMedCrossRef
33.
Zurück zum Zitat Ganapathy V, Miyauchi S. Transport systems for opioid peptides in mammalian tissues. AAPS J 2005; 7(4): E852–6PubMedCrossRef Ganapathy V, Miyauchi S. Transport systems for opioid peptides in mammalian tissues. AAPS J 2005; 7(4): E852–6PubMedCrossRef
34.
Zurück zum Zitat Banks WA. Anorectic effects of circulating cytokines: role of the vascular blood-brain barrier. Nutrition 2001; 17(5): 434–7PubMedCrossRef Banks WA. Anorectic effects of circulating cytokines: role of the vascular blood-brain barrier. Nutrition 2001; 17(5): 434–7PubMedCrossRef
35.
Zurück zum Zitat Ho RH, Kim RB. Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther 2005; 78(3): 260–77PubMedCrossRef Ho RH, Kim RB. Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther 2005; 78(3): 260–77PubMedCrossRef
36.
Zurück zum Zitat Abbott NJ. Physiology of the blood-brain barrier and its consequences for drug transport to the brain. In: de Boer A, editor. Esteve Foundation Symposium XI: drug transport(ers) and the diseased brain. International Congress Series 1277. Amsterdam: Elsevier, 2005: 3–18 Abbott NJ. Physiology of the blood-brain barrier and its consequences for drug transport to the brain. In: de Boer A, editor. Esteve Foundation Symposium XI: drug transport(ers) and the diseased brain. International Congress Series 1277. Amsterdam: Elsevier, 2005: 3–18
37.
Zurück zum Zitat van Vliet EA, da Costa Araujo S, Redeker S, et al. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 2007; 130 (Pt2): 521–34CrossRef van Vliet EA, da Costa Araujo S, Redeker S, et al. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 2007; 130 (Pt2): 521–34CrossRef
38.
Zurück zum Zitat Marchi N, Angelov L, Masaryk T, et al. Seizure-promoting effect of blood-brain barrier disruption. Epilepsia. Epub 2007 Feb 21 Marchi N, Angelov L, Masaryk T, et al. Seizure-promoting effect of blood-brain barrier disruption. Epilepsia. Epub 2007 Feb 21
39.
Zurück zum Zitat Jancso G, Domoki F, Santha P, et al. Beta-amyloid (1–42) peptide impairs blood-brain barrier function after intracarotid infusion in rats, Neurosci Lett 1998; 253(2): 139–41PubMedCrossRef Jancso G, Domoki F, Santha P, et al. Beta-amyloid (1–42) peptide impairs blood-brain barrier function after intracarotid infusion in rats, Neurosci Lett 1998; 253(2): 139–41PubMedCrossRef
40.
Zurück zum Zitat Lo EH, Singhai AB, Torchilin VP, et al. Drug delivery to damaged brain. Brain Res Brain Res Rev 2001; 38(1–2): 140–8PubMedCrossRef Lo EH, Singhai AB, Torchilin VP, et al. Drug delivery to damaged brain. Brain Res Brain Res Rev 2001; 38(1–2): 140–8PubMedCrossRef
41.
Zurück zum Zitat Reichel A. The role of blood-brain barrier studies in the pharmaceutical industry. Curr Drug Metab 2006; 72: 183–203CrossRef Reichel A. The role of blood-brain barrier studies in the pharmaceutical industry. Curr Drug Metab 2006; 72: 183–203CrossRef
42.
Zurück zum Zitat Liu X, Chen C. Strategies to optimize brain penetration in drug discovery. Curr Opin Drug Discov Devel 2005; 8(4): 505–12PubMed Liu X, Chen C. Strategies to optimize brain penetration in drug discovery. Curr Opin Drug Discov Devel 2005; 8(4): 505–12PubMed
43.
Zurück zum Zitat Pardridge WM. Transport of small molecules through the blood-brain barrier: biology and methodology. Adv Drug Deliv Rev 1995; 15: 5–36CrossRef Pardridge WM. Transport of small molecules through the blood-brain barrier: biology and methodology. Adv Drug Deliv Rev 1995; 15: 5–36CrossRef
44.
Zurück zum Zitat Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46(1–3): 3–26PubMedCrossRef Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46(1–3): 3–26PubMedCrossRef
45.
Zurück zum Zitat Abraham MH, Chadha HS, Mitchell RC. Hydrogen bonding. 33. Factors that influence the distribution of solutes between blood and brain. J Pharm Sci 1994; 83(9): 1257–68PubMedCrossRef Abraham MH, Chadha HS, Mitchell RC. Hydrogen bonding. 33. Factors that influence the distribution of solutes between blood and brain. J Pharm Sci 1994; 83(9): 1257–68PubMedCrossRef
46.
Zurück zum Zitat Abbott NJ, Romero IA. Transporting therapeutics across the blood-brain barrier. Mol Med Today 1996; 2(3): 106–13PubMedCrossRef Abbott NJ, Romero IA. Transporting therapeutics across the blood-brain barrier. Mol Med Today 1996; 2(3): 106–13PubMedCrossRef
47.
Zurück zum Zitat Vorbrodt AW. Ultracytochemical characterization of anionic sites in the wall of brain capillaries. J Neurocytol 1989; 18(3): 359–68PubMedCrossRef Vorbrodt AW. Ultracytochemical characterization of anionic sites in the wall of brain capillaries. J Neurocytol 1989; 18(3): 359–68PubMedCrossRef
48.
Zurück zum Zitat Lockman PR, Koziara JM, Mumper RJ, et al. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 2004; 12(9–10): 635–41PubMedCrossRef Lockman PR, Koziara JM, Mumper RJ, et al. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 2004; 12(9–10): 635–41PubMedCrossRef
49.
Zurück zum Zitat Abbott NJ, Romero IA. Transporting therapeutics across the blood-brain barrier. Mol Med Today 1996; 2(3): 106–13PubMedCrossRef Abbott NJ, Romero IA. Transporting therapeutics across the blood-brain barrier. Mol Med Today 1996; 2(3): 106–13PubMedCrossRef
50.
Zurück zum Zitat Tamai I, Tsuji A. Transporter-mediated permeation of drugs across the blood-brain barrier. J Pharm Sci 2000; 89(11): 1371–88PubMedCrossRef Tamai I, Tsuji A. Transporter-mediated permeation of drugs across the blood-brain barrier. J Pharm Sci 2000; 89(11): 1371–88PubMedCrossRef
51.
Zurück zum Zitat Smith QR. Drug delivery to brain and the role of carrier mediated transport. Adv Exp Med Biol 1993; 331: 83–93PubMedCrossRef Smith QR. Drug delivery to brain and the role of carrier mediated transport. Adv Exp Med Biol 1993; 331: 83–93PubMedCrossRef
52.
Zurück zum Zitat Duffy KR, Pardridge WM. Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res 1987; 420(1): 32–8PubMedCrossRef Duffy KR, Pardridge WM. Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res 1987; 420(1): 32–8PubMedCrossRef
53.
Zurück zum Zitat Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol 2000; 20(1): 77–95PubMedCrossRef Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol 2000; 20(1): 77–95PubMedCrossRef
54.
Zurück zum Zitat Pardridge WM, Eisenberg J, Yang J. Human blood-brain barrier transferrin receptor. Metabolism 1987; 36(9): 892–5PubMedCrossRef Pardridge WM, Eisenberg J, Yang J. Human blood-brain barrier transferrin receptor. Metabolism 1987; 36(9): 892–5PubMedCrossRef
55.
Zurück zum Zitat Dehouck B, Fenart L, Dehouck MP, et al. A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J Cell Biol 1997; 138(4): 877–89PubMedCrossRef Dehouck B, Fenart L, Dehouck MP, et al. A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J Cell Biol 1997; 138(4): 877–89PubMedCrossRef
56.
Zurück zum Zitat Bjorbaek C, Elmquist JK, Michl P, et al. Expression of leptin receptor isoforms in rat brain microvessels. Endocrinology 1998; 139(8): 3485–91PubMedCrossRef Bjorbaek C, Elmquist JK, Michl P, et al. Expression of leptin receptor isoforms in rat brain microvessels. Endocrinology 1998; 139(8): 3485–91PubMedCrossRef
57.
Zurück zum Zitat Duffy KR, Pardridge WM, Rosenfeld RG. Human blood-brain barrier insulin-like growth factor receptor. Metabolism 1988; 37(2): 136–40PubMedCrossRef Duffy KR, Pardridge WM, Rosenfeld RG. Human blood-brain barrier insulin-like growth factor receptor. Metabolism 1988; 37(2): 136–40PubMedCrossRef
58.
Zurück zum Zitat Loscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 2005; 6(8): 591–602PubMedCrossRef Loscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 2005; 6(8): 591–602PubMedCrossRef
59.
Zurück zum Zitat van der Sandt IC, de Boer AG, Breimer DD. Implications of Pgp for the transport and distribution of drugs into the brain. In: Sharma HS, Wesman J, editors. Blood-spinal cord and brain barriers in health and disease. San Diego (CA): Academic Press, 2003: 63–72 van der Sandt IC, de Boer AG, Breimer DD. Implications of Pgp for the transport and distribution of drugs into the brain. In: Sharma HS, Wesman J, editors. Blood-spinal cord and brain barriers in health and disease. San Diego (CA): Academic Press, 2003: 63–72
60.
Zurück zum Zitat Zhang Y, Han H, Elmquist WF, et al. Expression of various multidrug resistance-associated protein MRP: homologues in brain microvessel endothelial cells. Brain Res 2000; 876(1–2): 148–53PubMedCrossRef Zhang Y, Han H, Elmquist WF, et al. Expression of various multidrug resistance-associated protein MRP: homologues in brain microvessel endothelial cells. Brain Res 2000; 876(1–2): 148–53PubMedCrossRef
61.
Zurück zum Zitat Yokoyama M. Drug targeting with nano-sized carrier systems. J Artif Organs 2005; 8(2): 77–84PubMedCrossRef Yokoyama M. Drug targeting with nano-sized carrier systems. J Artif Organs 2005; 8(2): 77–84PubMedCrossRef
62.
Zurück zum Zitat Kreuter J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol 2004; 4(5): 484–8PubMedCrossRef Kreuter J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol 2004; 4(5): 484–8PubMedCrossRef
63.
Zurück zum Zitat Marcucci F, Lefoulon F. Active targeting with particulate drug carriers in tumor therapy: fundamentals. Drug Discov Today 2004; 9(5): 219–28PubMedCrossRef Marcucci F, Lefoulon F. Active targeting with particulate drug carriers in tumor therapy: fundamentals. Drug Discov Today 2004; 9(5): 219–28PubMedCrossRef
64.
Zurück zum Zitat Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46 (Pt12): 6387–92 Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46 (Pt12): 6387–92
65.
Zurück zum Zitat Vogler C, Levy B, Grubb JH, et al. Overcoming the blood-brain barrier with high-dose enzyme replacement therapy in murine mucopolysaccharidosis VII. Proc Natl Acad Sci USA 2005; 102(41): 14777–82PubMedCrossRef Vogler C, Levy B, Grubb JH, et al. Overcoming the blood-brain barrier with high-dose enzyme replacement therapy in murine mucopolysaccharidosis VII. Proc Natl Acad Sci USA 2005; 102(41): 14777–82PubMedCrossRef
66.
Zurück zum Zitat Banks WA. Are the extracellular pathways a conduit for the delivery of therapeutics to the brain? Curr Pharm Des 2004; 10(12): 1365–70PubMedCrossRef Banks WA. Are the extracellular pathways a conduit for the delivery of therapeutics to the brain? Curr Pharm Des 2004; 10(12): 1365–70PubMedCrossRef
67.
Zurück zum Zitat Egleton RD, Davis TP. Development of neuropeptide drugs that cross the blood-brain barrier. NeuroRx 2005; 21: 44–53CrossRef Egleton RD, Davis TP. Development of neuropeptide drugs that cross the blood-brain barrier. NeuroRx 2005; 21: 44–53CrossRef
68.
69.
Zurück zum Zitat Kroll RA, Neuwelt EA. Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neu-rosurgery 1998; 42: 1083–100 Kroll RA, Neuwelt EA. Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neu-rosurgery 1998; 42: 1083–100
70.
Zurück zum Zitat Erdlenbruch B, Alipour M, Fricker G, et al. Alkylglycerol opening of the blood-brain barrier to small and large fluorescence markers in normal and C6 glioma-bearing rats and isolated rat brain capillaries. Br J Pharmacol 2003; 140: 1201–10PubMedCrossRef Erdlenbruch B, Alipour M, Fricker G, et al. Alkylglycerol opening of the blood-brain barrier to small and large fluorescence markers in normal and C6 glioma-bearing rats and isolated rat brain capillaries. Br J Pharmacol 2003; 140: 1201–10PubMedCrossRef
71.
Zurück zum Zitat Matsukado K, Inamura T, Nakano S, et al. Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of bradykinin analog, RMP-7. Neurosur-gery 1996; 39: 125–33CrossRef Matsukado K, Inamura T, Nakano S, et al. Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of bradykinin analog, RMP-7. Neurosur-gery 1996; 39: 125–33CrossRef
72.
Zurück zum Zitat Prados MD, Schold Jr SC, Fine HA, et al. A randomized, double-blind, placebo-controlled, phase 2 study of RMP-7 in combination with carboplatin administered intravenously for the treatment of recurrent malignant glioma. Neuro-Oncology 2003; 5(2): 96–103PubMed Prados MD, Schold Jr SC, Fine HA, et al. A randomized, double-blind, placebo-controlled, phase 2 study of RMP-7 in combination with carboplatin administered intravenously for the treatment of recurrent malignant glioma. Neuro-Oncology 2003; 5(2): 96–103PubMed
73.
Zurück zum Zitat Dietz GP, Bahr M. Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 2004; 27(2): 85–131PubMedCrossRef Dietz GP, Bahr M. Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 2004; 27(2): 85–131PubMedCrossRef
74.
Zurück zum Zitat Lindgren M, Hallbrink M, Prochiantz A, et al. Cell-penetrating peptides. Trends Pharmacol Sci 2000; 21(3): 99–103PubMedCrossRef Lindgren M, Hallbrink M, Prochiantz A, et al. Cell-penetrating peptides. Trends Pharmacol Sci 2000; 21(3): 99–103PubMedCrossRef
75.
Zurück zum Zitat Jeang KT, Xiao H, Rich EA. Multifaceted activities of the HIV-1 transactivator of transcription. Tat J Biol Chem 1999; 274(41): 28837–40CrossRef Jeang KT, Xiao H, Rich EA. Multifaceted activities of the HIV-1 transactivator of transcription. Tat J Biol Chem 1999; 274(41): 28837–40CrossRef
76.
Zurück zum Zitat Perez F, Joliot A, Bloch-Gallego E, et al. Antennapedia homeobox as a signal for the cellular internalization and nuclear addressing of a small exogenous peptide. J Cell Sci 1992; 102 (Pt4): 717–22 Perez F, Joliot A, Bloch-Gallego E, et al. Antennapedia homeobox as a signal for the cellular internalization and nuclear addressing of a small exogenous peptide. J Cell Sci 1992; 102 (Pt4): 717–22
77.
Zurück zum Zitat Rousselle C, Clair P, Lefauconnier JM, et al. New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol Pharmacol 2000; 57(4): 679–86PubMed Rousselle C, Clair P, Lefauconnier JM, et al. New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol Pharmacol 2000; 57(4): 679–86PubMed
78.
Zurück zum Zitat Langedijk JP, Olijhoek T, Schut D, et al. New transport peptides broaden the horizon of applications for peptidic pharmaceuti-cals. Mol Divers 2004; 8(2): 101–11PubMedCrossRef Langedijk JP, Olijhoek T, Schut D, et al. New transport peptides broaden the horizon of applications for peptidic pharmaceuti-cals. Mol Divers 2004; 8(2): 101–11PubMedCrossRef
79.
Zurück zum Zitat Wender PA, Mitchell DJ, Pattabiraman K, et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A 2000; 97(24): 13003–8PubMedCrossRef Wender PA, Mitchell DJ, Pattabiraman K, et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A 2000; 97(24): 13003–8PubMedCrossRef
80.
Zurück zum Zitat Saar K, Lindgren M, Hansen M, et al. Cell-penetrating peptides: a comparative membrane toxicity study. Anal Biochem 2005; 345(1): 55–65PubMedCrossRef Saar K, Lindgren M, Hansen M, et al. Cell-penetrating peptides: a comparative membrane toxicity study. Anal Biochem 2005; 345(1): 55–65PubMedCrossRef
81.
Zurück zum Zitat Scherrmann J-M. Pharmacogenomics of the blood-brain barrier. In: Licinio J, Wong M-L, editors. Pharmacogenomics: the search for individualized therapies. Wernheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2002: 311–35 Scherrmann J-M. Pharmacogenomics of the blood-brain barrier. In: Licinio J, Wong M-L, editors. Pharmacogenomics: the search for individualized therapies. Wernheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2002: 311–35
82.
Zurück zum Zitat Yamada T, Fialho AM, Punj V, et al. Internalization of bacterial redox protein azurin in mammalian cells: entry domain and specificity. Cell Microbiol 2005; 7(10): 1418–31PubMedCrossRef Yamada T, Fialho AM, Punj V, et al. Internalization of bacterial redox protein azurin in mammalian cells: entry domain and specificity. Cell Microbiol 2005; 7(10): 1418–31PubMedCrossRef
83.
Zurück zum Zitat Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004; 432(7014): 173–8PubMedCrossRef Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004; 432(7014): 173–8PubMedCrossRef
84.
Zurück zum Zitat Batrakova EV, Vinogradov SV, Robinson SM, et al. Polypeptide point modifications with fatty acid and amphiphilic block co-polymers for enhanced brain delivery. Bioconjug Chem 2005; 16(5): 793–802PubMedCrossRef Batrakova EV, Vinogradov SV, Robinson SM, et al. Polypeptide point modifications with fatty acid and amphiphilic block co-polymers for enhanced brain delivery. Bioconjug Chem 2005; 16(5): 793–802PubMedCrossRef
85.
Zurück zum Zitat Bartsch M, Weeke-Klimp AH, Meijer DK, et al. Cell-specific targeting of lipid-based carriers for ODN and DNA. J Liposome Res 2005; 15(1–2): 59–92PubMed Bartsch M, Weeke-Klimp AH, Meijer DK, et al. Cell-specific targeting of lipid-based carriers for ODN and DNA. J Liposome Res 2005; 15(1–2): 59–92PubMed
86.
Zurück zum Zitat Wagner E, Culmsee C, Boeckle S. Targeting of polyplexes: toward synthetic virus vector systems. Adv Genet 2005; 53: 333–54PubMedCrossRef Wagner E, Culmsee C, Boeckle S. Targeting of polyplexes: toward synthetic virus vector systems. Adv Genet 2005; 53: 333–54PubMedCrossRef
87.
Zurück zum Zitat Pardridge WM. Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 2002; 1(2): 131–9PubMedCrossRef Pardridge WM. Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 2002; 1(2): 131–9PubMedCrossRef
88.
Zurück zum Zitat Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003; 422(6927): 37–44PubMedCrossRef Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003; 422(6927): 37–44PubMedCrossRef
89.
Zurück zum Zitat Gumbleton M, Abulrob AG, Campbell L. Caveolae: an alternative membrane transport compartment. Pharm Res 2000; 17(9): 1035–48PubMedCrossRef Gumbleton M, Abulrob AG, Campbell L. Caveolae: an alternative membrane transport compartment. Pharm Res 2000; 17(9): 1035–48PubMedCrossRef
90.
91.
Zurück zum Zitat Shir A, Ogris M, Wagner E, et al. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PLoS Med 2005; 3(1): e6PubMedCrossRef Shir A, Ogris M, Wagner E, et al. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PLoS Med 2005; 3(1): e6PubMedCrossRef
92.
Zurück zum Zitat Raab G, Klagsbrun M. Heparin-binding EGF-like growth factor. Biochim Biophys Acta 1999; 1333(3): F179–99 Raab G, Klagsbrun M. Heparin-binding EGF-like growth factor. Biochim Biophys Acta 1999; 1333(3): F179–99
93.
Zurück zum Zitat Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol 2000; 20(1): 77–95PubMedCrossRef Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol 2000; 20(1): 77–95PubMedCrossRef
94.
Zurück zum Zitat Ponka P, Lok CN. The transferrin receptor: role in health and disease. Int J Biochem Cell Biol 1999; 31(10): 1111–37PubMedCrossRef Ponka P, Lok CN. The transferrin receptor: role in health and disease. Int J Biochem Cell Biol 1999; 31(10): 1111–37PubMedCrossRef
95.
Zurück zum Zitat Visser CC, Stevanovic S, Voorwinden LH, et al. Targeting liposomes with protein drugs to the blood-brain barrier in vitro. Eur J Pharm Sci 2005; 25(2–3): 299–305PubMedCrossRef Visser CC, Stevanovic S, Voorwinden LH, et al. Targeting liposomes with protein drugs to the blood-brain barrier in vitro. Eur J Pharm Sci 2005; 25(2–3): 299–305PubMedCrossRef
96.
Zurück zum Zitat Moos T, Morgan EH. The significance of the mutated divalent metal transporter DMT1 on iron transport into the Belgrade rat brain. J. Neurochem 2004; 88(1): 233–45CrossRef Moos T, Morgan EH. The significance of the mutated divalent metal transporter DMT1 on iron transport into the Belgrade rat brain. J. Neurochem 2004; 88(1): 233–45CrossRef
97.
Zurück zum Zitat Zhang Y, Pardridge WM. Rapid transferrin efflux from brain to blood across the blood-brain barrier. J Neurochem 2001; 76(5): 1597–600PubMedCrossRef Zhang Y, Pardridge WM. Rapid transferrin efflux from brain to blood across the blood-brain barrier. J Neurochem 2001; 76(5): 1597–600PubMedCrossRef
98.
Zurück zum Zitat Deane R, Zheng W, Zlokovic BV. Brain capillary endothelium and choroid plexus epithelium regulate transport of transferrin-bound and free iron into the rat brain. J Neurochem 2004; 88(4): 813–20PubMedCrossRef Deane R, Zheng W, Zlokovic BV. Brain capillary endothelium and choroid plexus epithelium regulate transport of transferrin-bound and free iron into the rat brain. J Neurochem 2004; 88(4): 813–20PubMedCrossRef
99.
Zurück zum Zitat Broadwell RD, Baker-Cairns BJ, Friden PM, et al. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor. Exp Neurol 1996; 142(1): 47–65PubMedCrossRef Broadwell RD, Baker-Cairns BJ, Friden PM, et al. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor. Exp Neurol 1996; 142(1): 47–65PubMedCrossRef
100.
Zurück zum Zitat Moos T, Morgan EH. Restricted transport of antitransferrin receptor antibody OX26 through the blood-brain barrier in the rat. J Neurochem 2001; 79(1): 119–29PubMedCrossRef Moos T, Morgan EH. Restricted transport of antitransferrin receptor antibody OX26 through the blood-brain barrier in the rat. J Neurochem 2001; 79(1): 119–29PubMedCrossRef
101.
Zurück zum Zitat Visser CC, Voorwinden LH, Crommelin DJ, et al. Characterization and modulation of the transferrin receptor on brain capillary endothelial cells. Pharm Res 2004; 21(5): 761–9PubMedCrossRef Visser CC, Voorwinden LH, Crommelin DJ, et al. Characterization and modulation of the transferrin receptor on brain capillary endothelial cells. Pharm Res 2004; 21(5): 761–9PubMedCrossRef
102.
Zurück zum Zitat Pardridge WM. Drug and gene targeting to the brain via blood-brain barrier receptor-mediated transport systems. Int Congr Series 2005; 1277: 49–59CrossRef Pardridge WM. Drug and gene targeting to the brain via blood-brain barrier receptor-mediated transport systems. Int Congr Series 2005; 1277: 49–59CrossRef
103.
Zurück zum Zitat Xu L, Tang WH, Huang CC, et al. Systemic p53 gene therapy of cancer with immunolipoplexes targeted by antitransferrin receptor scFv. Mol Med 2001; 7(10): 723–34PubMed Xu L, Tang WH, Huang CC, et al. Systemic p53 gene therapy of cancer with immunolipoplexes targeted by antitransferrin receptor scFv. Mol Med 2001; 7(10): 723–34PubMed
104.
Zurück zum Zitat Lee JH, Engler JA, Collawn JF, et al. Receptor mediated uptake of peptides that bind the human transferrin receptor. Eur J Biochem 2001; 268(7): 2004–12PubMedCrossRef Lee JH, Engler JA, Collawn JF, et al. Receptor mediated uptake of peptides that bind the human transferrin receptor. Eur J Biochem 2001; 268(7): 2004–12PubMedCrossRef
105.
Zurück zum Zitat Bottaro DP, Bonner-Weir S, King GL. Insulin receptor recycling in vascular endothelial cells: regulation by insulin and phorbol ester. J Biol Chem 1989; 264(10): 5916–23PubMed Bottaro DP, Bonner-Weir S, King GL. Insulin receptor recycling in vascular endothelial cells: regulation by insulin and phorbol ester. J Biol Chem 1989; 264(10): 5916–23PubMed
106.
Zurück zum Zitat Wu D, Yang J, Pardridge WM. Drug targeting of a peptide radiopharmaceutical through the primate blood-brain barrier in vivo with a monoclonal antibody to the human insulin receptor. J Clin Invest 1997; 100(7): 1804–12PubMedCrossRef Wu D, Yang J, Pardridge WM. Drug targeting of a peptide radiopharmaceutical through the primate blood-brain barrier in vivo with a monoclonal antibody to the human insulin receptor. J Clin Invest 1997; 100(7): 1804–12PubMedCrossRef
107.
Zurück zum Zitat Coloma MJ, Lee HJ, Kurihara A, et al. Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm Res 2000; 17(3): 266–74PubMedCrossRef Coloma MJ, Lee HJ, Kurihara A, et al. Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm Res 2000; 17(3): 266–74PubMedCrossRef
108.
Zurück zum Zitat Boucher P, Gotthardt M, Li WP, et al. LRP: role in vascular wall integrity and protection from atherosclerosis. Science 2003; 300(5617): 329–32PubMedCrossRef Boucher P, Gotthardt M, Li WP, et al. LRP: role in vascular wall integrity and protection from atherosclerosis. Science 2003; 300(5617): 329–32PubMedCrossRef
109.
Zurück zum Zitat Yepes M, Sandkvist M, Moore EG, et al. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J Clin Invest 2003; 112(10): 1533–40PubMed Yepes M, Sandkvist M, Moore EG, et al. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J Clin Invest 2003; 112(10): 1533–40PubMed
110.
Zurück zum Zitat Demeule M, Poirier J, Jodoin J, et al. High transcytosis of melanotransferrin P97 across the blood-brain barrier. J Neurochem 2002; 83(4): 924–33PubMedCrossRef Demeule M, Poirier J, Jodoin J, et al. High transcytosis of melanotransferrin P97 across the blood-brain barrier. J Neurochem 2002; 83(4): 924–33PubMedCrossRef
111.
Zurück zum Zitat Deane R, Wu Z, Zlokovic BV. RAGE yin versus LRP yang balance regulates alzheimer amyloid beta-peptide clearance through transport across the blood-brain barrier. Stroke 2004; 3511 Suppl. 1: 2628–31CrossRef Deane R, Wu Z, Zlokovic BV. RAGE yin versus LRP yang balance regulates alzheimer amyloid beta-peptide clearance through transport across the blood-brain barrier. Stroke 2004; 3511 Suppl. 1: 2628–31CrossRef
112.
Zurück zum Zitat Chun JT, Wang L, Pasinetti GM, et al. Glycoprotein 330/megalin LRP-2 has low prevalence as mRNA and protein in brain microvessels and choroid plexus. Exp Neurol 1999; 157(1): 194–201PubMedCrossRef Chun JT, Wang L, Pasinetti GM, et al. Glycoprotein 330/megalin LRP-2 has low prevalence as mRNA and protein in brain microvessels and choroid plexus. Exp Neurol 1999; 157(1): 194–201PubMedCrossRef
113.
Zurück zum Zitat Richardson DR, Morgan EH. The transferrin homologue, melanotransferrin p97, is rapidly catabolized by the liver of the rat and does not effectively donate iron to the brain. Biochim Biophys Acta 2004; 1690(2): 124–33PubMedCrossRef Richardson DR, Morgan EH. The transferrin homologue, melanotransferrin p97, is rapidly catabolized by the liver of the rat and does not effectively donate iron to the brain. Biochim Biophys Acta 2004; 1690(2): 124–33PubMedCrossRef
114.
Zurück zum Zitat Gabathuler R, Arthur G, Kennard M, et al. Development of a potential vector NeuroTrans to deliver drugs across the blood-brain barrier. Int Congr Series 2005; 1277: 171–84CrossRef Gabathuler R, Arthur G, Kennard M, et al. Development of a potential vector NeuroTrans to deliver drugs across the blood-brain barrier. Int Congr Series 2005; 1277: 171–84CrossRef
115.
Zurück zum Zitat Pan W, Kastin AJ, Zankel TC, et al. Efficient transfer of receptor-associated protein RAP across the blood-brain barrier. J. Cell Sci 2004; 117 (Pt21): 5071–8CrossRef Pan W, Kastin AJ, Zankel TC, et al. Efficient transfer of receptor-associated protein RAP across the blood-brain barrier. J. Cell Sci 2004; 117 (Pt21): 5071–8CrossRef
116.
Zurück zum Zitat Béliveau R, Demeule M. A method for transporting a compound across the blood-brain barrier. Canadian patent application WO2004060403. 2004 Jul 22 Béliveau R, Demeule M. A method for transporting a compound across the blood-brain barrier. Canadian patent application WO2004060403. 2004 Jul 22
117.
Zurück zum Zitat Sedrakyan A, Treasure T, Elefteriades JA. Effect of aprotinin on clinical outcomes in coronary artery bypass graft surgery: a systematic review and meta-analysis of randomized clinical trials. J Thorac Cardiovasc Surg 2004; 128(3): 442–8PubMedCrossRef Sedrakyan A, Treasure T, Elefteriades JA. Effect of aprotinin on clinical outcomes in coronary artery bypass graft surgery: a systematic review and meta-analysis of randomized clinical trials. J Thorac Cardiovasc Surg 2004; 128(3): 442–8PubMedCrossRef
118.
Zurück zum Zitat Jefferies WA, Food MR, Gabathuler R, et al. Reactive microglia specifically associated with amyloid plaques in Alzheimer’s disease brain tissue express melanotransferrin. Br Res 1996; 712(1): 122–6CrossRef Jefferies WA, Food MR, Gabathuler R, et al. Reactive microglia specifically associated with amyloid plaques in Alzheimer’s disease brain tissue express melanotransferrin. Br Res 1996; 712(1): 122–6CrossRef
119.
Zurück zum Zitat Demeule M, Bertrand Y, Michaud-Levesque J, et al. Regulation of plasminogen activation: a role for melanotransferrin p97 in cell migration. Blood 2003; 102(5): 1723–31PubMedCrossRef Demeule M, Bertrand Y, Michaud-Levesque J, et al. Regulation of plasminogen activation: a role for melanotransferrin p97 in cell migration. Blood 2003; 102(5): 1723–31PubMedCrossRef
120.
Zurück zum Zitat Mangano DT, Miao Y, Vuylsteke A, et al. Mortality associated with aprotinin during 5 years following coronary artery bypass graft surgery. JAMA 2007; 297(5): 471–9PubMedCrossRef Mangano DT, Miao Y, Vuylsteke A, et al. Mortality associated with aprotinin during 5 years following coronary artery bypass graft surgery. JAMA 2007; 297(5): 471–9PubMedCrossRef
121.
Zurück zum Zitat Gaillard PJ, Brink A, de Boer AG. Diphtheria toxin receptor-targeted brain drug delivery. Int Congr Series 2005; 1277: 185–95CrossRef Gaillard PJ, Brink A, de Boer AG. Diphtheria toxin receptor-targeted brain drug delivery. Int Congr Series 2005; 1277: 185–95CrossRef
122.
Zurück zum Zitat Anderson P. Antibody responses to Haemophilus influenzae type b and diphtheria toxin induced by conjugates of oligosaccharides of the type b capsule with the nontoxic protein CRM197. Infect Immun 1983; 39(1): 233–8PubMed Anderson P. Antibody responses to Haemophilus influenzae type b and diphtheria toxin induced by conjugates of oligosaccharides of the type b capsule with the nontoxic protein CRM197. Infect Immun 1983; 39(1): 233–8PubMed
123.
Zurück zum Zitat Buzzi S, Rubboli D, Buzzi G, et al. CRM197 nontoxic diphtheria toxin: effects on advanced cancer patients. Cancer Immunol Immunother 2004; 53(11): 1041–8PubMedCrossRef Buzzi S, Rubboli D, Buzzi G, et al. CRM197 nontoxic diphtheria toxin: effects on advanced cancer patients. Cancer Immunol Immunother 2004; 53(11): 1041–8PubMedCrossRef
124.
Zurück zum Zitat Mishima K, Higashiyama S, Nagashima Y, et al. Regional distribution of heparin-binding epidermal growth factor-like growth factor mRNA and protein in adult rat forebrain. Neurosci Lett 1996; 213(3): 153–6PubMed Mishima K, Higashiyama S, Nagashima Y, et al. Regional distribution of heparin-binding epidermal growth factor-like growth factor mRNA and protein in adult rat forebrain. Neurosci Lett 1996; 213(3): 153–6PubMed
125.
Zurück zum Zitat Mishima K, Higashiyama S, Asai A, et al. Heparin-binding epidermal growth factor-like growth factor stimulates mitogenic signaling and is highly expressed in human malignant gliomas. Acta Neuropathol 1998; 96(4): 322–8PubMedCrossRef Mishima K, Higashiyama S, Asai A, et al. Heparin-binding epidermal growth factor-like growth factor stimulates mitogenic signaling and is highly expressed in human malignant gliomas. Acta Neuropathol 1998; 96(4): 322–8PubMedCrossRef
126.
Zurück zum Zitat Tanaka N, Sasahara M, Ohno M, et al. Heparin-binding epidermal growth factor-like growth factor mRNA expression in neonatal rat brain with hypoxic/ischemic injury. Brain Res 1999; 827(1–2): 130–8PubMedCrossRef Tanaka N, Sasahara M, Ohno M, et al. Heparin-binding epidermal growth factor-like growth factor mRNA expression in neonatal rat brain with hypoxic/ischemic injury. Brain Res 1999; 827(1–2): 130–8PubMedCrossRef
127.
Zurück zum Zitat de Boer AG, Gaillard PJ. Drug targeting to the brain. Annu Rev Pharmacol Toxicol 2007; 47: 323–55PubMedCrossRef de Boer AG, Gaillard PJ. Drug targeting to the brain. Annu Rev Pharmacol Toxicol 2007; 47: 323–55PubMedCrossRef
128.
Zurück zum Zitat Montagner C, Perier A, Pichard S, et al. Behavior of the N-terminal helices of the diphtheria toxin T domain during the successive steps of membrane interaction. Biochemistry 2007; 46(7): 1878–87PubMedCrossRef Montagner C, Perier A, Pichard S, et al. Behavior of the N-terminal helices of the diphtheria toxin T domain during the successive steps of membrane interaction. Biochemistry 2007; 46(7): 1878–87PubMedCrossRef
129.
Zurück zum Zitat Cha JH, Chang MY, Richardson JA, et al. Transgenic mice expressing the diphtheria toxin receptor are sensitive to the toxin. Mol Microbiol 2003; 49(1): 235–40PubMedCrossRef Cha JH, Chang MY, Richardson JA, et al. Transgenic mice expressing the diphtheria toxin receptor are sensitive to the toxin. Mol Microbiol 2003; 49(1): 235–40PubMedCrossRef
130.
Zurück zum Zitat Opanashuk LA, Mark RJ, Porter J, et al. Heparin-binding epidermal growth factor-like growth factor in hippocampus: modulation of expression by seizures and antiexcitotoxic action. J Neurosci 1999; 19(1): 133–46PubMed Opanashuk LA, Mark RJ, Porter J, et al. Heparin-binding epidermal growth factor-like growth factor in hippocampus: modulation of expression by seizures and antiexcitotoxic action. J Neurosci 1999; 19(1): 133–46PubMed
131.
Zurück zum Zitat Luciani A, Olivier JC, Clement O, et al. Glucose-receptor MR imaging of tumors: study in mice with PEGylated paramagnetic niosomes. Radiology 2004; 231(1): 135–42PubMedCrossRef Luciani A, Olivier JC, Clement O, et al. Glucose-receptor MR imaging of tumors: study in mice with PEGylated paramagnetic niosomes. Radiology 2004; 231(1): 135–42PubMedCrossRef
132.
Zurück zum Zitat Pollard H, Remy JS, Loussouarn G, et al. Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem 1998; 273(13): 7507–11PubMedCrossRef Pollard H, Remy JS, Loussouarn G, et al. Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem 1998; 273(13): 7507–11PubMedCrossRef
133.
Zurück zum Zitat Rolland A. Gene medicines: the end of the beginning? Adv Drug Deliv Rev 2005; 57(5): 669–73PubMedCrossRef Rolland A. Gene medicines: the end of the beginning? Adv Drug Deliv Rev 2005; 57(5): 669–73PubMedCrossRef
134.
Zurück zum Zitat Yu P, Wang X, Fu YX. Enhanced local delivery with reduced systemic toxicity: delivery, delivery, and delivery. Gene Ther 2006; 13(15): 1131–2PubMedCrossRef Yu P, Wang X, Fu YX. Enhanced local delivery with reduced systemic toxicity: delivery, delivery, and delivery. Gene Ther 2006; 13(15): 1131–2PubMedCrossRef
135.
Zurück zum Zitat Yew NS. Controlling the kinetics of transgene expression by plasmid design. Adv Drug Deliv Rev 2005; 57(5): 769–80PubMedCrossRef Yew NS. Controlling the kinetics of transgene expression by plasmid design. Adv Drug Deliv Rev 2005; 57(5): 769–80PubMedCrossRef
136.
Zurück zum Zitat de Wolf HK, Snel CJ, Verbaan FJ, et al. Effect of cationic carriers on the pharmacokinetics and tumor localization of nucleic acids after intravenous administration. Int J Pharm 2007; 331(2): 167–75PubMedCrossRef de Wolf HK, Snel CJ, Verbaan FJ, et al. Effect of cationic carriers on the pharmacokinetics and tumor localization of nucleic acids after intravenous administration. Int J Pharm 2007; 331(2): 167–75PubMedCrossRef
137.
Zurück zum Zitat Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408(6813): 740–5PubMedCrossRef Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408(6813): 740–5PubMedCrossRef
138.
Zurück zum Zitat Schiedner G, Bloch W, Hertel S, et al. A hemodynamic response to intravenous adenovirus vector particles is caused by systemic Kupffer cell-mediated activation of endothelial cells. Hum Gene Ther 2003; 14(17): 1631–41PubMedCrossRef Schiedner G, Bloch W, Hertel S, et al. A hemodynamic response to intravenous adenovirus vector particles is caused by systemic Kupffer cell-mediated activation of endothelial cells. Hum Gene Ther 2003; 14(17): 1631–41PubMedCrossRef
139.
Zurück zum Zitat Wang X, Kong L, Zhang GR, et al. Targeted gene transfer to nigrostriatal neurons in the rat brain by helper virus-free HSV-1 vector particles that contain either a chimeric HSV-1 glyco-protein C-GDNF or a gC-BDNF protein. Brain Res Mol Brain Res 2005; 139(1): 88–102PubMedCrossRef Wang X, Kong L, Zhang GR, et al. Targeted gene transfer to nigrostriatal neurons in the rat brain by helper virus-free HSV-1 vector particles that contain either a chimeric HSV-1 glyco-protein C-GDNF or a gC-BDNF protein. Brain Res Mol Brain Res 2005; 139(1): 88–102PubMedCrossRef
140.
Zurück zum Zitat Kootstra NA, Verma IM. Gene therapy with viral vectors. Annu Rev Pharmacol Toxicol 2003; 43: 413–39PubMedCrossRef Kootstra NA, Verma IM. Gene therapy with viral vectors. Annu Rev Pharmacol Toxicol 2003; 43: 413–39PubMedCrossRef
141.
Zurück zum Zitat Lungwitz U, Breunig M, Blunk T, et al. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 2005; 60(2): 247–66PubMedCrossRef Lungwitz U, Breunig M, Blunk T, et al. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 2005; 60(2): 247–66PubMedCrossRef
142.
Zurück zum Zitat Ogris M, Wagner E. Tumor-targeted gene transfer with DNA polyplexes. Somat Cell Mol Genet 2002; 27(1–6): 85–95PubMedCrossRef Ogris M, Wagner E. Tumor-targeted gene transfer with DNA polyplexes. Somat Cell Mol Genet 2002; 27(1–6): 85–95PubMedCrossRef
143.
Zurück zum Zitat Kircheis R, Blessing T, Brunner S, et al. Tumor targeting with surface-shielded ligand -polycation DNA complexes. J Control Release 2001; 72(1–3): 165–70PubMedCrossRef Kircheis R, Blessing T, Brunner S, et al. Tumor targeting with surface-shielded ligand -polycation DNA complexes. J Control Release 2001; 72(1–3): 165–70PubMedCrossRef
144.
Zurück zum Zitat Godbey WT, Wu KK, Mikos AG. Poly (ethylenimine) and its role in gene delivery. J Control Release 1999; 60(2–3): 149–60PubMedCrossRef Godbey WT, Wu KK, Mikos AG. Poly (ethylenimine) and its role in gene delivery. J Control Release 1999; 60(2–3): 149–60PubMedCrossRef
145.
Zurück zum Zitat Clamme JP, Krishnamoorthy G, Mely Y. Intracellular dynamics of the gene delivery vehicle polyethylenimine during transfection: investigation by two-photon fluorescence correlation spectroscopy. Biochim Biophys Acta 2003; 1617(1–2): 52–61PubMed Clamme JP, Krishnamoorthy G, Mely Y. Intracellular dynamics of the gene delivery vehicle polyethylenimine during transfection: investigation by two-photon fluorescence correlation spectroscopy. Biochim Biophys Acta 2003; 1617(1–2): 52–61PubMed
146.
Zurück zum Zitat Zou SM, Erbacher P, Remy JS, et al. Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J Gene Med 2000; 2(2): 128–34PubMedCrossRef Zou SM, Erbacher P, Remy JS, et al. Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J Gene Med 2000; 2(2): 128–34PubMedCrossRef
147.
Zurück zum Zitat Kloeckner J, Wagner E, Ogris M. Degradable gene carriers based on oligomerized polyamines. Eur J Pharm Sci 2006; 29(5): 414–25PubMedCrossRef Kloeckner J, Wagner E, Ogris M. Degradable gene carriers based on oligomerized polyamines. Eur J Pharm Sci 2006; 29(5): 414–25PubMedCrossRef
148.
Zurück zum Zitat Ogris M, Walker G, Blessing T, et al. Tumor-targeted gene therapy: strategies for the preparation of ligand-polyethylene glycol-polyethylenimine/DNA complexes. J Control Release 2003; 91(1–2): 173–81PubMedCrossRef Ogris M, Walker G, Blessing T, et al. Tumor-targeted gene therapy: strategies for the preparation of ligand-polyethylene glycol-polyethylenimine/DNA complexes. J Control Release 2003; 91(1–2): 173–81PubMedCrossRef
149.
Zurück zum Zitat Kursa M, Walker GF, Roessler V, et al. Novel shielded transferrin-polyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjug Chem 2003; 14(1): 222–31PubMedCrossRef Kursa M, Walker GF, Roessler V, et al. Novel shielded transferrin-polyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjug Chem 2003; 14(1): 222–31PubMedCrossRef
150.
Zurück zum Zitat Plank C, Mechtler K, Szoka Jr FC, et al. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum Gene Ther 1996; 7(12): 1437–46PubMedCrossRef Plank C, Mechtler K, Szoka Jr FC, et al. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum Gene Ther 1996; 7(12): 1437–46PubMedCrossRef
151.
Zurück zum Zitat Kircheis R, Schuller S, Brunner S, et al. Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J Gene Med 1999; 1(2): 111–20PubMedCrossRef Kircheis R, Schuller S, Brunner S, et al. Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J Gene Med 1999; 1(2): 111–20PubMedCrossRef
152.
Zurück zum Zitat Boeckle S, Fahrmeir J, Roedl W, et al. Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. J Control Release 2006; 112(2): 240–8PubMedCrossRef Boeckle S, Fahrmeir J, Roedl W, et al. Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. J Control Release 2006; 112(2): 240–8PubMedCrossRef
153.
Zurück zum Zitat Shir A, Ogris M, Wagner E, et al. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PLoS Med 2006; 3(1): e6PubMedCrossRef Shir A, Ogris M, Wagner E, et al. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PLoS Med 2006; 3(1): e6PubMedCrossRef
154.
Zurück zum Zitat Wu GY, Wu CH. Receptor-mediated gene delivery and expression in vivo. J Biol Chem 1988; 263(29): 14621–4PubMed Wu GY, Wu CH. Receptor-mediated gene delivery and expression in vivo. J Biol Chem 1988; 263(29): 14621–4PubMed
155.
Zurück zum Zitat Zhang JS, Liu F, Huang L. Implications of pharmacokinetic behavior of lipoplex for its inflammatory toxicity. Adv Drug Deliv Rev 2005; 57(5): 689–98PubMedCrossRef Zhang JS, Liu F, Huang L. Implications of pharmacokinetic behavior of lipoplex for its inflammatory toxicity. Adv Drug Deliv Rev 2005; 57(5): 689–98PubMedCrossRef
156.
Zurück zum Zitat Zhang JS, Liu F, Conwell CC, et al. Mechanistic studies of sequential injection of cationic liposome and plasmid DNA. Mol Ther 2006; 13(2): 429–37PubMedCrossRef Zhang JS, Liu F, Conwell CC, et al. Mechanistic studies of sequential injection of cationic liposome and plasmid DNA. Mol Ther 2006; 13(2): 429–37PubMedCrossRef
157.
Zurück zum Zitat Dow SW, Fradkin LG, Liggitt DH, et al. Lipid-DNA complexes induce potent activation of innate immune responses and antitumor activity when administered intravenously. J Immunol 1999; 163(3): 1552–61PubMed Dow SW, Fradkin LG, Liggitt DH, et al. Lipid-DNA complexes induce potent activation of innate immune responses and antitumor activity when administered intravenously. J Immunol 1999; 163(3): 1552–61PubMed
158.
Zurück zum Zitat Yew NS, Cheng SH. Reducing the immunostimulatory activity of CpG-containing plasmid DNA vectors for non-viral gene therapy. Expert Opin Drug Deliv 2004; 1(1): 115–25PubMedCrossRef Yew NS, Cheng SH. Reducing the immunostimulatory activity of CpG-containing plasmid DNA vectors for non-viral gene therapy. Expert Opin Drug Deliv 2004; 1(1): 115–25PubMedCrossRef
159.
Zurück zum Zitat Dauty E, Remy JS, Blessing T, et al. Dimerizable cationic detergents with a low cmc condense plasmid DNA into nanometric particles and transfect cells in culture. J Am Chem Soc 2001; 123(38): 9227–34PubMedCrossRef Dauty E, Remy JS, Blessing T, et al. Dimerizable cationic detergents with a low cmc condense plasmid DNA into nanometric particles and transfect cells in culture. J Am Chem Soc 2001; 123(38): 9227–34PubMedCrossRef
160.
Zurück zum Zitat da Cruz MT, Cardoso AL, de Almeida LP, et al. Tf-lipoplex-mediated NGF gene transfer to the CNS: neuronal protection and recovery in an excitotoxic model of brain injury. Gene Ther 2005; 12(16): 1242–52PubMedCrossRef da Cruz MT, Cardoso AL, de Almeida LP, et al. Tf-lipoplex-mediated NGF gene transfer to the CNS: neuronal protection and recovery in an excitotoxic model of brain injury. Gene Ther 2005; 12(16): 1242–52PubMedCrossRef
161.
Zurück zum Zitat Zhang Y, Schlachetzki F, Zhang YF, et al. Normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism with intravenous nonviral gene therapy and a brain-specific promoter. Hum Gene Ther 2004; 15(4): 339–50PubMedCrossRef Zhang Y, Schlachetzki F, Zhang YF, et al. Normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism with intravenous nonviral gene therapy and a brain-specific promoter. Hum Gene Ther 2004; 15(4): 339–50PubMedCrossRef
162.
Zurück zum Zitat Zhang Y, Zhang YF, Bryant J, et al. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 2004; 10(11): 3667–77PubMedCrossRef Zhang Y, Zhang YF, Bryant J, et al. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 2004; 10(11): 3667–77PubMedCrossRef
163.
Zurück zum Zitat Tan Y, Liu F, Li Z, et al. Sequential injection of cationic liposome and plasmid DNA effectively transferts the lung with minimal inflammatory toxicity. Mol Ther 2001; 3 (5 Pt1): 673–82CrossRef Tan Y, Liu F, Li Z, et al. Sequential injection of cationic liposome and plasmid DNA effectively transferts the lung with minimal inflammatory toxicity. Mol Ther 2001; 3 (5 Pt1): 673–82CrossRef
164.
Zurück zum Zitat Nishikawa M, Takakura Y, Hashida M. Theoretical considerations involving the pharmacokinetics of plasmid DNA. Adv Drug Deliv Rev 2005; 57(5): 675–88PubMedCrossRef Nishikawa M, Takakura Y, Hashida M. Theoretical considerations involving the pharmacokinetics of plasmid DNA. Adv Drug Deliv Rev 2005; 57(5): 675–88PubMedCrossRef
165.
Zurück zum Zitat Torchilin VP. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 2006; 8: 343–75PubMedCrossRef Torchilin VP. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 2006; 8: 343–75PubMedCrossRef
166.
Zurück zum Zitat Lechardeur D, Verkman AS, Lukacs GL. Intracellular routing of plasmid DNA during non-viral gene transfer. Adv Drug Deliv Rev 2005; 57(5): 755–67PubMedCrossRef Lechardeur D, Verkman AS, Lukacs GL. Intracellular routing of plasmid DNA during non-viral gene transfer. Adv Drug Deliv Rev 2005; 57(5): 755–67PubMedCrossRef
167.
Zurück zum Zitat von Gersdorff K, Sanders NN, Vandenbroucke R, et al. The internalization route resulting in successful gene expression depends on both cell line and polyethylenimine polyplex type. Mol Ther 2006; 14(5): 745–53CrossRef von Gersdorff K, Sanders NN, Vandenbroucke R, et al. The internalization route resulting in successful gene expression depends on both cell line and polyethylenimine polyplex type. Mol Ther 2006; 14(5): 745–53CrossRef
168.
Zurück zum Zitat Sonawane ND, Szoka Jr FC, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 2003; 278(45): 44826–31PubMedCrossRef Sonawane ND, Szoka Jr FC, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 2003; 278(45): 44826–31PubMedCrossRef
169.
Zurück zum Zitat Uherek C, Fominaya J, Wels W. A modular DNA carrier protein based on the structure of diphtheria toxin mediates target cell-specific gene delivery. J Biol Chem 1998; 273(15): 8835–41PubMedCrossRef Uherek C, Fominaya J, Wels W. A modular DNA carrier protein based on the structure of diphtheria toxin mediates target cell-specific gene delivery. J Biol Chem 1998; 273(15): 8835–41PubMedCrossRef
170.
Zurück zum Zitat Kloeckner J, Boeckle S, Persson D, et al. DNA polyplexes based on degradable oligoethylenimine-derivatives: combination with EGF receptor targeting and endosomal release functions. J Control Release 2006; 116(2): 115–22PubMedCrossRef Kloeckner J, Boeckle S, Persson D, et al. DNA polyplexes based on degradable oligoethylenimine-derivatives: combination with EGF receptor targeting and endosomal release functions. J Control Release 2006; 116(2): 115–22PubMedCrossRef
171.
Zurück zum Zitat Pollard H, Toumaniantz G, Amos JL, et al. Ca2+-sensitive cytosolic nucleases prevent efficient delivery to the nucleus of injected plasmids. J Gene Med 2001; 3(2): 153–64PubMedCrossRef Pollard H, Toumaniantz G, Amos JL, et al. Ca2+-sensitive cytosolic nucleases prevent efficient delivery to the nucleus of injected plasmids. J Gene Med 2001; 3(2): 153–64PubMedCrossRef
172.
Zurück zum Zitat Harel A, Forbes DJ. Welcome to the nucleus: CAN I take your coat? Nat Cell Biol 2001; 3(12): E267–9PubMedCrossRef Harel A, Forbes DJ. Welcome to the nucleus: CAN I take your coat? Nat Cell Biol 2001; 3(12): E267–9PubMedCrossRef
173.
Zurück zum Zitat Brisson M, Huang L. Liposomes: conquering the nuclear barrier. Curr Opin Mol Ther 1999; 1(2): 140–6PubMed Brisson M, Huang L. Liposomes: conquering the nuclear barrier. Curr Opin Mol Ther 1999; 1(2): 140–6PubMed
174.
Zurück zum Zitat Zanta MA, Belguise-Valladier P, Behr JP. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci U S A 1999; 96(1): 91–6PubMedCrossRef Zanta MA, Belguise-Valladier P, Behr JP. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci U S A 1999; 96(1): 91–6PubMedCrossRef
175.
Zurück zum Zitat Branden LJ, Mohamed AJ, Smith CI. A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat Biotechnol 1999; 17(8): 784–7PubMedCrossRef Branden LJ, Mohamed AJ, Smith CI. A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat Biotechnol 1999; 17(8): 784–7PubMedCrossRef
176.
Zurück zum Zitat Jacobs AH, Winkler A, Castro MG, et al. Human gene therapy and imaging in neurological diseases. Eur J Nucl Med Mol Imaging 2005; 32 Suppl. 2: S358–83PubMedCrossRef Jacobs AH, Winkler A, Castro MG, et al. Human gene therapy and imaging in neurological diseases. Eur J Nucl Med Mol Imaging 2005; 32 Suppl. 2: S358–83PubMedCrossRef
177.
Zurück zum Zitat Provenzale JM, Mukundan S, Barboriak DP. Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 2006; 239(3): 632–49PubMedCrossRef Provenzale JM, Mukundan S, Barboriak DP. Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 2006; 239(3): 632–49PubMedCrossRef
178.
Zurück zum Zitat Richardson JC, Bowtell RW, Mader K, et al. Pharmaceutical applications of magnetic resonance imaging (MRI). Adv Drug Deliv Rev 2005; 57(8): 1191–209PubMedCrossRef Richardson JC, Bowtell RW, Mader K, et al. Pharmaceutical applications of magnetic resonance imaging (MRI). Adv Drug Deliv Rev 2005; 57(8): 1191–209PubMedCrossRef
179.
Zurück zum Zitat Morawski AM, Lanza GA, Wickline SA. Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr Opin Biotechnol 2005; 16(1): 89–92PubMedCrossRef Morawski AM, Lanza GA, Wickline SA. Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr Opin Biotechnol 2005; 16(1): 89–92PubMedCrossRef
180.
Zurück zum Zitat Koo YE, Reddy GR, Bhojani M, et al. Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev 2006; 58(14): 1556–77PubMedCrossRef Koo YE, Reddy GR, Bhojani M, et al. Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev 2006; 58(14): 1556–77PubMedCrossRef
181.
Zurück zum Zitat Hamilton AJ, Huang SL, Warnick D, et al. Intravascular ultrasound molecular imaging of atheroma components in vivo. J Am Coll Cardiol 2004 Feb 4; 43(3): 453–60PubMedCrossRef Hamilton AJ, Huang SL, Warnick D, et al. Intravascular ultrasound molecular imaging of atheroma components in vivo. J Am Coll Cardiol 2004 Feb 4; 43(3): 453–60PubMedCrossRef
182.
Zurück zum Zitat Ellegala DB, Leong-Poi H, Carpenter JE, et al. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha (v)beta3. Circulation 2003; 108(3): 336–41PubMedCrossRef Ellegala DB, Leong-Poi H, Carpenter JE, et al. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha (v)beta3. Circulation 2003; 108(3): 336–41PubMedCrossRef
183.
Zurück zum Zitat Kinoshita M, McDannold N, Jolesz FA, et al. Targeted delivery of antibodies through the blood-brain barrier by MRI-guided focused ultrasound. Biochem Biophys Res Commun 2006; 340(4): 1085–90PubMedCrossRef Kinoshita M, McDannold N, Jolesz FA, et al. Targeted delivery of antibodies through the blood-brain barrier by MRI-guided focused ultrasound. Biochem Biophys Res Commun 2006; 340(4): 1085–90PubMedCrossRef
184.
Zurück zum Zitat Paliwal S, Mitragotri S. Ultrasound-induced cavitation: applications in drug and gene delivery. Expert Opin Drug Deliv 2006; 3(6): 713–26PubMedCrossRef Paliwal S, Mitragotri S. Ultrasound-induced cavitation: applications in drug and gene delivery. Expert Opin Drug Deliv 2006; 3(6): 713–26PubMedCrossRef
185.
Zurück zum Zitat Abulrob A, Sprong H, Van Bergenen Henegouwen P, et al. The blood-brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem 2005; 95(4): 1201–14PubMedCrossRef Abulrob A, Sprong H, Van Bergenen Henegouwen P, et al. The blood-brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem 2005; 95(4): 1201–14PubMedCrossRef
186.
Zurück zum Zitat Demeule M, Bertrand Y, Michaud-Levesque J, et al. Regulation of plasminogen activation: a role for melanotransferrin p97 in cell migration. Blood 2003; 102(5): 1723–31PubMedCrossRef Demeule M, Bertrand Y, Michaud-Levesque J, et al. Regulation of plasminogen activation: a role for melanotransferrin p97 in cell migration. Blood 2003; 102(5): 1723–31PubMedCrossRef
187.
Zurück zum Zitat Zlokovic BB, Martel CL, Matsubara E, et al. Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood-brain and blood-cere-brospinal fluid barriers. Proc Natl Acad Sci U S A 1996; 93(9): 4229–34PubMedCrossRef Zlokovic BB, Martel CL, Matsubara E, et al. Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood-brain and blood-cere-brospinal fluid barriers. Proc Natl Acad Sci U S A 1996; 93(9): 4229–34PubMedCrossRef
Metadaten
Titel
Strategies to Improve Drug Delivery Across the Blood-Brain Barrier
verfasst von
Dr Albertus G. de Boer
Pieter J. Gaillard
Publikationsdatum
01.07.2007
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 7/2007
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200746070-00002

Weitere Artikel der Ausgabe 7/2007

Clinical Pharmacokinetics 7/2007 Zur Ausgabe

Original Research Article

Memantine Pharmacotherapy