Skip to main content

16.05.2024 | Original Article

TFCP2L1, a potential differentiation regulator, predicts favorable prognosis and dampens thyroid cancer progression

verfasst von: C. Zeng, Y. Zhang, C. Lin, W. Liang, J. Chen, Y. Chen, H. Xiao, Y. Li, H. Guan

Erschienen in: Journal of Endocrinological Investigation

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Thyroid cancer has an overwhelming incidence in the population. Thus, there is an urgent need to understand the underlying mechanism of its occurrence and development, which may provide new insights into therapeutic strategies. The role and mechanism of TFCP2L1 in regulating the progression of thyroid cancer remains unclear.

Methods

Public databases and clinical samples were used to detect the expression of TFCP2L1 in cancer and non-cancer tissues. Kaplan–Meier and Cox regression analyses were used to compare the differences in survival probability of the TFCP2L1 highly expressing group and the TFCP2L1 lowly expressing group. Functional assays were used to evaluate the biological effect of TFCP2L1 on thyroid cancer cells. RNA sequencing and enrichment analyses were used to find out pathways that were activated or inactivated by TFCP2L1.

Results

We demonstrated that TFCP2L1 was significantly downregulated in thyroid cancer. Decreased expression of TFCP2L1 was associated with malignant clinicopathological characteristics. Kaplan–Meier and Cox regression analyses indicated that thyroid tumor patients with low TFCP2L1 expression presented shorter disease-free interval and progression-free interval. Additionally, TFCP2L1 expression was positively correlated with thyroid differentiation degree. Overexpression of TFCP2L1 in thyroid cancer cells inhibited cell growth and motility in vitro, and tumorigenicity and metastasis in vivo. Mechanistically, the NF-κB signaling pathway was found inactivated by overexpressing TFCP2L1.

Conclusion

Our results suggest that TFCP2L1 is a tumor suppressor and potential differentiation regulator, and might be a potential therapeutic target in thyroid cancer.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249CrossRefPubMed Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249CrossRefPubMed
2.
Zurück zum Zitat Yan T, Qiu W, Song J, Fan Y, Yang Z (2021) ARHGAP36 regulates proliferation and migration in papillary thyroid carcinoma cells. J Mol Endocrinol 66(1):1–10PubMedCrossRef Yan T, Qiu W, Song J, Fan Y, Yang Z (2021) ARHGAP36 regulates proliferation and migration in papillary thyroid carcinoma cells. J Mol Endocrinol 66(1):1–10PubMedCrossRef
3.
Zurück zum Zitat Liu HQ, Chen Q, Liu BH, Wang JX, Chen C, Sun SR (2023) Blood profiles in the prediction of radioiodine refractory papillary thyroid cancer: a case- control study. J Multidiscip Healthc 16:535–546PubMedPubMedCentralCrossRef Liu HQ, Chen Q, Liu BH, Wang JX, Chen C, Sun SR (2023) Blood profiles in the prediction of radioiodine refractory papillary thyroid cancer: a case- control study. J Multidiscip Healthc 16:535–546PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Zheng L M, Li L, He QQ, Wang M, Ma Y H, Zhu J et al (2021) Response to immunotherapy in a patient with anaplastic thyroid cancer A case report. Medicine 100(32). Zheng L M, Li L, He QQ, Wang M, Ma Y H, Zhu J et al (2021) Response to immunotherapy in a patient with anaplastic thyroid cancer A case report. Medicine 100(32).
5.
Zurück zum Zitat Jana T, Brodsky S, Barkai N (2021) Speed-specificity trade-offs in the transcription factors search for their genomic binding sites. Trends Genet 37(5):421–432PubMedCrossRef Jana T, Brodsky S, Barkai N (2021) Speed-specificity trade-offs in the transcription factors search for their genomic binding sites. Trends Genet 37(5):421–432PubMedCrossRef
8.
Zurück zum Zitat Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F et al (2022) Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ 29(11):2190–2202PubMedPubMedCentralCrossRef Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F et al (2022) Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ 29(11):2190–2202PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Kotarba G, Krzywinska E, Grabowska AI, Taracha A, Wilanowski T (2018) TFCP2/TFCP2L1/UBP1 transcription factors in cancer. Cancer Lett 420:72–79PubMedCrossRef Kotarba G, Krzywinska E, Grabowska AI, Taracha A, Wilanowski T (2018) TFCP2/TFCP2L1/UBP1 transcription factors in cancer. Cancer Lett 420:72–79PubMedCrossRef
10.
Zurück zum Zitat Qiu DB, Ye SD, Ruiz B, Zhou XL, Liu DH, Zhang Q et al (2015) Klf2 and Tfcp2l1, Two Wnt/beta-catenin targets, Act synergistically to induce and maintain naive pluripotency. Stem Cell Rep 5(3):314–322CrossRef Qiu DB, Ye SD, Ruiz B, Zhou XL, Liu DH, Zhang Q et al (2015) Klf2 and Tfcp2l1, Two Wnt/beta-catenin targets, Act synergistically to induce and maintain naive pluripotency. Stem Cell Rep 5(3):314–322CrossRef
11.
Zurück zum Zitat Sun HW, You Y, Guo MM, Wang XH, Zhang Y, Ye S (2018) Tfcp2l1 safeguards the maintenance of human embryonic stem cell self-renewal. J Cell Physiol 233(9):6944–6951PubMedCrossRef Sun HW, You Y, Guo MM, Wang XH, Zhang Y, Ye S (2018) Tfcp2l1 safeguards the maintenance of human embryonic stem cell self-renewal. J Cell Physiol 233(9):6944–6951PubMedCrossRef
12.
Zurück zum Zitat Zhang M, Ji JX, Wang XX, Zhang XB, Zhang Y, Li YT et al (2021) The transcription factor Tfcp2l1 promotes primordial germ cell-like cell specification of pluripotent stem cells. J Biol Chem 297(4). Zhang M, Ji JX, Wang XX, Zhang XB, Zhang Y, Li YT et al (2021) The transcription factor Tfcp2l1 promotes primordial germ cell-like cell specification of pluripotent stem cells. J Biol Chem 297(4).
13.
Zurück zum Zitat Heo J, Noh BJ, Lee S, Lee HY, Kim Y, Lim J et al (2020) Phosphorylation of TFCP2L1 by CDK1 is required for stem cell pluripotency and bladder carcinogenesis. Embo Mol Med 12(1) Heo J, Noh BJ, Lee S, Lee HY, Kim Y, Lim J et al (2020) Phosphorylation of TFCP2L1 by CDK1 is required for stem cell pluripotency and bladder carcinogenesis. Embo Mol Med 12(1)
14.
Zurück zum Zitat Heo J, Lee J, Nam YJ, Kim Y, Yun H, Lee S et al (2022) The CDK1/TFCP2L1/ID2 cascade offers a novel combination therapy strategy in a preclinical model of bladder cancer. Exp Mol Med 54(6):801–811PubMedPubMedCentralCrossRef Heo J, Lee J, Nam YJ, Kim Y, Yun H, Lee S et al (2022) The CDK1/TFCP2L1/ID2 cascade offers a novel combination therapy strategy in a preclinical model of bladder cancer. Exp Mol Med 54(6):801–811PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Tun H W, Marlow L A, von Roemeling C A, Cooper S J, Kreinest P, Wu K et al (2010) Pathway signature and cellular differentiation in clear cell renal cell carcinoma. Plos One 5(5). Tun H W, Marlow L A, von Roemeling C A, Cooper S J, Kreinest P, Wu K et al (2010) Pathway signature and cellular differentiation in clear cell renal cell carcinoma. Plos One 5(5).
16.
Zurück zum Zitat Vokshi B H, Davidson G, Sedehi N T P, Helleux A, Rippinger M, Haller A R et al (2023) SMARCB1 regulates a TFCP2L1-MYC transcriptional switch promoting renal medullary carcinoma transformation and ferroptosis resistance. Nat Commun 14(1). Vokshi B H, Davidson G, Sedehi N T P, Helleux A, Rippinger M, Haller A R et al (2023) SMARCB1 regulates a TFCP2L1-MYC transcriptional switch promoting renal medullary carcinoma transformation and ferroptosis resistance. Nat Commun 14(1).
17.
Zurück zum Zitat Otto B, Streichert T, Wegwitz F, Gevensleben H, Klatschke K, Wagener C et al (2013) Transcription factors link mouse WAP-T mammary tumors with human breast cancer. Int J Cancer 132(6):1311–1322PubMedCrossRef Otto B, Streichert T, Wegwitz F, Gevensleben H, Klatschke K, Wagener C et al (2013) Transcription factors link mouse WAP-T mammary tumors with human breast cancer. Int J Cancer 132(6):1311–1322PubMedCrossRef
18.
Zurück zum Zitat Yang J, Bergdorf K, Yan C, Luo W, Chen S C, Ayers G D et al (2023) CXCR2 expression during melanoma tumorigenesis controls transcriptional programs that facilitate tumor growth. Mol Cancer 22(1). Yang J, Bergdorf K, Yan C, Luo W, Chen S C, Ayers G D et al (2023) CXCR2 expression during melanoma tumorigenesis controls transcriptional programs that facilitate tumor growth. Mol Cancer 22(1).
19.
Zurück zum Zitat Li XY, Yang S, Zhao CY, Yang J, Li C, Shen WH et al (2021) CircHACE1 functions as a competitive endogenous RNA to curb differentiated thyroid cancer progression by upregulating Tfcp2L1 through adsorbing miR-346. Endocr J 68(8):1011–1025PubMedCrossRef Li XY, Yang S, Zhao CY, Yang J, Li C, Shen WH et al (2021) CircHACE1 functions as a competitive endogenous RNA to curb differentiated thyroid cancer progression by upregulating Tfcp2L1 through adsorbing miR-346. Endocr J 68(8):1011–1025PubMedCrossRef
20.
Zurück zum Zitat Guan H, Guo Y, Liu L, Ye R, Liang W, Li H et al (2018) INAVA promotes aggressiveness of papillary thyroid cancer by upregulating MMP9 expression. Cell Biosci 8:26PubMedPubMedCentralCrossRef Guan H, Guo Y, Liu L, Ye R, Liang W, Li H et al (2018) INAVA promotes aggressiveness of papillary thyroid cancer by upregulating MMP9 expression. Cell Biosci 8:26PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Chen Y, Li H, Liang W, Guo Y, Peng M, Ke W et al (2021) SLC6A15 acts as a tumor suppressor to inhibit migration and invasion in human papillary thyroid cancer. J Cell Biochem 122(8):814–826PubMedCrossRef Chen Y, Li H, Liang W, Guo Y, Peng M, Ke W et al (2021) SLC6A15 acts as a tumor suppressor to inhibit migration and invasion in human papillary thyroid cancer. J Cell Biochem 122(8):814–826PubMedCrossRef
22.
Zurück zum Zitat Li H, Guan H Y, Guo Y, Liang W W, Liu L H, He X Y et al (2018) CITED1 promotes proliferation of papillary thyroid cancer cells via the regulation of p21 and p27. Cell Biosci 8. Li H, Guan H Y, Guo Y, Liang W W, Liu L H, He X Y et al (2018) CITED1 promotes proliferation of papillary thyroid cancer cells via the regulation of p21 and p27. Cell Biosci 8.
23.
Zurück zum Zitat Zeng C M, Li H, Liang W W, Chen J X, Zhang Y L, Zhang H R et al (2023) Loss of STARD13 contributes to aggressive phenotype transformation and poor prognosis in papillary thyroid carcinoma. Endocrine. Zeng C M, Li H, Liang W W, Chen J X, Zhang Y L, Zhang H R et al (2023) Loss of STARD13 contributes to aggressive phenotype transformation and poor prognosis in papillary thyroid carcinoma. Endocrine.
24.
Zurück zum Zitat Cancer Genome Atlas Research N (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell 159(3):676–690CrossRef Cancer Genome Atlas Research N (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell 159(3):676–690CrossRef
25.
Zurück zum Zitat Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN et al (2018) Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173(2):338-354.e15PubMedPubMedCentralCrossRef Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN et al (2018) Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173(2):338-354.e15PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH et al (2016) Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest 126(3):1052–1066PubMedPubMedCentralCrossRef Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH et al (2016) Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest 126(3):1052–1066PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q et al (2020) TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 48(W1):W509–W514. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q et al (2020) TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 48(W1):W509–W514.
28.
Zurück zum Zitat Zhou J, Xu M, Tan J, Zhou L, Dong F, Huang T (2022) MMP1 acts as a potential regulator of tumor progression and dedifferentiation in papillary thyroid cancer. Front Oncol 12:1030590PubMedPubMedCentralCrossRef Zhou J, Xu M, Tan J, Zhou L, Dong F, Huang T (2022) MMP1 acts as a potential regulator of tumor progression and dedifferentiation in papillary thyroid cancer. Front Oncol 12:1030590PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat He W, Sun Y, Ge J, Wang X, Lin B, Yu S et al (2023) STRA6 regulates tumor immune microenvironment and is a prognostic marker in BRAF-mutant papillary thyroid carcinoma. Front Endocrinol (Lausanne) 14:1076640PubMedCrossRef He W, Sun Y, Ge J, Wang X, Lin B, Yu S et al (2023) STRA6 regulates tumor immune microenvironment and is a prognostic marker in BRAF-mutant papillary thyroid carcinoma. Front Endocrinol (Lausanne) 14:1076640PubMedCrossRef
30.
Zurück zum Zitat Yu P, Qu N, Zhu R, Hu J, Han P, Wu J et al (2023) TERT accelerates BRAF mutant-induced thyroid cancer dedifferentiation and progression by regulating ribosome biogenesis. Sci Adv 9(35):eadg7125PubMedPubMedCentralCrossRef Yu P, Qu N, Zhu R, Hu J, Han P, Wu J et al (2023) TERT accelerates BRAF mutant-induced thyroid cancer dedifferentiation and progression by regulating ribosome biogenesis. Sci Adv 9(35):eadg7125PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Jendrzejewski J, Thomas A, Liyanarachchi S, Eiterman A, Tomsic J, He H et al (2015) PTCSC3 is involved in papillary thyroid carcinoma development by modulating S100A4 gene expression. J Clin Endocrinol Metab 100(10):E1370–E1377PubMedPubMedCentralCrossRef Jendrzejewski J, Thomas A, Liyanarachchi S, Eiterman A, Tomsic J, He H et al (2015) PTCSC3 is involved in papillary thyroid carcinoma development by modulating S100A4 gene expression. J Clin Endocrinol Metab 100(10):E1370–E1377PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Geng QS, Huang T, Li LF, Shen ZB, Xue WH, Zhao J (2021) Over-expression and prognostic significance of FN1, correlating with immune infiltrates in thyroid cancer. Front Med (Lausanne) 8:812278PubMedCrossRef Geng QS, Huang T, Li LF, Shen ZB, Xue WH, Zhao J (2021) Over-expression and prognostic significance of FN1, correlating with immune infiltrates in thyroid cancer. Front Med (Lausanne) 8:812278PubMedCrossRef
33.
Zurück zum Zitat Li Y, He J, Wang F, Wang X, Yang F, Zhao C et al (2020) Role of MMP-9 in epithelial-mesenchymal transition of thyroid cancer. World J Surg Oncol 18(1):181PubMedPubMedCentralCrossRef Li Y, He J, Wang F, Wang X, Yang F, Zhao C et al (2020) Role of MMP-9 in epithelial-mesenchymal transition of thyroid cancer. World J Surg Oncol 18(1):181PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Rotondi M, Coperchini F, Latrofa F, Chiovato L (2018) Role of chemokines in thyroid cancer microenvironment: is CXCL8 the main player? Front Endocrinol (Lausanne) 9:314PubMedCrossRef Rotondi M, Coperchini F, Latrofa F, Chiovato L (2018) Role of chemokines in thyroid cancer microenvironment: is CXCL8 the main player? Front Endocrinol (Lausanne) 9:314PubMedCrossRef
35.
Zurück zum Zitat Lumachi F, Basso SM, Orlando R (2010) Cytokines, thyroid diseases and thyroid cancer. Cytokine 50(3):229–233PubMedCrossRef Lumachi F, Basso SM, Orlando R (2010) Cytokines, thyroid diseases and thyroid cancer. Cytokine 50(3):229–233PubMedCrossRef
36.
Zurück zum Zitat Zeng W, Chang H, Ma M, Li Y (2014) CCL20/CCR6 promotes the invasion and migration of thyroid cancer cells via NF-kappa B signaling-induced MMP-3 production. Exp Mol Pathol 97(1):184–190PubMedCrossRef Zeng W, Chang H, Ma M, Li Y (2014) CCL20/CCR6 promotes the invasion and migration of thyroid cancer cells via NF-kappa B signaling-induced MMP-3 production. Exp Mol Pathol 97(1):184–190PubMedCrossRef
37.
Zurück zum Zitat Zhang G Q, Xi C, Shen C T, Song H J, Luo Q Y, and Qiu Z L (2023) Interleukin-6 promotes the dedifferentiation of papillary thyroid cancer cells. Endocr Relat Cancer 30(9). Zhang G Q, Xi C, Shen C T, Song H J, Luo Q Y, and Qiu Z L (2023) Interleukin-6 promotes the dedifferentiation of papillary thyroid cancer cells. Endocr Relat Cancer 30(9).
38.
Zurück zum Zitat Karin M (2006) Nuclear factor-κB in cancer development and progression. Nature 441(7092):431–436PubMedCrossRef Karin M (2006) Nuclear factor-κB in cancer development and progression. Nature 441(7092):431–436PubMedCrossRef
39.
Zurück zum Zitat Taniguchi K, Karin M (2018) NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18(5):309–324PubMedCrossRef Taniguchi K, Karin M (2018) NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18(5):309–324PubMedCrossRef
40.
Zurück zum Zitat Garg B, Giri B, Modi S, Sethi V, Castro I, Umland O et al (2018) NFkappaB in pancreatic stellate cells reduces infiltration of tumors by cytotoxic T cells and killing of cancer cells, via up-regulation of CXCL12. Gastroenterology 155(3):880-891.e8PubMedCrossRef Garg B, Giri B, Modi S, Sethi V, Castro I, Umland O et al (2018) NFkappaB in pancreatic stellate cells reduces infiltration of tumors by cytotoxic T cells and killing of cancer cells, via up-regulation of CXCL12. Gastroenterology 155(3):880-891.e8PubMedCrossRef
41.
Zurück zum Zitat Jiang SH, Zhu LL, Zhang M, Li RK, Yang Q, Yan JY et al (2019) GABRP regulates chemokine signalling, macrophage recruitment and tumour progression in pancreatic cancer through tuning KCNN4-mediated Ca(2+) signalling in a GABA-independent manner. Gut 68(11):1994–2006PubMedCrossRef Jiang SH, Zhu LL, Zhang M, Li RK, Yang Q, Yan JY et al (2019) GABRP regulates chemokine signalling, macrophage recruitment and tumour progression in pancreatic cancer through tuning KCNN4-mediated Ca(2+) signalling in a GABA-independent manner. Gut 68(11):1994–2006PubMedCrossRef
42.
Zurück zum Zitat Chen X, Song E (2019) Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov 18(2):99–115PubMedCrossRef Chen X, Song E (2019) Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov 18(2):99–115PubMedCrossRef
43.
Zurück zum Zitat Ma B, Xu W, Wei W, Wen D, Lu Z, Yang S et al (2018) Clinicopathological and survival outcomes of well-differentiated thyroid carcinoma undergoing dedifferentiation: a retrospective study from FUSCC. Int J Endocrinol 2018:2383715PubMedPubMedCentralCrossRef Ma B, Xu W, Wei W, Wen D, Lu Z, Yang S et al (2018) Clinicopathological and survival outcomes of well-differentiated thyroid carcinoma undergoing dedifferentiation: a retrospective study from FUSCC. Int J Endocrinol 2018:2383715PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Fugazzola L, Elisei R, Fuhrer D, Jarzab B, Leboulleux S, Newbold K et al (2019) 2019 European Thyroid Association Guidelines for the treatment and follow-up of advanced radioiodine-refractory thyroid cancer. Eur Thyroid J 8(5):227–245PubMedPubMedCentralCrossRef Fugazzola L, Elisei R, Fuhrer D, Jarzab B, Leboulleux S, Newbold K et al (2019) 2019 European Thyroid Association Guidelines for the treatment and follow-up of advanced radioiodine-refractory thyroid cancer. Eur Thyroid J 8(5):227–245PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Hou XK, Tian MR, Ning JY, Wang ZY, Guo FL, Zhang W et al (2023) PARP inhibitor shuts down the global translation of thyroid cancer through promoting Pol II binding to DIMT1 pause. Int J Biol Sci 19(12):3970–3986PubMedPubMedCentralCrossRef Hou XK, Tian MR, Ning JY, Wang ZY, Guo FL, Zhang W et al (2023) PARP inhibitor shuts down the global translation of thyroid cancer through promoting Pol II binding to DIMT1 pause. Int J Biol Sci 19(12):3970–3986PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Zhang X, Ren D, Wu XQ, Lin X, Ye LP, Lin CY et al (2018) miR-1266 contributes to pancreatic cancer progression and chemoresistance by the STAT3 and NF-kappa B signaling pathways. Mol Therapy-Nucleic Acids 11:142–158CrossRef Zhang X, Ren D, Wu XQ, Lin X, Ye LP, Lin CY et al (2018) miR-1266 contributes to pancreatic cancer progression and chemoresistance by the STAT3 and NF-kappa B signaling pathways. Mol Therapy-Nucleic Acids 11:142–158CrossRef
47.
Zurück zum Zitat Ye R Y, Liu D W, Guan H Y, AiErken N, Fang Z, Shi Y W et al (2021) AHNAK2 promotes thyroid carcinoma progression by activating the NF-kappa B pathway. Life Sci 286 Ye R Y, Liu D W, Guan H Y, AiErken N, Fang Z, Shi Y W et al (2021) AHNAK2 promotes thyroid carcinoma progression by activating the NF-kappa B pathway. Life Sci 286
48.
Zurück zum Zitat Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12(8):695–708PubMedCrossRef Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12(8):695–708PubMedCrossRef
49.
Zurück zum Zitat Huang D, Zeng Y, Deng H Y, Fu B D, Ke Y, Luo J Y et al (2022) SYTL5 promotes papillary thyroid carcinoma progression by enhancing activation of the NF-kappa B signaling pathway. Endocrinology 164(1). Huang D, Zeng Y, Deng H Y, Fu B D, Ke Y, Luo J Y et al (2022) SYTL5 promotes papillary thyroid carcinoma progression by enhancing activation of the NF-kappa B signaling pathway. Endocrinology 164(1).
50.
Zurück zum Zitat Feng L, Wang R, Yang Y F, Shen X X, Shi Q, Lian M et al (2021) KPNA4 regulated by miR-548b-3p promotes the malignant phenotypes of papillary thyroid cancer. Life Sci 265. Feng L, Wang R, Yang Y F, Shen X X, Shi Q, Lian M et al (2021) KPNA4 regulated by miR-548b-3p promotes the malignant phenotypes of papillary thyroid cancer. Life Sci 265.
51.
Zurück zum Zitat Ke S, Pan Q, Wang C, Su Z, Li M, Liu X (2023) NKD2 trigger NF-kappaB signaling pathway and facilitates thyroid cancer cell proliferation. Mol Biotechnol 65(11):1846–1856PubMedPubMedCentralCrossRef Ke S, Pan Q, Wang C, Su Z, Li M, Liu X (2023) NKD2 trigger NF-kappaB signaling pathway and facilitates thyroid cancer cell proliferation. Mol Biotechnol 65(11):1846–1856PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Cardenas-Diaz FL, Liberti DC, Leach JP, Babu A, Barasch J, Shen T et al (2023) Temporal and spatial staging of lung alveolar regeneration is determined by the grainyhead transcription factor Tfcp2l1. Cell Rep 42(5):112451PubMedPubMedCentralCrossRef Cardenas-Diaz FL, Liberti DC, Leach JP, Babu A, Barasch J, Shen T et al (2023) Temporal and spatial staging of lung alveolar regeneration is determined by the grainyhead transcription factor Tfcp2l1. Cell Rep 42(5):112451PubMedPubMedCentralCrossRef
53.
54.
Zurück zum Zitat Stein L, Rothschild J, Luce J, Cowell JK, Thomas G, Bogdanova TI et al (2010) Copy number and gene expression alterations in radiation-induced papillary thyroid carcinoma from chernobyl pediatric patients. Thyroid 20(5):475–487PubMedCrossRef Stein L, Rothschild J, Luce J, Cowell JK, Thomas G, Bogdanova TI et al (2010) Copy number and gene expression alterations in radiation-induced papillary thyroid carcinoma from chernobyl pediatric patients. Thyroid 20(5):475–487PubMedCrossRef
55.
Zurück zum Zitat Nikiforov YE, Nikiforova MN (2011) Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 7(10):569–580PubMedCrossRef Nikiforov YE, Nikiforova MN (2011) Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 7(10):569–580PubMedCrossRef
56.
Zurück zum Zitat Guo K, Qian K, Shi Y, Sun T, Wang Z (2021) LncRNA-MIAT promotes thyroid cancer progression and function as ceRNA to target EZH2 by sponging miR-150-5p. Cell Death Dis 12(12):1097PubMedPubMedCentralCrossRef Guo K, Qian K, Shi Y, Sun T, Wang Z (2021) LncRNA-MIAT promotes thyroid cancer progression and function as ceRNA to target EZH2 by sponging miR-150-5p. Cell Death Dis 12(12):1097PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Prete A, Borges de Souza P, Censi S, Muzza M, Nucci N, Sponziello M (2020) Update on fundamental mechanisms of thyroid cancer. Front Endocrinol (Lausanne) 11:102PubMedCrossRef Prete A, Borges de Souza P, Censi S, Muzza M, Nucci N, Sponziello M (2020) Update on fundamental mechanisms of thyroid cancer. Front Endocrinol (Lausanne) 11:102PubMedCrossRef
Metadaten
Titel
TFCP2L1, a potential differentiation regulator, predicts favorable prognosis and dampens thyroid cancer progression
verfasst von
C. Zeng
Y. Zhang
C. Lin
W. Liang
J. Chen
Y. Chen
H. Xiao
Y. Li
H. Guan
Publikationsdatum
16.05.2024
Verlag
Springer International Publishing
Erschienen in
Journal of Endocrinological Investigation
Elektronische ISSN: 1720-8386
DOI
https://doi.org/10.1007/s40618-024-02392-5

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.