Skip to main content
Erschienen in: European Journal of Medical Research 1/2023

Open Access 01.12.2023 | Research

The association between air pollution and the daily hospital visits for atrial fibrillation recorded by ECG: a case-crossover study

verfasst von: Jiming Han, Rui Zhang, Jingyi Guo, Qingfeng Zheng, Xin Chen, Shanmei Wu, Jianguo Tan, Yongguang Li

Erschienen in: European Journal of Medical Research | Ausgabe 1/2023

Abstract

Background

The relationship between air pollution and atrial fibrillation (AF) recorded by electrocardiograph (ECG) has not yet been illustrated which worsens AF precaution and treatment. This research evaluated the association between air pollution and daily hospital visits for AF with ECG records.

Methods

The study enrolled 4933 male and 5392 female patients whose ECG reports indicated AF from 2015 to 2018 in our hospital. Such data were then matched with meteorological data, including air pollutant concentrations, collected by local weather stations. A case-crossover study was performed to assess the relationship between air pollutants and daily hospital visits for AF recorded by ECG and to investigate its lag effect.

Results

Our analysis revealed statistically significant associations between AF occurrence and demographic data, including age and gender. This effect was stronger in female (k = 0.02635, p < 0.01) and in patients over 65 y (k = 0.04732, p < 0.01). We also observed a hysteretic effect that when exposed to higher nitrogen dioxide(NO2), counting AF cases recorded by ECG may elevate at lag 0 with a maximum odds ratio(OR) of 1.038 (95% CI 1.014–1.063), on the contrary, O3 reduced the risk of daily visits for AF and its maximum OR was at lag 2, and the OR value was 0.9869 (95% CI 0.9791–0.9948). Other air pollutants such as PM2.5, PM10, and SO2 showed no clear relationship with the recorded AF.

Conclusion

The associations between air pollution and AF recorded with ECG were preliminarily discovered. Short-term exposure to NO2 was significantly associated with daily hospital visits for AF management.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s40001-023-01170-y.
Jiming Han and Rui Zhang contributed equally to the article.
The original online version of this article was revised: In this article, the article title was incorrectly given as “The associations between air pollution and the daily hospital visits for atrial fibrillation recorded by ECG:a cross-sectional study" but should have been “The associations between air pollution and the daily hospital visits for atrial fibrillation recorded by ECG:a case-crossover study".
A correction to this article is available online at https://​doi.​org/​10.​1186/​s40001-023-01266-5.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

The associations between air pollutant concentration and its adverse effects on cardiovascular system, especially cardiac arrhythmias, have been illustrated by numerous reports [14]. However, only a few researchers have tried to decipher the relationship between air pollution and AF.
The meta-analysis, carried out by Shao et al. issued a statistically significant association between AF development and certain gaseous pollutant, such as nitrogen monoxide (NO), carbon monoxide (CO), sulfur dioxide (SO2) and ozone (O3), as well as particulate matter (PM) [5]. Through the investigation of the association between daily emergency ambulance calls (EC) for paroxysmal atrial fibrillation and air pollution, Vencloviene et al. pointed out a short-term hysteretic effect in people over 65 years old who were exposed to CO and PM10 and developed AF [6]. Meanwhile, another 14-year time-series study found the evidence that increased PM concentration was associated with AF prevalence after short-term exposure, and the effect was amplified in the case of female gender and the elderly [7].Besides, Monrad M. et al. found a long-term residential traffic-related air pollution exposure could be associated with higher risk of AF [8]. Increased ambient O3 was also considered one of the precipitant of paroxysmal AF [9]. Nevertheless, some researches pointed out that PMs were involved in the arrhythmia, while other researches verified that hospitalization for AF was not significantly associated with short-term exposure to elevated PM2.5, nor was there a correlation between air pollution and acute-onset AF [1012]. Therefore, it is particularly important to investigate the relationship between pollutants and acute-onset AF. In this study, we investigated the correlation between pollutants and acute-onset AF recorded by ECG. Subgroup comparisons were also carried out to explore people who were more vulnerable to short-term air pollutants exposure.

Methods

Study population

AF, coding I48. × 01 in 10th edition of International Classification of Diseases (ICD-10), was recorded by ECG. Generally, the ECG changes of typical AF are characterized by irregularly irregular R–R intervals, absence of distinct repeating P waves and irregular atrial activation (ESC guidelines definition). Patients’ data were eligible if they were testified with ECG indicating AF from Jan 1st 2015 to Dec 31st 2018 in Shanghai Sixth People’s Hospital. This case-crossover study involving human participants was in accordance with the ethical standards of 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was also approved by the ethics committee of Shanghai Sixth People’s Hospital. The study consisted of 4933 male and 5392 female patients. The study did not include minors (the youngest person with AF was 19 years old). Total of 10,863 AF cases recorded by ECG were obtained and 538 cases repeated by ECG in 48-h were excluded. Demographic data included name, gender, age, and we collected information of ECG (ST-T: ST-T changes; FVR: fast ventricular rate; SVR: slow ventricular rate; CB: conduction block; NSVT: nonpersistent supraventricular tachycardia; VPB: ventricular premature beat). All data were sorted in a date-based ascending order and were organized as gender and age group distribution. A single-centered database of AF with demographic data and data of ECG was then established.

Environmental data

The daily averaged concentrations in Shanghai during the study period for fine particle mass and gaseous air pollutant, including PM2.5, PM10, O3, SO2, NO2 and CO, were obtained from Environmental Monitoring Center in Shanghai. To quantitatively describe short-term air quality conditions and trends in the study area, air quality index (AQI) was introduced, ever since AQI indicators were implanted in China in 2012. The referencing standards for AQI grading calculation are “Environmental Air Quality Standards” (GB3095-2012) and “AQI Technical Regulations (Trial)” (HJ633-2012). The AQI is calculated as follows:
AQI = max (IAQI1, IAQI2, IAQI3, …, IAQIn). In this formula, IAQIn refers to the air quality sub-index and n refers to each pollutant. The values of AQI in different intervals represent a specific air quality grade (Additional file 1: Table S1). When AQI is greater than 50, the pollutant with the highest IAQIn is defined as the primary pollutant; if the pollutant of the highest IAQIn is a tie between two or among more, they are then listed as primary pollutants. The monthly and quarterly mean air pollutant concentration was calculated based on daily mean concentration in Shanghai.

Statistical analysis

Chi-squared tests and two-sample t-tests were applied to compare the demographic distribution of the two groups when appropriate. The Pearson correlation coefficient was used to analyze the association between AF and each air pollutant. A total of 10,325 AF in Shanghai Sixth People’s Hospital, from 2015 to 2018 was used to fit the model after adjusting for meteorological variables under the case-crossover analysis with the same year–month time stratification. Since each case serves as his or her own control, individual-level confounding factors that remain constant over a short period of time (e.g., age, race, gender, socioeconomic status) are controlled. The date of hospital visits served as the case day (lag 0). The association between lag 0–3 air pollutant concentrations and daily hospital visits for AF recorded by ECG was presented as an odds ratio (OR) with a 95% CI, and was conducted mathematically with a conditional logistic regression model using R (version 4.1.1; R Development Core Team, Vienna, Austria) with the season package. In order to make sure the relationship of NO2 and hospital visits for AF, conditional Logistic regression (R software "season" package) was used to analyze the influence of different lag pollutants on the number of daily AF, including PM2.5, PM10, O3, SO2, NO2 and CO and adjusted for weather factors (mean atmospheric pressure, mean temperature, mean relative humidity, mean wind speed). The parameters of the “lag” are defined in Additional file 2: Table S2. The statistical tests were two-sided, and the effects of p < 0.05 or p < 0.01 were considered statistically significant.

Results

The basic characteristics of study population and air pollutants

The AF recorded by ECG and the corresponding daily air pollutants are shown in Fig. 1. Air pollutants repeated regularly, but the concentration of air pollutants decreased year by year from 2015 to 2018. The concentrations of PM2.5, PM10, SO2, NO2 and CO were highest in winter (data not shown). The summary of basic demographic statistics of the study population and air pollution is shown in Table1. The mean age of patients was 76.49 ± 11.46 years old with 83.00% participants over 65. The mean age of patients of different genders was 74.41 ± 12.18 years old in males and 78.39 ± 10.40 years old in females, respectively. The occurrence of AF was different in terms of gender and age, and most of the AF occurrence was in patients over 65 years old (data not shown). Comparison of monthly and quarterly hospital visits for AF recorded by ECG in this study could be seen in Additional file 3: Fig. S1A, B. The monthly hospital visits for AF recorded by ECG reached its peak in January (2015 and 2016) and February (2018). However, the peak time in 2017 was seen in April. Besides, we did observe a rebound of the number of AF in spring in any year. The monthly average quality of NO2 ranged from 30 to 80 µg/m3 (91.7%). The monthly average quality of SO2 ranged from 5 to 20 µg/m3 (91.7%). The monthly average quality of PM10 ranged from 30 to 65 µg/m3 (95.8%). The monthly average quality of PM2.5 ranged from 25 to 80 µg/m3 (91.7%). The monthly average quality of CO ranged from 12 to 27 µg/m3 (93.8%). The monthly average quality of O3 ranged from 25 to 90 mg/m3 (91.7%). Most of the air pollutants reached their highest concentrations in the first and fourth quarters annually, negatively devastating air quality in the same period. On the other hand, O3 reached its highest concentration in the summer season, probably due to higher temperature.
Table 1
Summary of basic descriptive statistics of the study population and air pollution
Variables
Values
Total patients
10,325
Male
4933 (47.78%)
Male, years
74.41 ± 12.18
Female, years
78.39 ± 10.40
Age, years
76.49 ± 11.46
< 41, years
34.40 ± 5.11
41–65, years
58.78 ± 5.78
> 65, years
80.41 ± 7.35
ST-T
5056 (48.97%)
FVR
3263 (31.60%)
SVR
328 (3.18%)
CB
2152 (20.84%)
NSVT
39 (0.38%)
VPB
1271 (12.31%)
PM2.5 (µg/m3)
43.02 ± 28.74
PM10 (µg/m3)
63.46 ± 36.95
O3 (µg/m3)
105.16 ± 45.79
SO2 (µg/m3)
13.26 ± 6.86
NO2 (µg/m3)
43.73 ± 19.91
CO (mg/m3)
0.77 ± 0.27
ST-T, ST-T changes; FVR, fast ventricular rate; SVR, slow ventricular rate; CB, conduction block; NSVT, nonpersistent supraventricular tachycardia; VPB, ventricular premature beat

Pearson correlation coefficient for the association of each parameter

The air pollution and meteorological measurements are shown in Additional file 4: Table S3. Daily NO2 was positively correlated with CO (Pearson correlation coefficient, r = 0.703) and PM2.5 (r = 0.680). NO2 was also positively correlated with SO2 (r = 0.607) and PM10 (r = 0.264). On the contrary, O3 was negatively correlated with NO2 (r = − 0.201) and the weather factors were also correlated with the air pollutant measurements.

The correlation of the daily AF recorded by ECG and the air pollutants

For the monthly level, O3 showed a negative correlation with AF-onset daily visits (r = − 0.38, p < 0.05) and a positive correlation was seen between daily AF recorded by ECG and each of the rest of the detected air pollutants (Fig. 2a–f) (PM2.5 r = 0.45 p < 0.05, PM10 r = 0.50 p < 0.05, O3 r = − 0.38 p < 0.05; SO2 r = 0.46 p < 0.05, NO2 r = 0.54 p < 0.05, and CO r = 0.38 p < 0.01). Since NO2 showed the highest coefficiency on lag effects, we further tested if the influence was different in gender and age subgroups (Fig. 3a, b). While the slope of the regression curve in female patients (k = 0.02635, p < 0.01) was slightly sharper than that in male patients (k = 0.02162, p < 0.01), the hysteresis effect still remained in both genders. However, when it came to the age group fitting test, the hysteresis effect could only be seen in patients over 65 years old (k = 0.04732, p < 0.01). All results above were much more ambiguous when comparing weekly mean values of corresponding IAQI and AF. None of the absolute value of each Pearson correlation coefficient was above 0.20 (not shown).

Air pollutants lag effects and AF recording

To elucidate whether the air pollution could induce AF with lag effects, we analyzed the association between each air pollutant and the number of AF patients with ECG on day lag 0–3, respectively (Fig. 4). In order to make sure the relationship of NO2 and hospital visits for AF recorded by ECG, conditional logistic regression (R software "season" package) was used to analyze the influence of different lag pollutants on the number of daily AF recorded by ECG, including PM2.5, PM10, O3, SO2, NO2 and CO. And adjusted for weather factors (mean atmospheric pressure, mean temperature, mean relative humidity, mean wind speed) OR (95% CI). The PM2.5, PM10 and SO2 have no relationship with daily visits of AF recorded by ECG. But NO2 increases the risk of daily visits of AF recorded by ECG and the maximum OR at lag 0, and the OR value was 1.0381 (95% CI 1.0135–1.0634). The O3 reduces the risk of daily visits of AF recorded by ECG and the maximum RR at lag 2, and the OR value was 0.9869 (95% CI 0.9791–0.9948) and adjusted for weather factors, The CO reduces the risk of daily visits of AF recorded by ECG at lag 0, and the OR value was 0.9972 (95% CI 0.9949–0.9995) (Fig. 4a–f).

Discussion

Main findings

The most important finding of this study was that significant increase of daily hospital visits for AF patients with positive ECG was associated with increments in NO2 concentration at lag 0 in Shanghai. Also, this effect was stronger within female patients and patients over 65.

Air pollutants were associated with AF recorded by ECG

Nowadays, air quality is one of the most popular issues to human life [13]. It has been reported that air pollution, low temperature, air humidity and air pressure changes could threaten certain population who are more vulnerable to cardiovascular diseases [14, 6, 1419]. During this research, we proved that ambient environmental changes resulted in gender-related arrhythmia. We found that people over 65 years old had a higher daily hospital visits for AF recorded by ECG, which was consistent with previous studies [11]. In this research, we found that NO2 enhanced daily hospital visits for AF through the correlation between ECG records and meteorological pollution data. Though PM10 showed similar hysteresis effect, as it increased the risk of daily hospital visits of AF recorded by ECG, its devastating function was much weaker than NO2 and might need further detection [6]. Interestingly, the hysteresis effect of PM2.5 was unexpectedly weaker than that of PM10. O3 and CO needs more evidence to show their capabilities in inducing or inhibiting air pollution-related arrhythmia, because our results were opposite to the previous findings by Rich et al. [8], who demonstrated a positive relationship between O3 and CO concentrations and AF.
NO2 has a variety of both natural (volcano eruption, forest fire, etc.) and anthropogenic sources, derived from fossil fuel combustion (mainly originated from traffic and industrial consumption) [20]. Various studies have indirectly suggested short-term NO2 exposure would lead to cardiovascular mortalities, myocardial infarction, heart failure, and arrhythmias. Hoek et al. showed a significant correlation between air pollution and the daily mortality caused by arrhythmias in Netherlands [2125]. Strong effect of NO2 inducing arrhythmias, including AF and increasing heart failure, has been described in Western Europe [26]. In Brazil, Santos et al. carried out a time-series study and reported the significant influence of concurrent-day NO2 concentration on the number of arrhythmia emergency room visits [27]. Zhao et al. also concluded that NO2 had larger and more robust effects on outpatient visits for arrhythmia than other pollutants [19]. A previous study led by Monrad M. et al. claimed that though long-term residential traffic-related air pollution could be associated with higher risk of AF, no clear regarding effect modification was seen between exposure to nitrogen oxides(NOx) and AF in the aspects of gender, hypertension or other risk factors [7]. However, in our study, gender and age were clear modifications for short-term NO2 exposure when exploring its hysteresis effect. Possible explanation for this difference could lie in later univariate analysis against population cognition towards typical arrhythmias and personal hospital visits behaviors. Hence, the mechanisms through which air pollutants cause AF need further research.

The mechanism of air pollutants associated with arrhythmia

To our knowledge, the biological patterns of how air pollutants induce arrhythmia were still not fully understood. Most researchers believed that autonomic nerve system, inflammatory reaction, and direct damage of the gaseous factors might play an important role in the occurrence of AF mutually. Some hypothesized that exposure to PMs firstly caused acute imbalance of autonomic modulation, characterized by increased sympathetic and decreased parasympathetic nerve function, which led to accelerated conduction of myocardial cells. Certain bypass of susceptible population was then activated and consequently AF occurred. In other studies, controversial function changes of the autonomic nervous system were reported when exposing to air pollutants, suggesting that people with different susceptibility background react to air pollutant exposure variously. For instance, exposure to PMs is more likely to induce AF in people with cardiorespiratory disease [2830]. Other pathways through which air pollutants lead to AF may include the direct adverse effect against cardiac electrophysiological pathways as well as decreased oxygen-carrying capacity of the blood [31, 32]. The latter may result in the constriction of vessels, especially coronary arteries, and ascend blood pressure at the same time or sequentially. Afterwards, damaged vessel endothelium malfunctions and oxidative stress injury occur, leading to arrhythmia [33]. Also, we observed a hysteretic effect on the AF occurrence after exposure to higher NO2. Thus, we believe that a potential and chronic mechanism exists if acute exposure to NO2 is confirmed to be associated with later AF by further research. Seaton et al. speculated that air pollutants, through activating a coagulation mechanism and elevating circulating inflammatory mediator emission, might result in a secondary pulmonary inflammation and a delayed but more severe cytokine storm [34]. The hysteretic consequence of this pathway was probably arrhythmia.

Study limitation

This study does have several limitations. Since our hospital is the only center to perform this study in Shanghai, the conclusion of this study could represent the prevalence pattern of the eastern coastal area of China still needs more verification. Although case-crossover study was used, we excluded patients with AF who follow-up regularly, so we may have missed some patients of acute-onset AF who refused ECG.

Conclusions

In conclusion, we observed a direct association between air pollutants, especially NO2 and AF patients with ECG occurrence in our hospital. Though greater adverse hysteresis effects were seen in the elderly and female patients, how these air pollutants induced the occurrence still remained unknown. Further researches may focus on the mechanisms of the interactions between air pollutants and autonomic neuron malfunction, coronary arterial inflammation and direct impact on the pacemaker cells. Overall, our findings could help establish an air quality forecast-based AF precaution system in East Asia.

Acknowledgements

We would like to thank the pre-medical students who assisted in the data collection.

Declarations

The study was approved by the Ethics Committee of Shanghai Sixth People's Hospital (Approval No: 2019-KY-042(K)).

Competing interests

The authors declare that they have no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Mordukhovich I, Kloog I, Coull B, et al. Association between particulate air pollution and QT interval duration in an elderly cohort. Epidemiology. 2016;27:284–90.PubMedPubMedCentral Mordukhovich I, Kloog I, Coull B, et al. Association between particulate air pollution and QT interval duration in an elderly cohort. Epidemiology. 2016;27:284–90.PubMedPubMedCentral
2.
Zurück zum Zitat Kim IS, Sohn J, Lee SJ, et al. Association of air pollution with increased incidence of ventricular tachyarrhythmias recorded by implantable cardioverter defibrillators: vulnerable patients to air pollution. Int J Cardiol. 2017;240:214–20.CrossRefPubMed Kim IS, Sohn J, Lee SJ, et al. Association of air pollution with increased incidence of ventricular tachyarrhythmias recorded by implantable cardioverter defibrillators: vulnerable patients to air pollution. Int J Cardiol. 2017;240:214–20.CrossRefPubMed
3.
Zurück zum Zitat Knezović M, Pintarić S, Mornar Jelavić M, et al. Correlation between concentration of air pollutants and occurrence of cardiac arrhythmias in a region with humid continental climate. Acta Clin Croa. 2017;56(1):3–9. Knezović M, Pintarić S, Mornar Jelavić M, et al. Correlation between concentration of air pollutants and occurrence of cardiac arrhythmias in a region with humid continental climate. Acta Clin Croa. 2017;56(1):3–9.
4.
Zurück zum Zitat Su C, Breitner S, Schneider A, et al. Short-term effects of fine particulate air pollution on cardiovascular hospital emergency room visits: a time-series study in Beijing, China. Int Arch Occup Environ Health. 2016;89(4):641–57.CrossRefPubMed Su C, Breitner S, Schneider A, et al. Short-term effects of fine particulate air pollution on cardiovascular hospital emergency room visits: a time-series study in Beijing, China. Int Arch Occup Environ Health. 2016;89(4):641–57.CrossRefPubMed
5.
Zurück zum Zitat Shao Q, Liu T, Korantzopoulos P, et al. Association between air pollution and development of atrial fibrillation: a meta-analysis of observational studies. Heart Lung. 2016;45(6):557–62.CrossRefPubMed Shao Q, Liu T, Korantzopoulos P, et al. Association between air pollution and development of atrial fibrillation: a meta-analysis of observational studies. Heart Lung. 2016;45(6):557–62.CrossRefPubMed
6.
Zurück zum Zitat Vencloviene J, Babarskiene RM, Dobozinskas P, et al. The short-term associations of weather and air pollution with emergency ambulance calls for paroxysmal atrial fibrillation. Environ Sci Pollut Res Int. 2017;24(17):15031–43.CrossRefPubMed Vencloviene J, Babarskiene RM, Dobozinskas P, et al. The short-term associations of weather and air pollution with emergency ambulance calls for paroxysmal atrial fibrillation. Environ Sci Pollut Res Int. 2017;24(17):15031–43.CrossRefPubMed
7.
Zurück zum Zitat Solimini AG, Renzi M. Association between air pollution and emergency room visits for atrial fibrillation. Int J Environ Res Public Health. 2017;14(6):661.CrossRefPubMedPubMedCentral Solimini AG, Renzi M. Association between air pollution and emergency room visits for atrial fibrillation. Int J Environ Res Public Health. 2017;14(6):661.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Monrad M, Sajadieh A, Christensen JS, et al. Long-term exposure to traffic-related air pollution and risk of incident atrial fibrillation: a cohort study. Environ Health Perspect. 2017;125(3):422–7.CrossRefPubMed Monrad M, Sajadieh A, Christensen JS, et al. Long-term exposure to traffic-related air pollution and risk of incident atrial fibrillation: a cohort study. Environ Health Perspect. 2017;125(3):422–7.CrossRefPubMed
9.
Zurück zum Zitat Rich DQ, Mittleman MA, Link MS, et al. Increased risk of paroxysmal atrial fibrillation episodes associated with acute increases in ambient air pollution. Environ Health Perspect. 2006;114(1):120–3.CrossRefPubMed Rich DQ, Mittleman MA, Link MS, et al. Increased risk of paroxysmal atrial fibrillation episodes associated with acute increases in ambient air pollution. Environ Health Perspect. 2006;114(1):120–3.CrossRefPubMed
10.
Zurück zum Zitat Bunch TJ, Horne BD, Asirvatham SJ, et al. Atrial fibrillation hospitalization is not increased with short-term elevations in exposure to fine particulate air pollution. Pacing Clin Electrophysiol. 2011;34(11):1475–9.CrossRefPubMed Bunch TJ, Horne BD, Asirvatham SJ, et al. Atrial fibrillation hospitalization is not increased with short-term elevations in exposure to fine particulate air pollution. Pacing Clin Electrophysiol. 2011;34(11):1475–9.CrossRefPubMed
11.
Zurück zum Zitat Liao D, Shaffer ML, He F, et al. Fine particulate air pollution is associated with higher vulnerability to atrial fibrillation—the APACR study. J Toxicol Environ Health A. 2011;74(11):693–705.CrossRefPubMedPubMedCentral Liao D, Shaffer ML, He F, et al. Fine particulate air pollution is associated with higher vulnerability to atrial fibrillation—the APACR study. J Toxicol Environ Health A. 2011;74(11):693–705.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Cervellin G, Comelli I, Lippi G. Lack of correlation between air pollution and acute-onset atrial fibrillation. Can J Cardiol. 2013;29(12):1743.CrossRef Cervellin G, Comelli I, Lippi G. Lack of correlation between air pollution and acute-onset atrial fibrillation. Can J Cardiol. 2013;29(12):1743.CrossRef
13.
Zurück zum Zitat Zhao A, Chen R, Kuang X, et al. Ambient air pollution and daily outpatient visits for cardiac arrhythmia in Shanghai, China. J Epidemiol. 2014;24(4):321–6.CrossRefPubMedPubMedCentral Zhao A, Chen R, Kuang X, et al. Ambient air pollution and daily outpatient visits for cardiac arrhythmia in Shanghai, China. J Epidemiol. 2014;24(4):321–6.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Culic V. The association of air temperature with cardiac arrhythmias. Int J Biometeorol. 2017;61(11):1927–9.CrossRefPubMed Culic V. The association of air temperature with cardiac arrhythmias. Int J Biometeorol. 2017;61(11):1927–9.CrossRefPubMed
15.
Zurück zum Zitat Kim J, Kim H. The association of ambient temperature with incidence of cardiac arrhythmias in a short timescale. Int J Biometeorol. 2017;61(11):1931–3.CrossRefPubMed Kim J, Kim H. The association of ambient temperature with incidence of cardiac arrhythmias in a short timescale. Int J Biometeorol. 2017;61(11):1931–3.CrossRefPubMed
16.
Zurück zum Zitat Nguyen JL, Link MS, Luttmann-Gibson H, et al. Drier air, lower temperatures, and triggering of paroxysmal atrial fibrillation. Epidemiology. 2015;26(3):374–80.CrossRefPubMedPubMedCentral Nguyen JL, Link MS, Luttmann-Gibson H, et al. Drier air, lower temperatures, and triggering of paroxysmal atrial fibrillation. Epidemiology. 2015;26(3):374–80.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Kim J, Kim H. Influence of ambient temperature and diurnal temperature range on incidence of cardiac arrhythmias. Int J Biometeorol. 2017;61(3):407–16.CrossRefPubMed Kim J, Kim H. Influence of ambient temperature and diurnal temperature range on incidence of cardiac arrhythmias. Int J Biometeorol. 2017;61(3):407–16.CrossRefPubMed
18.
Zurück zum Zitat Hensel M, Stuhr M, Geppert D, et al. Relationship between ambient temperature and frequency and severity of cardiovascular emergencies: a prospective observational study based on out-of-hospital care data. Int J Cardiol. 2017;228:553–7.CrossRefPubMed Hensel M, Stuhr M, Geppert D, et al. Relationship between ambient temperature and frequency and severity of cardiovascular emergencies: a prospective observational study based on out-of-hospital care data. Int J Cardiol. 2017;228:553–7.CrossRefPubMed
19.
Zurück zum Zitat Zhao Q, Coelho M, Li S, et al. Temperature variability and hospitalization for cardiac arrhythmia in Brazil: a nationwide case-crossover study during 2000–2015. Environ Pollut. 2019;246:552–8.CrossRefPubMed Zhao Q, Coelho M, Li S, et al. Temperature variability and hospitalization for cardiac arrhythmia in Brazil: a nationwide case-crossover study during 2000–2015. Environ Pollut. 2019;246:552–8.CrossRefPubMed
20.
Zurück zum Zitat Hesterberg TW, Bunn WB, McClellan RO, et al. Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: evidence for NO2 no-effect levels. Crit Rev Toxicol. 2009;39(9):743–81.CrossRefPubMed Hesterberg TW, Bunn WB, McClellan RO, et al. Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: evidence for NO2 no-effect levels. Crit Rev Toxicol. 2009;39(9):743–81.CrossRefPubMed
21.
Zurück zum Zitat Luo K, Li R, Li W, et al. Acute effects of nitrogen dioxide on cardiovascular mortality in Beijing: an exploration of spatial heterogeneity and the district-specific predictors. Sci Rep. 2016;6:38328.CrossRefPubMedPubMedCentral Luo K, Li R, Li W, et al. Acute effects of nitrogen dioxide on cardiovascular mortality in Beijing: an exploration of spatial heterogeneity and the district-specific predictors. Sci Rep. 2016;6:38328.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Roswall N, Raaschou-Nielsen O, Ketzel M, et al. Long-term residential road traffic noise and NO2 exposure in relation to risk of incident myocardial infarction—a Danish cohort study. Environ Res. 2017;156:80–6.CrossRefPubMed Roswall N, Raaschou-Nielsen O, Ketzel M, et al. Long-term residential road traffic noise and NO2 exposure in relation to risk of incident myocardial infarction—a Danish cohort study. Environ Res. 2017;156:80–6.CrossRefPubMed
23.
Zurück zum Zitat Sorensen M, Wendelboe Nielsen O, Sajadieh A, et al. Long-term exposure to road traffic noise and nitrogen dioxide and risk of heart failure: a cohort study. Environ Health Perspect. 2017;125(9):097021.CrossRefPubMedPubMedCentral Sorensen M, Wendelboe Nielsen O, Sajadieh A, et al. Long-term exposure to road traffic noise and nitrogen dioxide and risk of heart failure: a cohort study. Environ Health Perspect. 2017;125(9):097021.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Santurtun A, Sanchez-Lorenzo A, Villar A, et al. The influence of nitrogen dioxide on arrhythmias in Spain and its relationship with atmospheric circulation. Cardiovasc Toxicol. 2017;17(1):88–96.CrossRefPubMed Santurtun A, Sanchez-Lorenzo A, Villar A, et al. The influence of nitrogen dioxide on arrhythmias in Spain and its relationship with atmospheric circulation. Cardiovasc Toxicol. 2017;17(1):88–96.CrossRefPubMed
25.
Zurück zum Zitat Hoek G, Brunekreef B, Fischer P, et al. The association between air pollution and heart failure, arrhythmia, embolism, thrombosis, and other cardiovascular causes of death in a time series study. Epidemiology. 2001;12(3):355–7.CrossRefPubMed Hoek G, Brunekreef B, Fischer P, et al. The association between air pollution and heart failure, arrhythmia, embolism, thrombosis, and other cardiovascular causes of death in a time series study. Epidemiology. 2001;12(3):355–7.CrossRefPubMed
26.
Zurück zum Zitat Milojevic A, Wilkinson P, Armstrong B, et al. Short-term effects of air pollution on a range of cardiovascular events in England and Wales: case-crossover analysis of the MINAP database, hospital admissions and mortality. Heart. 2014;100(14):1093–8.CrossRefPubMed Milojevic A, Wilkinson P, Armstrong B, et al. Short-term effects of air pollution on a range of cardiovascular events in England and Wales: case-crossover analysis of the MINAP database, hospital admissions and mortality. Heart. 2014;100(14):1093–8.CrossRefPubMed
27.
Zurück zum Zitat Santos UP, Terra-Filho M, Lin CA, et al. Cardiac arrhythmia emergency room visits and environmental air pollution in Sao Paulo, Brazil. Epidemiol Community Health. 2008;62(3):267–72.CrossRef Santos UP, Terra-Filho M, Lin CA, et al. Cardiac arrhythmia emergency room visits and environmental air pollution in Sao Paulo, Brazil. Epidemiol Community Health. 2008;62(3):267–72.CrossRef
28.
Zurück zum Zitat Gong H Jr, Linn WS, Clark KW, et al. Exposures of healthy and asthmatic volunteers to concentrated ambient ultrafine particles in Los Angeles. Inhal Toxicol. 2008;20(6):533–45.CrossRefPubMed Gong H Jr, Linn WS, Clark KW, et al. Exposures of healthy and asthmatic volunteers to concentrated ambient ultrafine particles in Los Angeles. Inhal Toxicol. 2008;20(6):533–45.CrossRefPubMed
29.
Zurück zum Zitat Graff DW, Cascio WE, Rappold A, et al. Exposure to concentrated coarse air pollution particles causes mild cardiopulmonary effects in healthy young adults. Environ Health Perspect. 2009;117(7):1089–94.CrossRefPubMedPubMedCentral Graff DW, Cascio WE, Rappold A, et al. Exposure to concentrated coarse air pollution particles causes mild cardiopulmonary effects in healthy young adults. Environ Health Perspect. 2009;117(7):1089–94.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Tunnicliffe WS, Hilton MF, Harrison RM, Ayres JG. The effect of sulphur dioxide exposure on indices of heart rate variability in normal and asthmatic adults. Eur Respir J. 2001;17(4):604–8.CrossRefPubMed Tunnicliffe WS, Hilton MF, Harrison RM, Ayres JG. The effect of sulphur dioxide exposure on indices of heart rate variability in normal and asthmatic adults. Eur Respir J. 2001;17(4):604–8.CrossRefPubMed
31.
Zurück zum Zitat Donaldson K, Stone V, Seaton A, et al. Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ Health Perspect. 2001;109(Suppl 4):523–7.CrossRefPubMedPubMedCentral Donaldson K, Stone V, Seaton A, et al. Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ Health Perspect. 2001;109(Suppl 4):523–7.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Mills NL, Amin N, Robinson SD, et al. Do inhaled carbon nanoparticles translocate directly into the circulation in humans? Am J Respir Crit Care Med. 2006;173(4):426–31.CrossRefPubMed Mills NL, Amin N, Robinson SD, et al. Do inhaled carbon nanoparticles translocate directly into the circulation in humans? Am J Respir Crit Care Med. 2006;173(4):426–31.CrossRefPubMed
33.
Zurück zum Zitat Shahrbaf MA, Akbarzadeh MA, Tabary M, et al. Air pollution and cardiac arrhythmias: a comprehensive review. Curr Probl Cardiol. 2021;46(3):100649.CrossRefPubMed Shahrbaf MA, Akbarzadeh MA, Tabary M, et al. Air pollution and cardiac arrhythmias: a comprehensive review. Curr Probl Cardiol. 2021;46(3):100649.CrossRefPubMed
34.
Zurück zum Zitat Seaton A, MacNee W, Donaldon K, et al. Particulate air pollution and acute health effects. Lancet. 1995;345(8943):176–8.CrossRefPubMed Seaton A, MacNee W, Donaldon K, et al. Particulate air pollution and acute health effects. Lancet. 1995;345(8943):176–8.CrossRefPubMed
Metadaten
Titel
The association between air pollution and the daily hospital visits for atrial fibrillation recorded by ECG: a case-crossover study
verfasst von
Jiming Han
Rui Zhang
Jingyi Guo
Qingfeng Zheng
Xin Chen
Shanmei Wu
Jianguo Tan
Yongguang Li
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
European Journal of Medical Research / Ausgabe 1/2023
Elektronische ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01170-y

Weitere Artikel der Ausgabe 1/2023

European Journal of Medical Research 1/2023 Zur Ausgabe