Skip to main content
Erschienen in: BMC Pregnancy and Childbirth 1/2022

Open Access 01.12.2022 | Research

The association of serum total bile acid with new-onset hypertension during pregnancy

verfasst von: Weinan Deng, Lizi Zhang, Qiting Du, Yulian Li, Jingsi Chen, Lili Du, Dunjin Chen

Erschienen in: BMC Pregnancy and Childbirth | Ausgabe 1/2022

Abstract

Background

There has been considerable interest in the interrelationship between the liver and hypertension. The relationship between serum total bile acid (TBA) and hypertension has been reported. Moreover, intrahepatic cholestasis of pregnancy was correlated to gestation hypertension. However, the association between maternal serum TBA level in the normal range and new-onset hypertension disorders during pregnancy remains unclear. The present study aimed to evaluate the relationship between maternal serum TBA level in the normal range and the risk, disease severity and adverse pregnancy outcomes of new-onset hypertension during pregnancy.

Method

Using the electronic medical records on all pregnant women from the Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, between 2014 and 2020, we conducted a retrospective cohort study of 2581 singleton pregnant women with maternal serum TBA levels in the normal range. Patients were grouped into the non-hypertension during pregnancy (1071), gestational hypertension (480) and preeclampsia (1030) groups.

Result

We found that maternal serum TBA levels were significantly higher in the preeclampsia and gestational hypertension groups than in the non-hypertension group (p < 0.01). Multiple logistic regression analysis showed that TBA level was independently and significantly associated with preeclampsia and gestational hypertension (odds ratio: 1.37, 95% confidence interval [CI]: 1.27–1.48, p = 0.001, odds ratio: 1.34, 95% confidence interval [CI]: 1.24–1.46, p = 0.005, respectively). Moreover, elevated TBA level was positively associated with the risk of severe PE and negatively with mild PE (p < 0.01). In addition, maternal serum TBA levels were negatively related to birth weight (p < 0.001).

Conclusions

These results suggest that maternal serum TBA in the normal range also might be a valuable biomarker for disease severity in preeclampsia and gestational hypertension. Additionally, our results also indicate associations of serum total bile acid levels in the normal range with an increased risk of fetal growth restriction and low birth weight among offspring. These results suggest that TBA could serve as a prognostic biomarker for new-onset hypertension during pregnancy.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
TBA
Total bile acid
BA
Bile acid
HDP
Hypertensive disorders of pregnancy
PE
Preeclampsia
GH
Gestational hypertension
GA
Gestational age at delivery
BMI
Body mass index
IVF
In-vitro fertilization
ALB
Albumin
AST
Aspartate aminotransferase
ALT
Alanine aminotransferase
T bilirubin
Total bilirubin
TC
Total cholesterol
TG
Triglyceride
SBP
Systolic blood pressure
DBP
Diastolic blood pressure
HELLP
Hemolysis, elevated liver enzymes and low platelet
LBW
Low birth weight
FGR
Fetal growth restriction
EOPE
Early-onset PE
LOPE
Late-onset PE
ICP
Intrahepatic cholestasis of pregnancy
GDM
Gestational diabetes mellitus
IQR
Interquartile range
OR
Odds ratio
95% CI
95% Confidence intervals
MGB
Marinobufagenin
UDCA
Ursodeoxycholic acid
LCA
Lithocholic acid
s-Flt1
Soluble-fms-like tyrosine kinase-1

Background

Hypertensive disorders of pregnancy (HDP) are common gestational complications that cause 10–15% of maternal deaths every year worldwide [1]. HDP includes chronic hypertension, preeclampsia (PE) with chronic hypertension and new-onset hypertension, including gestational hypertension (GH) or PE [2]. Among these, PE is one of the most important components and is defined by systolic blood pressure (SBP) over 140 mmHg and/or diastolic blood pressure (DBP) over 90 mmHg combined with urine protein over 0.3 g/24 h [3]. PE has a worldwide incidence of approximately 3–5% [4]. HDP threatens maternal and fetal health and increases the risk of long-term disease. Many studies report that the risk of cardiovascular diseases among HDP patients is 2 times higher than that among normal pregnant women, and the prevalence of chronic hypertension is 1.5 times higher among HDP patients [5]. Children born to mothers with PE have an even higher incidence of long-term cardiovascular diseases [6].
Recently, there has been more interest in the interrelationship between liver dysfunction and hypertension. The liver, the center of metabolism, has complicated functions, including synthesis and secretion of proteins, biotransformation of biomolecules, carbohydrate metabolism, lipid metabolism and bile acid metabolism [7]. Numerous enzymes are synthesized in the liver, and many of these enzymes have been reported to be markers for evaluating liver health. Moreover, some of them, such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and γ-glutamyltransferase (GTT), have been reported to be positively associated with hypertension [8] and could assist in the diagnosis of hypertension.
The synthesis and secretion of bile acid (BA) is one of the most important functions of the liver. BA has been found to be a part of the digestive system over the last few decades and is important for chyle digestion and absorption of lipid-soluble vitamins [9, 10]. However, increasing evidence shows that BA can be a signaling molecule that participates in the occurrence of many diseases, including hypertension [11, 12]. The incidence of PE among patients with intrahepatic cholestasis of pregnancy (ICP) is approximately 8–25%, which is much higher than that in normal pregnancy (1.8–4.4%) [1315], suggesting that BA might be associated with PE. Among all PE patients, approximately 10–20% have hemolysis, elevated liver enzymes and low platelet (HELLP) syndrome [16]. A previous case report of four women diagnosed with ICP and severe HELLP syndrome suggested that BA might be associated with both the occurrence and development of PE [17]. However, the relationship between maternal serum TBA and HDP remains unclear, especially with total bile acid (TBA) levels in the normal range. The primary purpose of this study was to demonstrate the association of maternal serum TBA in the normal range with new-onset hypertension and pregnancy outcomes.

Method

Data collection

As shown in Fig. 1, we collected data from women who underwent routine gestational care from 2014 to 2020 at the Third Affiliated Hospital of Guangzhou Medical University. There were 9,677 singleton deliveries with TBA tests, and patients with chronic hypertension, hepatitis B or C, cholecystopathy, inflammation, a diagnosis of ICP, serum TBA levels ≥ 10 µmol/L, other terminal diseases such as phase iv cancer, end-stage renal disease, and AST or ALT levels over 100 U/L were excluded. A total of 1071 women were included in the non-HDP group, and 1510 women were included in the HDP group and further divided into PE (n = 1030) and GH (n = 480) subgroups.
Maternal clinical parameters were collected from medical record, including maternal age, gestational age at delivery (GA), body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), whether receive in-vitro fertilization (IVF), nulliparity, pregestational diabetes infant birth weight and body length. SBP and DBP data in HDP group were collected for the first time measured after diagnosis, and in the non-HDP group, SBP and DBP were collected for the first time measured after hospitalized. Maternal fasting blood samples were collected by first-time examination after hospitalization, after an overnight fast of at least 8 h at a mean gestational age of 20 to 34 weeks. The biomarkers included TBA, ALB, TC, TG, AST, ALT, T bilirubin, and 24-h proteinuria. TBA, TC, TG, AST, ALT were assessed by Roche cobas@8000 modular analyzer series (Mannheim, BW, Germany), and T bilirubin, ALB and 24-h proteinuria Roche cobas@ C501(Mannheim, BW, Germany).
The criteria suggested by the American College of Obstetricians and Gynecologists (ACOG) for the diagnosis of pregnancy-associated hypertension were adopted. PE was defined as systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg over at least two intervals of 6 h after 20 weeks of gestation with previously normal blood pressure and new-onset proteinuria (> 0.3 g/24-h or at least > 1 + on protein dipstick when urine could not be collected for 24 h). And liver function impaired, thrombocytopenia, severe persistent right upper quadrant or epigastric pain and not accounted for by alternative diagnoses, renal insufficiency, pulmonary edema, new onset headache unresponsive to acetaminophen and visual disturbances should diagnosed as PE for women with gestational hypertension in the absence of proteinuria [3]. Severe PE was defined as systolic blood pressure ≥ 160 mmHg or diastolic blood pressure ≥ 110 mmHg and new-onset headache or Visual disturbances. Early-onset PE (EOPE) was defined as development PE before 34 weeks of gestation and late-onset PE (LOPE) was defined as development PE after 34 weeks of gestation [18].
The primary pregnancy outcomes in our study were low birth weight and fetal growth restriction (FGR). FGR was diagnosed following the guidelines for FGR [19], as indicated by ultrasound-estimated fetal weight or circumference of the abdomen smaller than 10% of the birth population. Low birth weight (LBW) was defined as birth weight less than 2500 g.

Statistical analysis

Data were presented as the mean ± standard deviation or median (25–75 percentile). According to the normality of the variable distributions, measurement data were expressed as the means ± standard deviations, except for GA, SBP, DBP, TBA, AST, ALT, 24 h proteinuria and birth length. An independent-samples t-test was performed for age, BMI, ALB, TC, TG and birth weight. Count data were expressed as proportions (%), and the Mann–Whitney U test was performed for GA, SBP, DBP, TBA, AST, ALT, 24 h proteinuria and birth length. Spearman correlation analysis was used to evaluate the correlation between maternal serum TBA levels and birth weight and between AST/ALT and TBA levels. Multiple logistic regression analysis was performed to examine the influence of the following variables: maternal age, prepregnancy BMI, AST, ALT, T bilirubin, TC, TG, ALB, pregestational diabetes, nulliparity and IVF. The odds ratios with 95% CIs were calculated.
All statistical analyses were performed with IBM SPSS Statistics version 20 software (IBM Corp., Chicago, IL, USA) and GraphPad Prism 6 (GraphPad Software, Inc); p values < 0.05 were considered indicative of statistical significance.

Result

After ineligible patients were excluded, 2581 pregnant women were included for subsequent analysis. 480 women were diagnosed with GH, 1030 were diagnosed with PE, and 1071 pregnant women were non-HDP. The characteristics of the pregnant women among these groups were shown in Table 1. Various clinical parameters were compared between non-HDP and HDP groups. HDP patients gave birth to newborns with significantly lower birth weight (P < 0.01) and an earlier gestational age at delivery than the non-HDP patients (interquartile range (IQR) of GA: 39 (38–40) vs. 38 (37–39), 37 (34–38), for non-HDP, GH and PE, respectively). Similar to other reports, HDP patients tended to have a higher BMI (P < 0.01), AST and ALT levels (p < 0.01). TC and TG levels were significantly higher in the PE group (p < 0.01) than in the non-HDP group but not in the GH group. Smoking and drinking were considered as risk factors for HDP [20]; however, possibly because of cultural reasons, in our study, only one patient smoked and one drank.
Table 1
Clinical and biochemical characteristics of the study patients
Parameter
Non-HDP
GH
p value a
PE
p value b
Patients (n)
1071
480
 
1030
 
Age (years)
31.64 ± 5.15
32.9 ± 4.76
0.5
32.39 ± 4.89
0.514
GA (weeks)
39 (38–40)
38 (37–39)
 < 0.001
37 (34–38)
 < 0.01
Prepregnancy BMI (kg/m2)
25.01 ± 4.32
25.58 ± 4.08
0.004
24.92 ± 4.14
0.001
Birth weight (g)
3068.97 ± 666.34
2912.66 ± 747.11
 < 0.001
2506.07 ± 933.74
 < 0.001
Body length (cm)
49 (47–51)
49 (47–51)
 < 0.001
47 (43–50)
 < 0.001
Lifestyle
 Drinking (n,%)
1 (0.09)
0 (0)
 
0 (0)
 
 Smoking (n,%)
1 (0.09)
0 (0)
 
0 (0)
 
 Radiation exposure (n,%)
1 (0.09)
0 (0)
 
3 (0.29)
 
Blood pressure
 SBP (mmHg)
109.98 ± 7.85
126.35 ± 24.42
 < 0.001
141.10 ± 24.93
 < 0.001
 DBP (mmHg)
70.87 ± 6.5
83.84 ± 13.23
 < 0.001
84.58 ± 16.96
 < 0.001
Biochemical indicators
 TBA (µmol/L)
1.8 (1.18–2.7)
2.1 (1.5–3.2)
 < 0.001
2.2 (1.5–3.4)
 < 0.001
 ALB (g/L)
36.19 ± 4.39
35.82 ± 4.38
 < 0.001
34.33 ± 5.55
 < 0.001
 TC (µmol/L)
4.95 ± 1.77
5.1 ± 1.75
 < 0.001
5.46 ± 1.63
0.002
 TG (µmol/L)
2.54 ± 1.45
2.7 ± 1.39
0.802
3.05 ± 1.6
 < 0.001
 AST (U/L)
14.4 (12.0–17.9)
14.6 (12.5–19.9)
0.89
16 (12.4–20.1)
 < 0.001
 ALT (U/L)
8.05 (6.2–11.4)
8.95 (6.9–13.38)
 < 0.001
9.8 (6.75–14.2)
 < 0.001
 T bilirubin (µmol/L)
4.2 (3.22–6.39)
4.15 (3.1–5.38)
0.258
3.8 (2.65–5.39)
 < 0.001
 24 h-proteinuria
0.32 (0.24–0.55)
0.27 (0.18–0.54)
0.766
0.55 (0.31–2.18)
 < 0.001
Values are expressed as the mean ± standard deviation, number, or median (Q1–Q3); GA gestational age at delivery, TBA total bile acid, ALB albumin; AST aspartate aminotransferase, ALT alanine aminotransferase, T bilirubin total bilirubin, TC total cholesterol, TG triglyceride, SBP systolic blood pressure, DBP diastolic blood pressure
ap-value for GH compared with non-HDP
bp-value for PE compared with non-HDP
In our study, the mean serum level of TBA was 2.2 (1.5–3.4) µmol/L for the GH patients and 2.1 (1.5–3.2) µmol/L for the PE patients, which was approximately 1.3-fold higher than that in the non-HDP group (1.8 (1.18–2.7) µmol/L) (Fig. 2) and 1.5-fold higher than the previously reported value of 1.5 ± 1.1 µmol/L in normal pregnancy [21]. The serum TBA levels were significantly correlated with AST and ALT (ρ = 0.8, p < 0.01, ρ = 1.58, p < 0.01, respectively, data not shown) in pregnant women, which is consistent with a previous report [22].
Multivariate logistic regression analysis was used to test whether serum TBA was significantly and independently correlated with PE and GH (Fig. 3). As in previous reports, age, BMI, pregestational diabetes, nulliparity and IVF were risk factors for PE [4], these factors were adjusted for Multivariate logistic regression analysis. After adjustment for high-risk factors, GA, BMI, AST, ALT, T bilirubin, TC, TG and ALB, the serum TBA was an important independent factor associated with PE and GH (odds ratio with PE: 1.37, 95% confidence interval [CI]: 1.27–1.48, P = 0.001, odds ratio with GH: 1.34, 95% confidence interval [CI]: 1.24–1.46, P = 0.005, respectively); beyond that, TG was also an independent factor associated with PE and GH (odds ratio: 1.36, 95% confidence interval [CI]: 1.2–1.54, p < 0.001, odds ratio: 1.23, 95% confidence interval [CI]: 1.07–1.4, p = 0.003, respectively).
The diagnosis of PE was based on blood pressure and proteinuria. Thus, we asked if maternal serum TBA level was associated with systolic blood pressure, diastolic blood pressure and 24 h-proteinuria. We apply Spearman correlation analysis between serum TBA and SBP, DBP, 24 h-proteinuria in patients that diagnosed for HDP. As shown in Fig. 4, maternal serum TBA was positively associated with SBP (r = 0.2096, p < 0.0001), DBP (r = 0.2903, p < 0.0001) and 24 h-proteinuria (r = 0.0937, p = 0.0002).
Next, we tested the relationship between serum TBA and the severity of PE. Based on a previous report [23], we categorized TBA levels into 4 groups. As shown in Table 2, higher serum TBA levels were associated with increased severity of PE. Compared with total pregnant women, higher TBA levels showed more percentage of PE patients. Using a serum TBA level less than 1.6 µmol/L as the reference, patients with serum TBA levels between 1.6 to 4.1 µmol/L (OR: 1.82, CI: 1.47–2.26), higher than 4.1 µmol/L and less than 8.2 µmol/L (OR: 2.37; CI: 1.71–3.28) and between 8.2 µmol/L and 10 µmol/L (OR: 4.63; CI: 1.89–11.35) were at higher risk for PE. For early-onset PE (EOPE), TBA levels between 1.6 to 4.1 µmol/L (OR: 1.62, CI: 1.23–2.12), higher than 4.1 µmol/L and less than 8.2 µmol/L (OR: 1.93; CI: 1.33–2.81) and between 8.2 µmol/L and 10 µmol/L (OR: 3.46; CI: 1.32–9.04) had higher risks of EOPE. And for late-onset PE (LOPE), TBA levels between 1.6 to 4.1 µmol/L (OR: 1.45, CI: 1.15–1.82), higher than 4.1 µmol/L and less than 8.2 µmol/L (OR: 1.63; CI: 1.17–2.28) and between 8.2 µmol/L and 10 µmol/L (OR: 3.75; CI: 1.57–8.98) carry the highest risk for LOPE.
Table 2
Patients in different degree of TBA level
TBA
No
PE
EOPE
LOPE
Mild PE
Severe PE
  
No. (%)
p valuea
OR (95% CI)
No. (%)
p valuea
OR (95% CI)a
No. (%)
p valuea
OR (95% CI)a
No. (%)
p valueb
OR (95% CI)
No. (%)
p valueb
OR (95% CI)
 < 1.6
865
270 (31.25)
 
1(reference)
112(12.95)
 
1(reference)
158(18.27)
 
1(reference)
147 (54.44)
 
1(reference)
123 (45.56)
 
1(reference)
1.6 to < 4.1
1322
545 (41.26)
 < 0.001
1.82(1.47–2.26)
241(18.23)
0.001
1.62(1.23–2.12)
304(23.0)
0.002
1.45(1.15–1.82)
237 (43.49)
0.002
0.61(0.45–0.83)
308 (56.51)
0.002
1.64(1.2–2.24)
4.1 to < 8.2
361
192 (53.33)
 < 0.001
2.37(1.71–3.28)
93(25.76)
0.001
1.93(1.33–2.81)
99(27.42)
0.004
1.63(1.17–2.28)
74 (38.54)
0.005
0.56(0.38–0.84)
118 (61.46)
0.005
1.78(1.19–2.66)
8.2 to < 10
37
23 (63.89)
0.001
4.63(1.89–11.35)
10(27.03)
0.011
3.46(1.32–9.04)
13(35.14)
0.003
3.75(1.57–8.98)
5 (21.74)
0.007
0.23(0.08–0.67)
18 (78.26)
0.007
4.27(1.48–12.3)
Adjustment for AST, ALT, T bilirubin, TC, TG, ALB, pregestational diabetes, nulliparity and IVF
PE preeclampsia, EOPE early-onset PE, LOPE late-onset PE
aCompared PE patients with non-PE patients in total pregnant women
bCompared mild PE or severe PE with all PE patients
Preeclampsia is divided into mild preeclampsia and sever preeclampsia according to the severity. Among PE patients, increased serum TBA levels showed more percentage of severe PE. TBA levels between 1.6 to 4.1 µmol/L (OR: 1.64, CI: 1.2–2.24), higher than 4.1 µmol/L and less than 8.2 µmol/L (OR: 1.78; CI: 1.19–2.66) and between 8.2 µmol/L and 10 µmol/L (OR: 4.27; CI: 1.48–12.3) had higher risks of severe PE. And for mild PE, TBA levels between 1.6 to 4.1 µmol/L (OR: 0.61, CI: 0.45–0.83), higher than 4.1 µmol/L and less than 8.2 µmol/L (OR: 0.56; CI: 0.38–0.84) and between 8.2 µmol/L and 10 µmol/L (OR: 0.23; CI: 0.08–0.67) (Table 3).
Table 3
LBW and FGR patients in different degree of TBA level
TBA
No
LBW
IUGR
  
No. (%)
p valuea
OR (95% CI)
No. (%)
p valueb
OR (95% CI)
 < 1.6
404
201 (49.75)
 
1(reference)
84 (20.79)
 
1(reference)
1.6 to < 4.1
817
428 (52.39)
0.15
1.199(0.937–1.535)
165 (20.20)
0.21
1.97(1.72–2.31)
4.1 to < 8.2
261
184 (70.50)
 < 0.001
2.65(1.89–3.72)
75 (28.74)
0.01
2.44(1.99–3.07)
8.2 to < 10
28
20 (71.43)
0.01
3.11(1.32–7.33)
9 (32.14)
0.04
2.81(1.79–4.15)
Adjustment for maternal age, prepregnancy BMI, AST, ALT, T bilirubin, TC, TG, ALB, pregestational diabetes, nulliparity and IVF
aCompared between LBW patients and non-LBW patients in HDP patients
bCompared between FGR patients and non- FGR patients in HDP patients
PE patients have a higher risk of low birth weight (LBW), fetal growth restriction (FGR), and earlier GA. Thus, we performed Spearman correlation to test the relationship of maternal serum TBA and GA as well as birth weight in HDP patients. The results showed that TBA was significantly correlated with birth weight (r = 0.1908, p < 0.0001) and GA (r = 0.1456, p < 0.0001) (Fig. 5).
Then, we tested the numbers of patients of LBW and FGR in different TBA degrees. In HDP patients, the TBA level was positively related with LBW and FGR. Using a serum TBA level less than 1.6 µmol/L as the reference, serum TBA levels higher than 4.1 µmol/L and less than 8.2 µmol/L (OR: 2.65; CI: 1.89–3.72) and between 8.2 µmol/L and 10 µmol/L (OR: 3.11; CI: 1.32–7.33) carry a higher risk for LBW. Pregnancies with serum TBA levels higher than 4.1 µmol/L and less than 8.2 µmol/L (OR: 2.44; CI: 1.99–3.07) and between 8.2 µmol/L and 10 µmol/L (OR: 2.81; CI: 1.79–4.15) had a higher risk for FGR (Table 3).

Comment

This study had the following findings: 1) Maternal serum TBA was significantly and positively associated with HDP and severity of PE; 2) The TBA level was negatively related to birth weight and FGR. Taken together, these findings indicate that maternal serum TBA is a potential prognostic biomarker of PE.
Intrahepatic cholestasis of pregnancy (ICP) was determined by pruritus occurring during pregnancy and serum TBA above 10 µmol/L, and excluding for elevated serum aminotransferase and/or serum bile acids related to other causes of liver test abnormalities [24, 25]. ICP has been reported to be related to maternal and fetal diseases during pregnancy, such as PE, gestational diabetes mellitus (GDM) [26], placental abnormalities [27] and stillbirth [28]. However, the relationship between HDP and TBA levels in the normal range remains unclear.
In our study, we demonstrate that maternal serum TBA levels in the normal range were significantly higher in the HDP group than those in the non-HDP group and could be an independent risk factor for HDP. In addition, the level of serum TBA is significantly and positively associated with the severity of PE. Although, total bile acid was not significant change during pregnancy, especially second and third trimesters [29, 30]. High levels of bile acid have been reported to cause placental structural damage due to vasoconstriction of the chorionic plate veins [31] and affect the placental antioxidant system, which leads to oxidative stress and increases placental syncytial knots [32]. An increase in the number of placental syncytial knots was reported in PE [27]. Furthermore, although the pathophysiology of PE is not fully understood, increased maternal endoglin and soluble-fms-like tyrosine kinase-1 (s-Flt1) levels are known to be major contributors to PE. Oxidative stress was reported to increase the expression of s-Flt1 by trophoblast cells of the placenta [33]; thus, increased serum bile acid-induced oxidative stress might upregulate the expression of s-Flt1 and could therefore explain our observation. Moreover, we found maternal TBA level was positively related to SBP, DBP and proteinuria. There were studies that reported that bile acid had a vasodilation effect [34, 35]. These studies are more focused on the secondary bile acid, especially Ursodeoxycholic acid (UDCA) and lithocholic acid (LCA), which were predominant in liver cirrhosis. However, other bile acid derivates, such as cholic acid, have less effect on vasodilation, and marinobufagenin (MGB) elevated blood pressure by inhibiting vascular NA/K-ATPase [36, 37].
Fetal complications, especially LBW and FGR, have been reported in PE and ICP pregnancies. A recent study in China reported increased TBA levels with a decrease in birth weight [38]. Song and coworkers also found that serum TBA levels in all ranges were associated with the risk of FGR and that HDP had an additive effect on the association [24]. Consistent with these studies, our data show that the maternal TBA level was negatively associated with birth weight and positively associated with the risk of LBW and FGR. Besides, previous reports more focused on the relationship of LBW and FGR with all range TBA or even TBA levels in ICP patients [24, 38]. Based on our study, even TBA level in the normal range, the elevation is also positively related to the risk of LBW and FGR. Bile acid accumulation may affect placental vascular remodeling and thus cause insufficient placental perfusion, leading to fatal nutritional deficiency and FGR [39, 40]. Furthermore, toxic bile acid disrupts the expression of placental angiogenic and antiangiogenic factors, including s-Flt1 and endoglin, which have been reported to contribute to PE and FGR [41]. The oxidative stress caused by bile acid accumulation increases the expression of proinflammatory cytokines and chemokines, such as TNF-α, C-reactive protein and IL-8, in the placenta and maternal peripheral organs [42], which will activate the NF-κB pathway. Recent studies have revealed that placentas from FGR infants show strong Nf-κB p65 immunoreactivity [43], and animal experiments have also found maternal inflammation and oxidative stress in FGR [44]. Further studies are required to elucidate the pathological mechanism by which excessive bile acid causes FGR, especially in PE patients.
To our knowledge, this is the first study to investigate the relationship between HDP and maternal serum TBA levels in the normal range. In addition, we included hospitalized patients, which ensured the integrity of the information and allowed us to study the relationship between HDP and TBA. However, the present study has some limitations. First, this study is a single-center study. Second, because this study is a cross-sectional observational study, causality cannot be determined. Third, although blood sample were collected after overnight fasting, we do not measure hormone level, dietary habit and emotional status that are factors that can influence the TBA level. Last, bile acid has many secondary forms; in this study, we discuss only the total bile acid in serum.

Conclusion

In conclusion, the present study demonstrates that maternal serum TBA can be an indicator of new-onset HDP, especially PE. Moreover, an increasing level of TBA can be a cost-effective predictor for PE, which is associated with both clinical severity and pregnancy outcomes. Therefore, maternal serum TBA has the potential to be a biomarker for PE and to facilitate disease management.

Acknowledgements

The authors thank the staff of the Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University for their cooperation and support. We thank American Journal Experts for its linguistic assistance during the preparation of this manuscript.

Declarations

This historical study was approved by the Medical Ethics Committee of The Third Affiliated Hospital of Guangzhou Medical University. All methods were performed in accordance with the relevant guidelines and regulations. Written informed consent was obtained from all subjects.
Not applicable

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Khan K, Wojdyla D, Say L, Gülmezoglu A, Van Look P. WHO analysis of causes of maternal death: a systematic review. Lancet (London, England). 2006;367(9516):1066–74.PubMedCrossRef Khan K, Wojdyla D, Say L, Gülmezoglu A, Van Look P. WHO analysis of causes of maternal death: a systematic review. Lancet (London, England). 2006;367(9516):1066–74.PubMedCrossRef
2.
Zurück zum Zitat Brown M, Magee L, Kenny L, et al. Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension (Dallas, Tex : 1979). 2018;72(1):24–43.PubMedCrossRef Brown M, Magee L, Kenny L, et al. Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension (Dallas, Tex : 1979). 2018;72(1):24–43.PubMedCrossRef
3.
Zurück zum Zitat Gestational Hypertension and Preeclampsia. ACOG Practice Bulletin Summary, Number 222. Obstet Gynecol. 2020;135(6):1492–5.CrossRef Gestational Hypertension and Preeclampsia. ACOG Practice Bulletin Summary, Number 222. Obstet Gynecol. 2020;135(6):1492–5.CrossRef
4.
Zurück zum Zitat Chappell LC, Cluver CA, Kingdom J, Tong S. Pre-eclampsia. Lancet (London, England). 2021;398(10297):341–54.PubMedCrossRef Chappell LC, Cluver CA, Kingdom J, Tong S. Pre-eclampsia. Lancet (London, England). 2021;398(10297):341–54.PubMedCrossRef
5.
Zurück zum Zitat Hou Y, Yun L, Zhang L, Lin J, Xu R. A risk factor-based predictive model for new-onset hypertension during pregnancy in Chinese Han women. BMC Cardiovasc Disord. 2020;20(1):155.PubMedPubMedCentralCrossRef Hou Y, Yun L, Zhang L, Lin J, Xu R. A risk factor-based predictive model for new-onset hypertension during pregnancy in Chinese Han women. BMC Cardiovasc Disord. 2020;20(1):155.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Alsnes I, Vatten L, Fraser A, et al. Hypertension in Pregnancy and Offspring Cardiovascular Risk in Young Adulthood: Prospective and Sibling Studies in the HUNT Study (Nord-Trøndelag Health Study) in Norway. Hypertension (Dallas, Tex : 1979). 2017;69(4):591–8.PubMedCrossRef Alsnes I, Vatten L, Fraser A, et al. Hypertension in Pregnancy and Offspring Cardiovascular Risk in Young Adulthood: Prospective and Sibling Studies in the HUNT Study (Nord-Trøndelag Health Study) in Norway. Hypertension (Dallas, Tex : 1979). 2017;69(4):591–8.PubMedCrossRef
8.
Zurück zum Zitat Rahman S, Islam S, Haque T, Kathak R, Ali N. Association between serum liver enzymes and hypertension: a cross-sectional study in Bangladeshi adults. BMC Cardiovasc Disord. 2020;20(1):128.PubMedPubMedCentralCrossRef Rahman S, Islam S, Haque T, Kathak R, Ali N. Association between serum liver enzymes and hypertension: a cross-sectional study in Bangladeshi adults. BMC Cardiovasc Disord. 2020;20(1):128.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology. 2017;152(7):1679-1694.e1673.PubMedCrossRef Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology. 2017;152(7):1679-1694.e1673.PubMedCrossRef
11.
Zurück zum Zitat Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol Rev. 2021;101(2):683–731.PubMedCrossRef Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol Rev. 2021;101(2):683–731.PubMedCrossRef
12.
Zurück zum Zitat Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discovery. 2008;7(8):678–93.PubMedCrossRef Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discovery. 2008;7(8):678–93.PubMedCrossRef
13.
Zurück zum Zitat Liu C, Gao J, Liu J, et al. Intrahepatic cholestasis of pregnancy is associated with an increased risk of gestational diabetes and preeclampsia. Ann Transl Med. 2020;8(23):1574.PubMedPubMedCentralCrossRef Liu C, Gao J, Liu J, et al. Intrahepatic cholestasis of pregnancy is associated with an increased risk of gestational diabetes and preeclampsia. Ann Transl Med. 2020;8(23):1574.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Mor M, Shmueli A, Krispin E, et al. Intrahepatic cholestasis of pregnancy as a risk factor for preeclampsia. Arch Gynecol Obstet. 2020;301(3):655–64.PubMedCrossRef Mor M, Shmueli A, Krispin E, et al. Intrahepatic cholestasis of pregnancy as a risk factor for preeclampsia. Arch Gynecol Obstet. 2020;301(3):655–64.PubMedCrossRef
15.
Zurück zum Zitat Arafa A, Dong J. Association between intrahepatic cholestasis of pregnancy and risk of gestational diabetes and preeclampsia: a systematic review and meta-analysis. Hypertens Pregnancy. 2020;39(3):354–60.PubMedCrossRef Arafa A, Dong J. Association between intrahepatic cholestasis of pregnancy and risk of gestational diabetes and preeclampsia: a systematic review and meta-analysis. Hypertens Pregnancy. 2020;39(3):354–60.PubMedCrossRef
16.
Zurück zum Zitat Steegers E, von Dadelszen P, Duvekot J, Pijnenborg R. Pre-eclampsia. Lancet (London, England). 2010;376(9741):631–44.PubMedCrossRef Steegers E, von Dadelszen P, Duvekot J, Pijnenborg R. Pre-eclampsia. Lancet (London, England). 2010;376(9741):631–44.PubMedCrossRef
17.
Zurück zum Zitat Jebbink J, Tabbers M, Afink G, et al. HELLP syndrome preceded by intrahepatic cholestasis of pregnancy: one serious itch. BMJ Case Rep. 2014;2014:bcr2013203208.PubMedPubMedCentralCrossRef Jebbink J, Tabbers M, Afink G, et al. HELLP syndrome preceded by intrahepatic cholestasis of pregnancy: one serious itch. BMJ Case Rep. 2014;2014:bcr2013203208.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obstet Gynecol. 2019;133(1):1. ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obstet Gynecol. 2019;133(1):1.
19.
Zurück zum Zitat ACOG Practice Bulletin No. 204: Fetal Growth Restriction. Obstet Gynecol. 2019;133(2):e97–109. ACOG Practice Bulletin No. 204: Fetal Growth Restriction. Obstet Gynecol. 2019;133(2):e97–109.
20.
21.
Zurück zum Zitat Kong M, Lu Z, Zhong C, et al. A higher level of total bile acid in early mid-pregnancy is associated with an increased risk of gestational diabetes mellitus: a prospective cohort study in Wuhan, China. J Endocrinol Invest. 2020;43(8):1097–103.PubMedCrossRef Kong M, Lu Z, Zhong C, et al. A higher level of total bile acid in early mid-pregnancy is associated with an increased risk of gestational diabetes mellitus: a prospective cohort study in Wuhan, China. J Endocrinol Invest. 2020;43(8):1097–103.PubMedCrossRef
22.
Zurück zum Zitat Guszczynska-Losy M, Wirstlein P, Wender-Ozegowska E, Kedzia M. Evaluation of predictive value of biochemical markers for adverse obstetrics outcomes in pregnancies complicated by cholestasis. Ginekol Pol. 2020;91(5):269–76.PubMedCrossRef Guszczynska-Losy M, Wirstlein P, Wender-Ozegowska E, Kedzia M. Evaluation of predictive value of biochemical markers for adverse obstetrics outcomes in pregnancies complicated by cholestasis. Ginekol Pol. 2020;91(5):269–76.PubMedCrossRef
23.
Zurück zum Zitat Song F, Chen Y, Chen L, Li H, Cheng X, Wu W. Association of Elevated Maternal Serum Total Bile Acids With Low Birth Weight and Intrauterine Fetal Growth Restriction. JAMA Netw Open. 2021;4(7):e2117409.PubMedPubMedCentralCrossRef Song F, Chen Y, Chen L, Li H, Cheng X, Wu W. Association of Elevated Maternal Serum Total Bile Acids With Low Birth Weight and Intrauterine Fetal Growth Restriction. JAMA Netw Open. 2021;4(7):e2117409.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Terrault NA, Williamson C. Pregnancy-Associated Liver Diseases. Gastroenterology. 2022;163(1):97–117.e1. Terrault NA, Williamson C. Pregnancy-Associated Liver Diseases. Gastroenterology. 2022;163(1):97–117.e1.
25.
Zurück zum Zitat Lee RH, Mara G, Metz TD, Pettker CM. Society for Maternal-Fetal Medicine Consult Series #53: Intrahepatic cholestasis of pregnancy: Replaces Consult #13, April 2011. Am J Obstet Gynecol. 2021;224(2):B2–9.PubMedCrossRef Lee RH, Mara G, Metz TD, Pettker CM. Society for Maternal-Fetal Medicine Consult Series #53: Intrahepatic cholestasis of pregnancy: Replaces Consult #13, April 2011. Am J Obstet Gynecol. 2021;224(2):B2–9.PubMedCrossRef
26.
Zurück zum Zitat Wikström Shemer E, Marschall HU, Ludvigsson JF, Stephansson O. Intrahepatic cholestasis of pregnancy and associated adverse pregnancy and fetal outcomes: a 12-year population-based cohort study. BJOG : an International Journal of Obstetrics and Gynaecology. 2013;120(6):717–23.PubMedCrossRef Wikström Shemer E, Marschall HU, Ludvigsson JF, Stephansson O. Intrahepatic cholestasis of pregnancy and associated adverse pregnancy and fetal outcomes: a 12-year population-based cohort study. BJOG : an International Journal of Obstetrics and Gynaecology. 2013;120(6):717–23.PubMedCrossRef
27.
Zurück zum Zitat Heazell AEP, Moll SJ, Jones CJP, Baker PN, Crocker IP. Formation of syncytial knots is increased by hyperoxia, hypoxia and reactive oxygen species. Placenta. 2007;28 Suppl A:S33–40.PubMedCrossRef Heazell AEP, Moll SJ, Jones CJP, Baker PN, Crocker IP. Formation of syncytial knots is increased by hyperoxia, hypoxia and reactive oxygen species. Placenta. 2007;28 Suppl A:S33–40.PubMedCrossRef
28.
Zurück zum Zitat Geenes V, Chappell LC, Seed PT, Steer PJ, Knight M, Williamson C. Association of severe intrahepatic cholestasis of pregnancy with adverse pregnancy outcomes: a prospective population-based case-control study. Hepatology. 2014;59(4):1482–91.PubMedCrossRef Geenes V, Chappell LC, Seed PT, Steer PJ, Knight M, Williamson C. Association of severe intrahepatic cholestasis of pregnancy with adverse pregnancy outcomes: a prospective population-based case-control study. Hepatology. 2014;59(4):1482–91.PubMedCrossRef
29.
Zurück zum Zitat Bacq Y, Zarka O, Bréchot JF, et al. Liver function tests in normal pregnancy: a prospective study of 103 pregnant women and 103 matched controls. Hepatology. 1996;23(5):1030–4.PubMedCrossRef Bacq Y, Zarka O, Bréchot JF, et al. Liver function tests in normal pregnancy: a prospective study of 103 pregnant women and 103 matched controls. Hepatology. 1996;23(5):1030–4.PubMedCrossRef
30.
Zurück zum Zitat Zhu B, Yin P, Ma Z, et al. Characteristics of bile acids metabolism profile in the second and third trimesters of normal pregnancy. Metabolism. 2019;95:77–83.PubMedCrossRef Zhu B, Yin P, Ma Z, et al. Characteristics of bile acids metabolism profile in the second and third trimesters of normal pregnancy. Metabolism. 2019;95:77–83.PubMedCrossRef
31.
Zurück zum Zitat Sepúlveda WH, González C, Cruz MA, Rudolph MI. Vasoconstrictive effect of bile acids on isolated human placental chorionic veins. Eur J Obstet Gynecol Reprod Biol. 1991;42(3):211–5.PubMedCrossRef Sepúlveda WH, González C, Cruz MA, Rudolph MI. Vasoconstrictive effect of bile acids on isolated human placental chorionic veins. Eur J Obstet Gynecol Reprod Biol. 1991;42(3):211–5.PubMedCrossRef
32.
Zurück zum Zitat Marín JJG, Macías RIR, Briz O, Pérez MJ, Serrano MA. Molecular bases of the excretion of fetal bile acids and pigments through the fetal liver-placenta-maternal liver pathway. Ann Hepatol. 2005;4(2):70–6.PubMedCrossRef Marín JJG, Macías RIR, Briz O, Pérez MJ, Serrano MA. Molecular bases of the excretion of fetal bile acids and pigments through the fetal liver-placenta-maternal liver pathway. Ann Hepatol. 2005;4(2):70–6.PubMedCrossRef
33.
Zurück zum Zitat Li H, Gu B, Zhang Y, Lewis DF, Wang Y. Hypoxia-induced increase in soluble Flt-1 production correlates with enhanced oxidative stress in trophoblast cells from the human placenta. Placenta. 2005;26(2–3):210–7.PubMedCrossRef Li H, Gu B, Zhang Y, Lewis DF, Wang Y. Hypoxia-induced increase in soluble Flt-1 production correlates with enhanced oxidative stress in trophoblast cells from the human placenta. Placenta. 2005;26(2–3):210–7.PubMedCrossRef
34.
Zurück zum Zitat Fiorucci S, Antonelli E, Morelli A. Nitric oxide and portal hypertension: a nitric oxide-releasing derivative of ursodeoxycholic acid that selectively releases nitric oxide in the liver. Dig Liver Dis. 2003;35(Suppl 2):S61–9.PubMedCrossRef Fiorucci S, Antonelli E, Morelli A. Nitric oxide and portal hypertension: a nitric oxide-releasing derivative of ursodeoxycholic acid that selectively releases nitric oxide in the liver. Dig Liver Dis. 2003;35(Suppl 2):S61–9.PubMedCrossRef
35.
Zurück zum Zitat Hennenberg M, Trebicka J, Biecker E, Schepke M, Sauerbruch T, Heller J. Vascular dysfunction in human and rat cirrhosis: role of receptor-desensitizing and calcium-sensitizing proteins. Hepatology. 2007;45(2):495–506.PubMedCrossRef Hennenberg M, Trebicka J, Biecker E, Schepke M, Sauerbruch T, Heller J. Vascular dysfunction in human and rat cirrhosis: role of receptor-desensitizing and calcium-sensitizing proteins. Hepatology. 2007;45(2):495–506.PubMedCrossRef
36.
Zurück zum Zitat Fedorova OV, Zernetkina VI, Shilova VY, et al. Synthesis of an Endogenous Steroidal Na Pump Inhibitor Marinobufagenin, Implicated in Human Cardiovascular Diseases, Is Initiated by CYP27A1 via Bile Acid Pathway. Circ Cardiovasc Genet. 2015;8(5):736–45.PubMedPubMedCentralCrossRef Fedorova OV, Zernetkina VI, Shilova VY, et al. Synthesis of an Endogenous Steroidal Na Pump Inhibitor Marinobufagenin, Implicated in Human Cardiovascular Diseases, Is Initiated by CYP27A1 via Bile Acid Pathway. Circ Cardiovasc Genet. 2015;8(5):736–45.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Jadeja RN, Thounaojam MC, Bartoli M, Khurana S. Deoxycholylglycine, a conjugated secondary bile acid, reduces vascular tone by attenuating Ca sensitivity via rho kinase pathway. Toxicol Appl Pharmacol. 2018;348:14–21.PubMedCrossRef Jadeja RN, Thounaojam MC, Bartoli M, Khurana S. Deoxycholylglycine, a conjugated secondary bile acid, reduces vascular tone by attenuating Ca sensitivity via rho kinase pathway. Toxicol Appl Pharmacol. 2018;348:14–21.PubMedCrossRef
38.
Zurück zum Zitat Li L, Chen W, Ma L, et al. Continuous association of total bile acid levels with the risk of small for gestational age infants. Sci Rep. 2020;10(1):9257.PubMedPubMedCentralCrossRef Li L, Chen W, Ma L, et al. Continuous association of total bile acid levels with the risk of small for gestational age infants. Sci Rep. 2020;10(1):9257.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Lofthouse EM, Torrens C, Manousopoulou A, et al. Ursodeoxycholic acid inhibits uptake and vasoconstrictor effects of taurocholate in human placenta. FASEB J. 2019;33(7):8211–20.PubMedPubMedCentralCrossRef Lofthouse EM, Torrens C, Manousopoulou A, et al. Ursodeoxycholic acid inhibits uptake and vasoconstrictor effects of taurocholate in human placenta. FASEB J. 2019;33(7):8211–20.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Song F, Wu W, Qian Z, Zhang G, Cheng Y. Assessment of the Placenta in Intrauterine Growth Restriction by Diffusion-Weighted Imaging and Proton Magnetic Resonance Spectroscopy. Reprod Sci. 2017;24(4):575–81.PubMedCrossRef Song F, Wu W, Qian Z, Zhang G, Cheng Y. Assessment of the Placenta in Intrauterine Growth Restriction by Diffusion-Weighted Imaging and Proton Magnetic Resonance Spectroscopy. Reprod Sci. 2017;24(4):575–81.PubMedCrossRef
41.
Zurück zum Zitat De Vivo A, Baviera G, Giordano D, Todarello G, Corrado F, D’Anna R. Endoglin, PlGF and sFlt-1 as markers for predicting pre-eclampsia. Acta Obstet Gynecol Scand. 2008;87(8):837–42.PubMedCrossRef De Vivo A, Baviera G, Giordano D, Todarello G, Corrado F, D’Anna R. Endoglin, PlGF and sFlt-1 as markers for predicting pre-eclampsia. Acta Obstet Gynecol Scand. 2008;87(8):837–42.PubMedCrossRef
42.
Zurück zum Zitat Biberoglu E, Kirbas A, Daglar K, et al. Role of inflammation in intrahepatic cholestasis of pregnancy. J Obstet Gynaecol Res. 2016;42(3):252–7.PubMedCrossRef Biberoglu E, Kirbas A, Daglar K, et al. Role of inflammation in intrahepatic cholestasis of pregnancy. J Obstet Gynaecol Res. 2016;42(3):252–7.PubMedCrossRef
43.
Zurück zum Zitat Wang H, Hu Y-F, Hao J-H, et al. Maternal zinc deficiency during pregnancy elevates the risks of fetal growth restriction: a population-based birth cohort study. Sci Rep. 2015;5:11262.PubMedPubMedCentralCrossRef Wang H, Hu Y-F, Hao J-H, et al. Maternal zinc deficiency during pregnancy elevates the risks of fetal growth restriction: a population-based birth cohort study. Sci Rep. 2015;5:11262.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Chen YH, Hu XG, Zhou Y, et al. Obeticholic Acid Protects against Lipopolysaccharide-Induced Fetal Death and Intrauterine Growth Restriction through Its Anti-Inflammatory Activity. J Immunol. 2016;197(12):4762–70.PubMedCrossRef Chen YH, Hu XG, Zhou Y, et al. Obeticholic Acid Protects against Lipopolysaccharide-Induced Fetal Death and Intrauterine Growth Restriction through Its Anti-Inflammatory Activity. J Immunol. 2016;197(12):4762–70.PubMedCrossRef
Metadaten
Titel
The association of serum total bile acid with new-onset hypertension during pregnancy
verfasst von
Weinan Deng
Lizi Zhang
Qiting Du
Yulian Li
Jingsi Chen
Lili Du
Dunjin Chen
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Pregnancy and Childbirth / Ausgabe 1/2022
Elektronische ISSN: 1471-2393
DOI
https://doi.org/10.1186/s12884-022-05211-y

Weitere Artikel der Ausgabe 1/2022

BMC Pregnancy and Childbirth 1/2022 Zur Ausgabe

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

S3-Leitlinie zur unkomplizierten Zystitis: Auf Antibiotika verzichten?

15.05.2024 Harnwegsinfektionen Nachrichten

Welche Antibiotika darf man bei unkomplizierter Zystitis verwenden und wovon sollte man die Finger lassen? Welche pflanzlichen Präparate können helfen? Was taugt der zugelassene Impfstoff? Antworten vom Koordinator der frisch überarbeiteten S3-Leitlinie, Prof. Florian Wagenlehner.

Gestationsdiabetes: In der zweiten Schwangerschaft folgenreicher als in der ersten

13.05.2024 Gestationsdiabetes Nachrichten

Das Risiko, nach einem Gestationsdiabetes einen Typ-2-Diabetes zu entwickeln, hängt nicht nur von der Zahl, sondern auch von der Reihenfolge der betroffenen Schwangerschaften ab.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.