Skip to main content
Erschienen in: European Journal of Clinical Microbiology & Infectious Diseases 10/2012

01.10.2012 | Review

The effect of biomaterials and antifungals on biofilm formation by Candida species: a review

verfasst von: M. Cuéllar-Cruz, A. Vega-González, B. Mendoza-Novelo, E. López-Romero, E. Ruiz-Baca, M. A. Quintanar-Escorza, J. C. Villagómez-Castro

Erschienen in: European Journal of Clinical Microbiology & Infectious Diseases | Ausgabe 10/2012

Einloggen, um Zugang zu erhalten

Abstract

Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis are able to form biofilms on virtually any biomaterial implanted in a human host. Biofilms are a primary cause of mortality in immunocompromised and hospitalized patients, as they cause recurrent and invasive candidiasis, which is difficult to eradicate. This is due to the fact that the biofilm cells show high resistance to antifungal treatments and the host defense mechanisms, and exhibit an excellent ability to adhere to biomaterials. Elucidation of the mechanisms of antifungal resistance in Candida biofilms is of unquestionable importance; therefore, this review analyzes both the chemical composition of biomaterials used to fabricate the medical devices, as well as the Candida genes and proteins that confer drug resistance.
Literatur
1.
Zurück zum Zitat Alonso-Valle H, Acha O, García-Palomo JD, Fariñas-Alvarez C, Fernández-Mazarrasa C, Fariñas MC (2003) Candidemia in a tertiary care hospital: epidemiology and factors influencing mortality. Eur J Clin Microbiol Infect Dis 22:254–257PubMed Alonso-Valle H, Acha O, García-Palomo JD, Fariñas-Alvarez C, Fernández-Mazarrasa C, Fariñas MC (2003) Candidemia in a tertiary care hospital: epidemiology and factors influencing mortality. Eur J Clin Microbiol Infect Dis 22:254–257PubMed
2.
Zurück zum Zitat Ben-Abraham R, Keller N, Teodorovitch N, Barzilai A, Harel R, Barzilay Z, Paret G (2004) Predictors of adverse outcome from candidal infection in a tertiary care hospital. J Infect 49:317–323PubMedCrossRef Ben-Abraham R, Keller N, Teodorovitch N, Barzilai A, Harel R, Barzilay Z, Paret G (2004) Predictors of adverse outcome from candidal infection in a tertiary care hospital. J Infect 49:317–323PubMedCrossRef
3.
Zurück zum Zitat Chakrabarti A, Chatterjee SS, Rao KL, Zameer MM, Shivaprakash MR, Singhi S, Singh R, Varma SC (2009) Recent experience with fungaemia: change in species distribution and azole resistance. Scand J Infect Dis 41:275–284PubMedCrossRef Chakrabarti A, Chatterjee SS, Rao KL, Zameer MM, Shivaprakash MR, Singhi S, Singh R, Varma SC (2009) Recent experience with fungaemia: change in species distribution and azole resistance. Scand J Infect Dis 41:275–284PubMedCrossRef
4.
Zurück zum Zitat Bassetti M, Righi E, Costa A, Fasce R, Molinari MP, Rosso R, Pallavicini FB, Viscoli C (2006) Epidemiological trends in nosocomial candidemia in intensive care. BMC Infect Dis 6:21PubMedCrossRef Bassetti M, Righi E, Costa A, Fasce R, Molinari MP, Rosso R, Pallavicini FB, Viscoli C (2006) Epidemiological trends in nosocomial candidemia in intensive care. BMC Infect Dis 6:21PubMedCrossRef
5.
Zurück zum Zitat Colombo AL, Guimarães T, Silva LR, de Almeida Monfardini LP, Cunha AK, Rady P, Alves T, Rosas RC (2007) Prospective observational study of candidemia in São Paulo, Brazil: incidence rate, epidemiology, and predictors of mortality. Infect Control Hosp Epidemiol 28:570–576PubMedCrossRef Colombo AL, Guimarães T, Silva LR, de Almeida Monfardini LP, Cunha AK, Rady P, Alves T, Rosas RC (2007) Prospective observational study of candidemia in São Paulo, Brazil: incidence rate, epidemiology, and predictors of mortality. Infect Control Hosp Epidemiol 28:570–576PubMedCrossRef
6.
Zurück zum Zitat Marchetti O, Bille J, Fluckiger U, Eggimann P, Ruef C, Garbino J, Calandra T, Glauser MP, Täuber MG, Pittet D; Fungal Infection Network of Switzerland (2004) Epidemiology of candidemia in Swiss tertiary care hospitals: secular trends, 1991–2000. Clin Infect Dis 38:311–320PubMedCrossRef Marchetti O, Bille J, Fluckiger U, Eggimann P, Ruef C, Garbino J, Calandra T, Glauser MP, Täuber MG, Pittet D; Fungal Infection Network of Switzerland (2004) Epidemiology of candidemia in Swiss tertiary care hospitals: secular trends, 1991–2000. Clin Infect Dis 38:311–320PubMedCrossRef
7.
Zurück zum Zitat Garcia-San Miguel L, Cobo J, Martos I, Otheo E, Muriel A, Pintado V, Moreno S (2006) Risk factors for candidemia in pediatric patients with congenital heart disease. Infect Control Hosp Epidemiol 27:576–580PubMedCrossRef Garcia-San Miguel L, Cobo J, Martos I, Otheo E, Muriel A, Pintado V, Moreno S (2006) Risk factors for candidemia in pediatric patients with congenital heart disease. Infect Control Hosp Epidemiol 27:576–580PubMedCrossRef
8.
Zurück zum Zitat Swinne D, Watelle M, Suetens C, Mertens K, Fonteyne PA, Nolard N (2004) A one-year survey of candidemia in Belgium in 2002. Epidemiol Infect 132:1175–1180PubMedCrossRef Swinne D, Watelle M, Suetens C, Mertens K, Fonteyne PA, Nolard N (2004) A one-year survey of candidemia in Belgium in 2002. Epidemiol Infect 132:1175–1180PubMedCrossRef
9.
Zurück zum Zitat Martin D, Persat F, Piens MA, Picot S (2005) Candida species distribution in bloodstream cultures in Lyon, France, 1998–2001. Eur J Clin Microbiol Infect Dis 24:329–333PubMedCrossRef Martin D, Persat F, Piens MA, Picot S (2005) Candida species distribution in bloodstream cultures in Lyon, France, 1998–2001. Eur J Clin Microbiol Infect Dis 24:329–333PubMedCrossRef
10.
Zurück zum Zitat Holmes AR, Keniya MV, Ivnitski-Steele I, Monk BC, Lamping E, Sklar LA, Cannon RD (2012) The monoamine oxidase A inhibitor clorgyline is a broad-spectrum inhibitor of fungal ABC and MFS transporter efflux pump activities which reverses the azole resistance of Candida albicans and Candida glabrata clinical isolates. Antimicrob Agents Chemother 56:1508–1515PubMedCrossRef Holmes AR, Keniya MV, Ivnitski-Steele I, Monk BC, Lamping E, Sklar LA, Cannon RD (2012) The monoamine oxidase A inhibitor clorgyline is a broad-spectrum inhibitor of fungal ABC and MFS transporter efflux pump activities which reverses the azole resistance of Candida albicans and Candida glabrata clinical isolates. Antimicrob Agents Chemother 56:1508–1515PubMedCrossRef
11.
Zurück zum Zitat Shreaz S, Wani MY, Ahmad SR, Ahmad SI, Bhatia R, Athar F, Nikhat M, Khan LA (2012) Proton-pumping-ATPase-targeted antifungal activity of cinnamaldehyde based sulfonyl tetrazoles. Eur J Med Chem 48:363–370PubMedCrossRef Shreaz S, Wani MY, Ahmad SR, Ahmad SI, Bhatia R, Athar F, Nikhat M, Khan LA (2012) Proton-pumping-ATPase-targeted antifungal activity of cinnamaldehyde based sulfonyl tetrazoles. Eur J Med Chem 48:363–370PubMedCrossRef
12.
Zurück zum Zitat Sorgo AG, Heilmann CJ, Dekker HL, Bekker M, Brul S, de Koster CG, de Koning LJ, Klis FM (2011) Effects of fluconazole on the secretome, the wall proteome, and wall integrity of the clinical fungus Candida albicans. Eukaryot Cell 10:1071–1081PubMedCrossRef Sorgo AG, Heilmann CJ, Dekker HL, Bekker M, Brul S, de Koster CG, de Koning LJ, Klis FM (2011) Effects of fluconazole on the secretome, the wall proteome, and wall integrity of the clinical fungus Candida albicans. Eukaryot Cell 10:1071–1081PubMedCrossRef
13.
Zurück zum Zitat Sun LM, Cheng AX, Wu XZ, Zhang HJ, Lou HX (2010) Synergistic mechanisms of retigeric acid B and azoles against Candida albicans. J Appl Microbiol 108:341–348PubMedCrossRef Sun LM, Cheng AX, Wu XZ, Zhang HJ, Lou HX (2010) Synergistic mechanisms of retigeric acid B and azoles against Candida albicans. J Appl Microbiol 108:341–348PubMedCrossRef
14.
Zurück zum Zitat Robbins N, Collins C, Morhayim J, Cowen LE (2010) Metabolic control of antifungal drug resistance. Fungal Genet Biol 47:81–93PubMedCrossRef Robbins N, Collins C, Morhayim J, Cowen LE (2010) Metabolic control of antifungal drug resistance. Fungal Genet Biol 47:81–93PubMedCrossRef
15.
Zurück zum Zitat Cowen LE, Steinbach WJ (2008) Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. Eukaryot Cell 7:747–764PubMedCrossRef Cowen LE, Steinbach WJ (2008) Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. Eukaryot Cell 7:747–764PubMedCrossRef
16.
Zurück zum Zitat Cowen LE (2008) The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat Rev Microbiol 6:187–198PubMedCrossRef Cowen LE (2008) The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat Rev Microbiol 6:187–198PubMedCrossRef
17.
Zurück zum Zitat LaFayette SL, Collins C, Zaas AK, Schell WA, Betancourt-Quiroz M, Gunatilaka AA, Perfect JR, Cowen LE (2010) PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog 6:e1001069PubMedCrossRef LaFayette SL, Collins C, Zaas AK, Schell WA, Betancourt-Quiroz M, Gunatilaka AA, Perfect JR, Cowen LE (2010) PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog 6:e1001069PubMedCrossRef
18.
Zurück zum Zitat Kothavade RJ, Kura MM, Valand AG, Panthaki MH (2010) Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole. J Med Microbiol 59:873–880PubMedCrossRef Kothavade RJ, Kura MM, Valand AG, Panthaki MH (2010) Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole. J Med Microbiol 59:873–880PubMedCrossRef
19.
Zurück zum Zitat Durán MT, Velasco D, Canle D, Moure R, Villanueva R (2003) Antifungal susceptibility of Candida spp. isolates from blood cultures in a five-year period (1997–2001). Enferm Infecc Microbiol Clin 21:488–492PubMedCrossRef Durán MT, Velasco D, Canle D, Moure R, Villanueva R (2003) Antifungal susceptibility of Candida spp. isolates from blood cultures in a five-year period (1997–2001). Enferm Infecc Microbiol Clin 21:488–492PubMedCrossRef
20.
Zurück zum Zitat Hitchcock CA, Pye GW, Troke PF, Johnson EM, Warnock DW (1993) Fluconazole resistance in Candida glabrata. Antimicrob Agents Chemother 37:1962–1965PubMedCrossRef Hitchcock CA, Pye GW, Troke PF, Johnson EM, Warnock DW (1993) Fluconazole resistance in Candida glabrata. Antimicrob Agents Chemother 37:1962–1965PubMedCrossRef
21.
Zurück zum Zitat Berila N, Subík J (2010) Opportunistic pathogen Candida glabrata and the mechanisms of its resistance to antifungal drugs. Epidemiol Mikrobiol Imunol 59:67–79PubMed Berila N, Subík J (2010) Opportunistic pathogen Candida glabrata and the mechanisms of its resistance to antifungal drugs. Epidemiol Mikrobiol Imunol 59:67–79PubMed
22.
Zurück zum Zitat Mann PA, McNicholas PM, Chau AS, Patel R, Mendrick C, Ullmann AJ, Cornely OA, Patino H, Black TA (2009) Impact of antifungal prophylaxis on colonization and azole susceptibility of Candida species. Antimicrob Agents Chemother 53:5026–5034PubMedCrossRef Mann PA, McNicholas PM, Chau AS, Patel R, Mendrick C, Ullmann AJ, Cornely OA, Patino H, Black TA (2009) Impact of antifungal prophylaxis on colonization and azole susceptibility of Candida species. Antimicrob Agents Chemother 53:5026–5034PubMedCrossRef
23.
Zurück zum Zitat Pfaller MA, Diekema DJ (2007) Azole antifungal drug cross-resistance: mechanisms, epidemiology, and clinical significance. J Invasive Fungal Infect 1:74–92 Pfaller MA, Diekema DJ (2007) Azole antifungal drug cross-resistance: mechanisms, epidemiology, and clinical significance. J Invasive Fungal Infect 1:74–92
24.
Zurück zum Zitat Borah S, Shivarathri R, Kaur RJ (2011) The Rho1 GTPase-activating protein CgBem2 is required for survival of azole stress in Candida glabrata. J Biol Chem 286:34311–34324PubMedCrossRef Borah S, Shivarathri R, Kaur RJ (2011) The Rho1 GTPase-activating protein CgBem2 is required for survival of azole stress in Candida glabrata. J Biol Chem 286:34311–34324PubMedCrossRef
25.
Zurück zum Zitat Pfaller MA, Messer SA, Moet GJ, Jones RN, Castanheira M (2011) Candida bloodstream infections: comparison of species distribution and resistance to echinocandin and azole antifungal agents in Intensive Care Unit (ICU) and non-ICU settings in the SENTRY Antimicrobial Surveillance Program (2008–2009). Int J Antimicrob Agents 38:65–69PubMedCrossRef Pfaller MA, Messer SA, Moet GJ, Jones RN, Castanheira M (2011) Candida bloodstream infections: comparison of species distribution and resistance to echinocandin and azole antifungal agents in Intensive Care Unit (ICU) and non-ICU settings in the SENTRY Antimicrobial Surveillance Program (2008–2009). Int J Antimicrob Agents 38:65–69PubMedCrossRef
26.
Zurück zum Zitat Eggimann P, Bille J, Marchetti O (2011) Diagnosis of invasive candidiasis in the ICU. Ann Intensive Care 1:37PubMedCrossRef Eggimann P, Bille J, Marchetti O (2011) Diagnosis of invasive candidiasis in the ICU. Ann Intensive Care 1:37PubMedCrossRef
27.
Zurück zum Zitat Pfaller MA, Andes D, Diekema DJ, Espinel-Ingroff A, Sheehan D; CLSI Subcommittee for Antifungal Susceptibility Testing (2010) Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist Updat 13:180–195CrossRef Pfaller MA, Andes D, Diekema DJ, Espinel-Ingroff A, Sheehan D; CLSI Subcommittee for Antifungal Susceptibility Testing (2010) Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist Updat 13:180–195CrossRef
28.
Zurück zum Zitat Nakamura T, Takahashi H (2006) Epidemiological study of Candida infections in blood: susceptibilities of Candida spp. to antifungal agents, and clinical features associated with the candidemia. J Infect Chemother 12:132–138PubMedCrossRef Nakamura T, Takahashi H (2006) Epidemiological study of Candida infections in blood: susceptibilities of Candida spp. to antifungal agents, and clinical features associated with the candidemia. J Infect Chemother 12:132–138PubMedCrossRef
29.
Zurück zum Zitat Holmes AR, Lin YH, Niimi K, Lamping E, Keniya M, Niimi M, Tanabe K, Monk BC, Cannon RD (2008) ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrob Agents Chemother 52:3851–3862PubMedCrossRef Holmes AR, Lin YH, Niimi K, Lamping E, Keniya M, Niimi M, Tanabe K, Monk BC, Cannon RD (2008) ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrob Agents Chemother 52:3851–3862PubMedCrossRef
30.
Zurück zum Zitat Mishra NN, Prasad T, Sharma N, Payasi A, Prasad R, Gupta DK, Singh R (2007) Pathogenicity and drug resistance in Candida albicans and other yeast species. A review. Acta Microbiol Immunol Hung 54:201–235PubMedCrossRef Mishra NN, Prasad T, Sharma N, Payasi A, Prasad R, Gupta DK, Singh R (2007) Pathogenicity and drug resistance in Candida albicans and other yeast species. A review. Acta Microbiol Immunol Hung 54:201–235PubMedCrossRef
31.
Zurück zum Zitat Hazen KC, Baron EJ, Colombo AL, Girmenia C, Sanchez-Sousa A, del Palacio A, de Bedout C, Gibbs DL; Global Antifungal Surveillance Group (2003) Comparison of the susceptibilities of Candida spp. to fluconazole and voriconazole in a 4-year global evaluation using disk diffusion. J Clin Microbiol 41:5623–5632PubMedCrossRef Hazen KC, Baron EJ, Colombo AL, Girmenia C, Sanchez-Sousa A, del Palacio A, de Bedout C, Gibbs DL; Global Antifungal Surveillance Group (2003) Comparison of the susceptibilities of Candida spp. to fluconazole and voriconazole in a 4-year global evaluation using disk diffusion. J Clin Microbiol 41:5623–5632PubMedCrossRef
32.
Zurück zum Zitat Pfaller MA, Diekema DJ; International Fungal Surveillance Participant Group (2004) Twelve years of fluconazole in clinical practice: global trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida. Clin Microbiol Infect 10:11–23PubMedCrossRef Pfaller MA, Diekema DJ; International Fungal Surveillance Participant Group (2004) Twelve years of fluconazole in clinical practice: global trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida. Clin Microbiol Infect 10:11–23PubMedCrossRef
33.
Zurück zum Zitat Pfaller MA, Messer SA, Boyken L, Hollis RJ, Rice C, Tendolkar S, Diekema DJ (2004) In vitro activities of voriconazole, posaconazole, and fluconazole against 4,169 clinical isolates of Candida spp. and Cryptococcus neoformans collected during 2001 and 2002 in the ARTEMIS global antifungal surveillance program. Diagn Microbiol Infect Dis 48:201–205PubMedCrossRef Pfaller MA, Messer SA, Boyken L, Hollis RJ, Rice C, Tendolkar S, Diekema DJ (2004) In vitro activities of voriconazole, posaconazole, and fluconazole against 4,169 clinical isolates of Candida spp. and Cryptococcus neoformans collected during 2001 and 2002 in the ARTEMIS global antifungal surveillance program. Diagn Microbiol Infect Dis 48:201–205PubMedCrossRef
34.
Zurück zum Zitat Pfaller MA, Hazen KC, Messer SA, Boyken L, Tendolkar S, Hollis RJ, Diekema DJ (2004) Comparison of results of fluconazole disk diffusion testing for Candida species with results from a central reference laboratory in the ARTEMIS global antifungal surveillance program. J Clin Microbiol 42:3607–3612PubMedCrossRef Pfaller MA, Hazen KC, Messer SA, Boyken L, Tendolkar S, Hollis RJ, Diekema DJ (2004) Comparison of results of fluconazole disk diffusion testing for Candida species with results from a central reference laboratory in the ARTEMIS global antifungal surveillance program. J Clin Microbiol 42:3607–3612PubMedCrossRef
35.
Zurück zum Zitat Pappas PG, Rex JH, Lee J, Hamill RJ, Larsen RA, Powderly W, Kauffman CA, Hyslop N, Mangino JE, Chapman S, Horowitz HW, Edwards JE, Dismukes WE; NIAID Mycoses Study Group (2003) A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients. Clin Infect Dis 37:634–643PubMedCrossRef Pappas PG, Rex JH, Lee J, Hamill RJ, Larsen RA, Powderly W, Kauffman CA, Hyslop N, Mangino JE, Chapman S, Horowitz HW, Edwards JE, Dismukes WE; NIAID Mycoses Study Group (2003) A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients. Clin Infect Dis 37:634–643PubMedCrossRef
36.
Zurück zum Zitat Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Meis JF, Gould IM, Fu W, Colombo AL, Rodriguez-Noriega E; Global Antifungal Surveillance Study (2007) Results from the ARTEMIS DISK Global Antifungal Surveillance study, 1997 to 2005: an 8.5-year analysis of susceptibilities of Candida species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol 45:1735–1745PubMedCrossRef Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Meis JF, Gould IM, Fu W, Colombo AL, Rodriguez-Noriega E; Global Antifungal Surveillance Study (2007) Results from the ARTEMIS DISK Global Antifungal Surveillance study, 1997 to 2005: an 8.5-year analysis of susceptibilities of Candida species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol 45:1735–1745PubMedCrossRef
37.
Zurück zum Zitat Pfaller MA, Espinel-Ingroff A, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, Diekema DJ (2011) Comparison of the broth microdilution (BMD) method of the European Committee on Antimicrobial Susceptibility Testing with the 24-hour CLSI BMD method for testing susceptibility of Candida species to fluconazole, posaconazole, and voriconazole by use of epidemiological cutoff values. J Clin Microbiol 49:845–850PubMedCrossRef Pfaller MA, Espinel-Ingroff A, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, Diekema DJ (2011) Comparison of the broth microdilution (BMD) method of the European Committee on Antimicrobial Susceptibility Testing with the 24-hour CLSI BMD method for testing susceptibility of Candida species to fluconazole, posaconazole, and voriconazole by use of epidemiological cutoff values. J Clin Microbiol 49:845–850PubMedCrossRef
38.
Zurück zum Zitat Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, Diekema DJ; ARTEMIS DISK Global Antifungal Surveillance Group (2009) Comparison of results of fluconazole and voriconazole disk diffusion testing for Candida spp. with results from a central reference laboratory in the ARTEMIS DISK Global Antifungal Surveillance Program. Diagn Microbiol Infect Dis 65:27–34PubMedCrossRef Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, Diekema DJ; ARTEMIS DISK Global Antifungal Surveillance Group (2009) Comparison of results of fluconazole and voriconazole disk diffusion testing for Candida spp. with results from a central reference laboratory in the ARTEMIS DISK Global Antifungal Surveillance Program. Diagn Microbiol Infect Dis 65:27–34PubMedCrossRef
39.
Zurück zum Zitat Pfaller MA, Moet GJ, Messer SA, Jones RN, Castanheira M (2011) Geographic variations in species distribution and echinocandin and azole antifungal resistance rates among Candida bloodstream infection isolates: report from the SENTRY Antimicrobial Surveillance Program (2008 to 2009). J Clin Microbiol 49:396–399PubMedCrossRef Pfaller MA, Moet GJ, Messer SA, Jones RN, Castanheira M (2011) Geographic variations in species distribution and echinocandin and azole antifungal resistance rates among Candida bloodstream infection isolates: report from the SENTRY Antimicrobial Surveillance Program (2008 to 2009). J Clin Microbiol 49:396–399PubMedCrossRef
40.
Zurück zum Zitat Pfaller MA, Messer SA, Hollis RJ, Boyken L, Tendolkar S, Kroeger J, Diekema DJ (2009) Variation in susceptibility of bloodstream isolates of Candida glabrata to fluconazole according to patient age and geographic location in the United States in 2001 to 2007. J Clin Microbiol 47:3185–3190PubMedCrossRef Pfaller MA, Messer SA, Hollis RJ, Boyken L, Tendolkar S, Kroeger J, Diekema DJ (2009) Variation in susceptibility of bloodstream isolates of Candida glabrata to fluconazole according to patient age and geographic location in the United States in 2001 to 2007. J Clin Microbiol 47:3185–3190PubMedCrossRef
41.
Zurück zum Zitat Tumbarello M, Posteraro B, Trecarichi EM, Fiori B, Rossi M, Porta R, de Gaetano Donati K, La Sorda M, Spanu T, Fadda G, Cauda R, Sanguinetti M (2007) Biofilm production by Candida species and inadequate antifungal therapy as predictors of mortality for patients with candidemia. J Clin Microbiol 45:1843–1850PubMedCrossRef Tumbarello M, Posteraro B, Trecarichi EM, Fiori B, Rossi M, Porta R, de Gaetano Donati K, La Sorda M, Spanu T, Fadda G, Cauda R, Sanguinetti M (2007) Biofilm production by Candida species and inadequate antifungal therapy as predictors of mortality for patients with candidemia. J Clin Microbiol 45:1843–1850PubMedCrossRef
42.
43.
Zurück zum Zitat Douglas LJ (2002) Medical importance of biofilms in Candida infections. Rev Iberoam Micol 19:139–143PubMed Douglas LJ (2002) Medical importance of biofilms in Candida infections. Rev Iberoam Micol 19:139–143PubMed
44.
Zurück zum Zitat Kojic EM, Darouiche RO (2004) Candida infections of medical devices. Clin Microbiol Rev 17:255–267PubMedCrossRef Kojic EM, Darouiche RO (2004) Candida infections of medical devices. Clin Microbiol Rev 17:255–267PubMedCrossRef
45.
Zurück zum Zitat Paulitsch AH, Willinger B, Zsalatz B, Stabentheiner E, Marth E, Buzina W (2009) In-vivo Candida biofilms in scanning electron microscopy. Med Mycol 47:690–696PubMedCrossRef Paulitsch AH, Willinger B, Zsalatz B, Stabentheiner E, Marth E, Buzina W (2009) In-vivo Candida biofilms in scanning electron microscopy. Med Mycol 47:690–696PubMedCrossRef
46.
Zurück zum Zitat Wiley JM, Seibel NL, Walsh TJ (2005) Efficacy and safety of amphotericin B lipid complex in 548 children and adolescents with invasive fungal infections. Pediatr Infect Dis J 24:167–174PubMedCrossRef Wiley JM, Seibel NL, Walsh TJ (2005) Efficacy and safety of amphotericin B lipid complex in 548 children and adolescents with invasive fungal infections. Pediatr Infect Dis J 24:167–174PubMedCrossRef
47.
Zurück zum Zitat Shin JH, Kee SJ, Shin MG, Kim SH, Shin DH, Lee SK, Suh SP, Ryang DW (2002) Biofilm production by isolates of Candida species recovered from nonneutropenic patients: comparison of bloodstream isolates with isolates from other sources. J Clin Microbiol 40:1244–1248PubMedCrossRef Shin JH, Kee SJ, Shin MG, Kim SH, Shin DH, Lee SK, Suh SP, Ryang DW (2002) Biofilm production by isolates of Candida species recovered from nonneutropenic patients: comparison of bloodstream isolates with isolates from other sources. J Clin Microbiol 40:1244–1248PubMedCrossRef
48.
Zurück zum Zitat Silva S, Negri M, Henriques M, Oliveira R, Williams D, Azeredo J (2010) Silicone colonization by non-Candida albicans Candida species in the presence of urine. J Med Microbiol 59:747–754PubMedCrossRef Silva S, Negri M, Henriques M, Oliveira R, Williams D, Azeredo J (2010) Silicone colonization by non-Candida albicans Candida species in the presence of urine. J Med Microbiol 59:747–754PubMedCrossRef
49.
Zurück zum Zitat Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2011) Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol 19:241–247PubMedCrossRef Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2011) Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol 19:241–247PubMedCrossRef
51.
Zurück zum Zitat Wong JY (2006) Biomaterials. In: Bronzino JD (ed) Biomedical engineering fundamentals, 3rd edn. Taylor and Francis, Boca Raton, pp V1–V8 Wong JY (2006) Biomaterials. In: Bronzino JD (ed) Biomedical engineering fundamentals, 3rd edn. Taylor and Francis, Boca Raton, pp V1–V8
52.
Zurück zum Zitat Dranginis AM, Rauceo JM, Coronado JE, Lipke PN (2007) A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 71:282–294PubMedCrossRef Dranginis AM, Rauceo JM, Coronado JE, Lipke PN (2007) A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 71:282–294PubMedCrossRef
53.
Zurück zum Zitat Nett J, Andes D (2006) Candida albicans biofilm development, modeling a host–pathogen interaction. Curr Opin Microbiol 9:340–345PubMedCrossRef Nett J, Andes D (2006) Candida albicans biofilm development, modeling a host–pathogen interaction. Curr Opin Microbiol 9:340–345PubMedCrossRef
54.
Zurück zum Zitat Trofa D, Gácser A, Nosanchuk JD (2008) Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev 21:606–625PubMedCrossRef Trofa D, Gácser A, Nosanchuk JD (2008) Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev 21:606–625PubMedCrossRef
55.
Zurück zum Zitat França EJ, Andrade CG, Furlaneto-Maia L, Serpa R, Oliveira MT, Quesada RM, Furlaneto MC (2011) Ultrastructural architecture of colonies of different morphologies produced by phenotypic switching of a clinical strain of Candida tropicalis and biofilm formation by variant phenotypes. Micron 42:726–732PubMedCrossRef França EJ, Andrade CG, Furlaneto-Maia L, Serpa R, Oliveira MT, Quesada RM, Furlaneto MC (2011) Ultrastructural architecture of colonies of different morphologies produced by phenotypic switching of a clinical strain of Candida tropicalis and biofilm formation by variant phenotypes. Micron 42:726–732PubMedCrossRef
56.
Zurück zum Zitat Baillie GS, Douglas LJ (2000) Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother 46:397–403PubMedCrossRef Baillie GS, Douglas LJ (2000) Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother 46:397–403PubMedCrossRef
57.
Zurück zum Zitat Al-Fattani MA, Douglas LJ (2006) Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 55:999–1008PubMedCrossRef Al-Fattani MA, Douglas LJ (2006) Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 55:999–1008PubMedCrossRef
58.
Zurück zum Zitat Al-Fattani MA, Douglas LJ (2004) Penetration of Candida biofilms by antifungal agents. Antimicrob Agents Chemother 48:3291–3297PubMedCrossRef Al-Fattani MA, Douglas LJ (2004) Penetration of Candida biofilms by antifungal agents. Antimicrob Agents Chemother 48:3291–3297PubMedCrossRef
59.
Zurück zum Zitat Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, Hoff B, VanHandel M, Andes D (2007) Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 51:510–520PubMedCrossRef Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, Hoff B, VanHandel M, Andes D (2007) Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 51:510–520PubMedCrossRef
60.
Zurück zum Zitat Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394PubMedCrossRef Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394PubMedCrossRef
61.
Zurück zum Zitat Iraqui I, Garcia-Sanchez S, Aubert S, Dromer F, Ghigo JM, d’Enfert C, Janbon G (2005) The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4p-dependent pathway. Mol Microbiol 55:1259–1271PubMedCrossRef Iraqui I, Garcia-Sanchez S, Aubert S, Dromer F, Ghigo JM, d’Enfert C, Janbon G (2005) The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4p-dependent pathway. Mol Microbiol 55:1259–1271PubMedCrossRef
62.
Zurück zum Zitat Silva S, Henriques M, Martins A, Oliveira R, Williams D, Azeredo J (2009) Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Med Mycol 47:681–689PubMedCrossRef Silva S, Henriques M, Martins A, Oliveira R, Williams D, Azeredo J (2009) Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Med Mycol 47:681–689PubMedCrossRef
63.
Zurück zum Zitat Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR, Kadosh D, Lopez-Ribot JL (2010) Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6:e1000828PubMedCrossRef Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR, Kadosh D, Lopez-Ribot JL (2010) Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6:e1000828PubMedCrossRef
64.
Zurück zum Zitat Tournu H, Van Dijck P (2012) Candida biofilms and the host: models and new concepts for eradication. Int J Microbiol 2012:845352PubMed Tournu H, Van Dijck P (2012) Candida biofilms and the host: models and new concepts for eradication. Int J Microbiol 2012:845352PubMed
65.
66.
Zurück zum Zitat Kokare CR, Chakraborty S, Khopade AN, Mahadik KR (2009) Biofilm: importance and applications. Indian J Biotechnol 8:159–168 Kokare CR, Chakraborty S, Khopade AN, Mahadik KR (2009) Biofilm: importance and applications. Indian J Biotechnol 8:159–168
67.
Zurück zum Zitat Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J (2009) Our current understanding of fungal biofilms. Crit Rev Microbiol 35:340–355PubMedCrossRef Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J (2009) Our current understanding of fungal biofilms. Crit Rev Microbiol 35:340–355PubMedCrossRef
68.
Zurück zum Zitat Ramage G, Martínez JP, López-Ribot JL (2006) Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 6:979–986PubMedCrossRef Ramage G, Martínez JP, López-Ribot JL (2006) Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 6:979–986PubMedCrossRef
69.
Zurück zum Zitat Lee HB (1989) Application of synthetic polymers in implants. In: Seagusa T, Higashimura A, Abe A (eds) Frontiers of macromolecular sciences. Blackwell Scientific Publications, Oxford, pp 579–584 Lee HB (1989) Application of synthetic polymers in implants. In: Seagusa T, Higashimura A, Abe A (eds) Frontiers of macromolecular sciences. Blackwell Scientific Publications, Oxford, pp 579–584
70.
Zurück zum Zitat Kuhn DM, Chandra J, Mukherjee PK, Ghannoum MA (2002) Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun 70:878–888PubMedCrossRef Kuhn DM, Chandra J, Mukherjee PK, Ghannoum MA (2002) Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun 70:878–888PubMedCrossRef
71.
Zurück zum Zitat Schinabeck MK, Long LA, Hossain MA, Chandra J, Mukherjee PK, Mohamed S, Ghannoum MA (2004) Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy. Antimicrob Agents Chemother 48:1727–1732PubMedCrossRef Schinabeck MK, Long LA, Hossain MA, Chandra J, Mukherjee PK, Mohamed S, Ghannoum MA (2004) Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy. Antimicrob Agents Chemother 48:1727–1732PubMedCrossRef
72.
Zurück zum Zitat Singh R, Shivaprakash MR, Chakrabarti A (2011) Biofilm formation by zygomycetes: quantification, structure and matrix composition. Microbiology 157:2611–2618PubMedCrossRef Singh R, Shivaprakash MR, Chakrabarti A (2011) Biofilm formation by zygomycetes: quantification, structure and matrix composition. Microbiology 157:2611–2618PubMedCrossRef
73.
Zurück zum Zitat Adam B, Baillie GS, Douglas LJ (2002) Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J Med Microbiol 51:344–349PubMed Adam B, Baillie GS, Douglas LJ (2002) Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J Med Microbiol 51:344–349PubMed
74.
Zurück zum Zitat Frade JP, Arthington-Skaggs BA (2011) Effect of serum and surface characteristics on Candida albicans biofilm formation. Mycoses 54:e154–e162PubMedCrossRef Frade JP, Arthington-Skaggs BA (2011) Effect of serum and surface characteristics on Candida albicans biofilm formation. Mycoses 54:e154–e162PubMedCrossRef
75.
Zurück zum Zitat Kasemo B, Lausmaa J (1988) Biomaterial and implant surfaces: a surface science approach. Int J Oral Maxillofac Implants 3:247–259PubMed Kasemo B, Lausmaa J (1988) Biomaterial and implant surfaces: a surface science approach. Int J Oral Maxillofac Implants 3:247–259PubMed
76.
Zurück zum Zitat Hazan R, Brener R, Oron U (1993) Bone growth to metal implants is regulated by their surface chemical properties. Biomaterials 14:570–574PubMedCrossRef Hazan R, Brener R, Oron U (1993) Bone growth to metal implants is regulated by their surface chemical properties. Biomaterials 14:570–574PubMedCrossRef
77.
Zurück zum Zitat Takeshita F, Ayukawa Y, Iyama S, Murai K, Suetsugu T (1997) Long-term evaluation of bone–titanium interface in rat tibiae using light microscopy, transmission electron microscopy, and image processing. J Biomed Mater Res 37:235–242PubMedCrossRef Takeshita F, Ayukawa Y, Iyama S, Murai K, Suetsugu T (1997) Long-term evaluation of bone–titanium interface in rat tibiae using light microscopy, transmission electron microscopy, and image processing. J Biomed Mater Res 37:235–242PubMedCrossRef
78.
Zurück zum Zitat Nikawa H, Nishimura H, Hamada T, Yamashiro H, Samaranayake LP (1999) Effects of modified pellicles on Candida biofilm formation on acrylic surfaces. Mycoses 42:37–40PubMedCrossRef Nikawa H, Nishimura H, Hamada T, Yamashiro H, Samaranayake LP (1999) Effects of modified pellicles on Candida biofilm formation on acrylic surfaces. Mycoses 42:37–40PubMedCrossRef
79.
Zurück zum Zitat Ramage G, Vandewalle K, Wickes BL, López-Ribot JL (2001) Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol 18:163–170PubMed Ramage G, Vandewalle K, Wickes BL, López-Ribot JL (2001) Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol 18:163–170PubMed
80.
Zurück zum Zitat Li L, Finnegan MB, Özkan S, Kim Y, Lillehoj PB, Ho C-M, Lux R, Mito R, Loewy Z, Shi W (2010) In vitro study of biofilm formation and effectiveness of antimicrobial treatment on various dental material surfaces. Mol Oral Microbiol 25:384–390PubMedCrossRef Li L, Finnegan MB, Özkan S, Kim Y, Lillehoj PB, Ho C-M, Lux R, Mito R, Loewy Z, Shi W (2010) In vitro study of biofilm formation and effectiveness of antimicrobial treatment on various dental material surfaces. Mol Oral Microbiol 25:384–390PubMedCrossRef
81.
Zurück zum Zitat Bigerelle M, Anselme K, Dufresne E, Hardouin P, Iost A (2002) An unscaled parameter to measure the order of surfaces: a new surface elaboration to increase cells adhesion. Biomol Eng 19:79–83PubMedCrossRef Bigerelle M, Anselme K, Dufresne E, Hardouin P, Iost A (2002) An unscaled parameter to measure the order of surfaces: a new surface elaboration to increase cells adhesion. Biomol Eng 19:79–83PubMedCrossRef
82.
Zurück zum Zitat Cunliffe D, Smart CA, Alexander C, Vulfson EN (1999) Bacterial adhesion at synthetic surfaces. Appl Environ Microbiol 65:4995–5002PubMed Cunliffe D, Smart CA, Alexander C, Vulfson EN (1999) Bacterial adhesion at synthetic surfaces. Appl Environ Microbiol 65:4995–5002PubMed
83.
Zurück zum Zitat Dufrêne YF (2000) Direct characterization of the physicochemical properties of fungal spores using functionalized AFM probes. Biophys J 78:3286–3291PubMedCrossRef Dufrêne YF (2000) Direct characterization of the physicochemical properties of fungal spores using functionalized AFM probes. Biophys J 78:3286–3291PubMedCrossRef
84.
Zurück zum Zitat Webb JS, Van der Mei HC, Nixon M, Eastwood IM, Greenhalgh M, Read SJ, Robson GD, Handley PS (1999) Plasticizers increase adhesion of the deteriogenic fungus Aureobasidium pullulans to polyvinyl chloride. Appl Environ Microbiol 65:3575–3581PubMed Webb JS, Van der Mei HC, Nixon M, Eastwood IM, Greenhalgh M, Read SJ, Robson GD, Handley PS (1999) Plasticizers increase adhesion of the deteriogenic fungus Aureobasidium pullulans to polyvinyl chloride. Appl Environ Microbiol 65:3575–3581PubMed
85.
Zurück zum Zitat Estivill D, Arias A, Torres-Lana A, Carrillo-Muñoz AJ, Arévalo MP (2011) Biofilm formation by five species of Candida on three clinical materials. J Microbiol Methods 86:238–242PubMedCrossRef Estivill D, Arias A, Torres-Lana A, Carrillo-Muñoz AJ, Arévalo MP (2011) Biofilm formation by five species of Candida on three clinical materials. J Microbiol Methods 86:238–242PubMedCrossRef
86.
Zurück zum Zitat Quirynen M, Bollen CM (1995) The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature J Clin Periodontol 22:1–14PubMedCrossRef Quirynen M, Bollen CM (1995) The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature J Clin Periodontol 22:1–14PubMedCrossRef
87.
Zurück zum Zitat Depprich RA, Handschel JG, Meyer U, Meissner G (2008) Comparison of prevalence of microorganisms on titanium and silicone/polymethyl methacrylate obturators used for rehabilitation of maxillary defects. J Prosthet Dent 99:400–405PubMedCrossRef Depprich RA, Handschel JG, Meyer U, Meissner G (2008) Comparison of prevalence of microorganisms on titanium and silicone/polymethyl methacrylate obturators used for rehabilitation of maxillary defects. J Prosthet Dent 99:400–405PubMedCrossRef
88.
Zurück zum Zitat Iltis GC, Armstrong RT, Jansik DP, Wood BD, Wildenschild D (2011) Imaging biofilm architecture within porous media using synchrotron-based X-ray computed microtomography. Water Resources Res 47:W02601CrossRef Iltis GC, Armstrong RT, Jansik DP, Wood BD, Wildenschild D (2011) Imaging biofilm architecture within porous media using synchrotron-based X-ray computed microtomography. Water Resources Res 47:W02601CrossRef
89.
Zurück zum Zitat Mukherjee PK, Chand DV, Chandra J, Anderson JM, Ghannoum MA (2009) Shear stress modulates the thickness and architecture of Candida albicans biofilms in a phase-dependent manner. Mycoses 52:440–446PubMedCrossRef Mukherjee PK, Chand DV, Chandra J, Anderson JM, Ghannoum MA (2009) Shear stress modulates the thickness and architecture of Candida albicans biofilms in a phase-dependent manner. Mycoses 52:440–446PubMedCrossRef
90.
Zurück zum Zitat Honraet K, Goetghebeur E, Nelis HJ (2005) Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Methods 63:287–295PubMedCrossRef Honraet K, Goetghebeur E, Nelis HJ (2005) Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Methods 63:287–295PubMedCrossRef
91.
Zurück zum Zitat Ramage G, Wickes BL, López-Ribot JL (2008) A seed and feed model for the formation of Candida albicans biofilms under flow conditions using an improved modified Robbins device. Rev Iberoam Micol 25:37–40PubMedCrossRef Ramage G, Wickes BL, López-Ribot JL (2008) A seed and feed model for the formation of Candida albicans biofilms under flow conditions using an improved modified Robbins device. Rev Iberoam Micol 25:37–40PubMedCrossRef
92.
Zurück zum Zitat Uppuluri P, Chaturvedi AK, Lopez-Ribot JL (2009) Design of a simple model of Candida albicans biofilms formed under conditions of flow: development, architecture, and drug resistance. Mycopathologia 168:101–109PubMedCrossRef Uppuluri P, Chaturvedi AK, Lopez-Ribot JL (2009) Design of a simple model of Candida albicans biofilms formed under conditions of flow: development, architecture, and drug resistance. Mycopathologia 168:101–109PubMedCrossRef
93.
Zurück zum Zitat Harrison JJ, Ceri H, Yerly J, Rabiei M, Hu Y, Martinuzzi R, Turner RJ (2007) Metal ions may suppress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms. Appl Environ Microbiol 73:4940–4949PubMedCrossRef Harrison JJ, Ceri H, Yerly J, Rabiei M, Hu Y, Martinuzzi R, Turner RJ (2007) Metal ions may suppress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms. Appl Environ Microbiol 73:4940–4949PubMedCrossRef
94.
Zurück zum Zitat Percival SL, Slone W, Linton S, Okel T, Corum L, Thomas JG (2011) The antimicrobial efficacy of a silver alginate dressing against a broad spectrum of clinically relevant wound isolates. Int Wound J 8:237–243PubMedCrossRef Percival SL, Slone W, Linton S, Okel T, Corum L, Thomas JG (2011) The antimicrobial efficacy of a silver alginate dressing against a broad spectrum of clinically relevant wound isolates. Int Wound J 8:237–243PubMedCrossRef
95.
Zurück zum Zitat Monteiro DR, Gorup LF, Silva S, Negri M, de Camargo ER, Oliveira R, Barbosa DB, Henriques M (2011) Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata. Biofouling 27:711–719PubMedCrossRef Monteiro DR, Gorup LF, Silva S, Negri M, de Camargo ER, Oliveira R, Barbosa DB, Henriques M (2011) Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata. Biofouling 27:711–719PubMedCrossRef
96.
Zurück zum Zitat Kong H, Jang J (2008) Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules 9:2677–2681PubMedCrossRef Kong H, Jang J (2008) Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules 9:2677–2681PubMedCrossRef
97.
Zurück zum Zitat Tyllianakis M, Dalas E, Christofidou M, Kallitsis JK, Chrissanthopoulos A, Koutsoukos PG, Bartzavali C, Gourdoupi N, Papadimitriou K, Oikonomou EK, Yannopoulos SN, Sevastos D (2010) Novel composites materials from functionalized polymers and silver coated titanium oxide capable for calcium phosphate induction, control of orthopedic biofilm infections: an “in vitro” study. J Mater Sci Mater Med 21:2201–2211PubMedCrossRef Tyllianakis M, Dalas E, Christofidou M, Kallitsis JK, Chrissanthopoulos A, Koutsoukos PG, Bartzavali C, Gourdoupi N, Papadimitriou K, Oikonomou EK, Yannopoulos SN, Sevastos D (2010) Novel composites materials from functionalized polymers and silver coated titanium oxide capable for calcium phosphate induction, control of orthopedic biofilm infections: an “in vitro” study. J Mater Sci Mater Med 21:2201–2211PubMedCrossRef
98.
Zurück zum Zitat Paulo CSO, Vidal M, Ferreira LS (2010) Antifungal nanoparticles and surfaces. Biomacromolecules 11:2810–2817PubMedCrossRef Paulo CSO, Vidal M, Ferreira LS (2010) Antifungal nanoparticles and surfaces. Biomacromolecules 11:2810–2817PubMedCrossRef
99.
Zurück zum Zitat Teodor E, Litescu SC, Lazar V, Somoghi R (2009) Hydrogel-magnetic nanoparticles with immobilized L-asparaginase for biomedical applications. J Mater Sci Mater Med 20:1307–1314PubMedCrossRef Teodor E, Litescu SC, Lazar V, Somoghi R (2009) Hydrogel-magnetic nanoparticles with immobilized L-asparaginase for biomedical applications. J Mater Sci Mater Med 20:1307–1314PubMedCrossRef
100.
Zurück zum Zitat Zumbuehl A, Ferreira L, Kuhn D, Astashkina A, Long L, Yeo Y, Iaconis T, Ghannoum M, Fink GR, Langer R, Kohane DS (2008) Antifungal hydrogels. Eur Cell Mater 16:62 Zumbuehl A, Ferreira L, Kuhn D, Astashkina A, Long L, Yeo Y, Iaconis T, Ghannoum M, Fink GR, Langer R, Kohane DS (2008) Antifungal hydrogels. Eur Cell Mater 16:62
101.
Zurück zum Zitat Zumbuehl A, Ferreira L, Kuhn D, Astashkina A, Long L, Yeo Y, Iaconis T, Ghannoum M, Fink GR, Langer R, Kohane DS (2007) Antifungal hydrogels. Proc Natl Acad Sci USA 104:12994–12998PubMedCrossRef Zumbuehl A, Ferreira L, Kuhn D, Astashkina A, Long L, Yeo Y, Iaconis T, Ghannoum M, Fink GR, Langer R, Kohane DS (2007) Antifungal hydrogels. Proc Natl Acad Sci USA 104:12994–12998PubMedCrossRef
102.
Zurück zum Zitat Adams ML, Andes DR, Kwon GS (2003) Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity. Biomacromolecules 4:750–757PubMedCrossRef Adams ML, Andes DR, Kwon GS (2003) Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity. Biomacromolecules 4:750–757PubMedCrossRef
103.
Zurück zum Zitat Karlsson AJ, Flessner RM, Gellman SH, Lynn DM, Palecek SP (2010) Polyelectrolyte multilayers fabricated from antifungal β-peptides: design of surfaces that exhibit antifungal activity against Candida albicans. Biomacromolecules 11:2321–2328PubMedCrossRef Karlsson AJ, Flessner RM, Gellman SH, Lynn DM, Palecek SP (2010) Polyelectrolyte multilayers fabricated from antifungal β-peptides: design of surfaces that exhibit antifungal activity against Candida albicans. Biomacromolecules 11:2321–2328PubMedCrossRef
104.
Zurück zum Zitat dos Santos JFR, Torres-Labandeira JJ, Matthijs N, Coenye T, Concheiro A, Alvarez-Lorenzo C (2010) Functionalization of acrylic hydrogels with α-, β- or γ-cyclodextrin modulates protein adsorption and antifungal delivery. Acta Biomater 6:3919–3926PubMedCrossRef dos Santos JFR, Torres-Labandeira JJ, Matthijs N, Coenye T, Concheiro A, Alvarez-Lorenzo C (2010) Functionalization of acrylic hydrogels with α-, β- or γ-cyclodextrin modulates protein adsorption and antifungal delivery. Acta Biomater 6:3919–3926PubMedCrossRef
105.
Zurück zum Zitat Darwish RM, Amin WM, Al-Ali MH, Salem NA (2011) Study of the elution of fluconazole from a self-polymerizing acrylic resin and its activity against resistant Candida albicans. J Mater Sci Mater Med 22:1885–1890PubMedCrossRef Darwish RM, Amin WM, Al-Ali MH, Salem NA (2011) Study of the elution of fluconazole from a self-polymerizing acrylic resin and its activity against resistant Candida albicans. J Mater Sci Mater Med 22:1885–1890PubMedCrossRef
106.
Zurück zum Zitat Taylor RL, Liauw CM, Maryan C (2003) The effect of resin/crosslinker ratio on the mechanical properties and fungal deterioration of a maxillofacial silicone elastomer. J Mater Sci Mater Med 14:497–502PubMedCrossRef Taylor RL, Liauw CM, Maryan C (2003) The effect of resin/crosslinker ratio on the mechanical properties and fungal deterioration of a maxillofacial silicone elastomer. J Mater Sci Mater Med 14:497–502PubMedCrossRef
107.
Zurück zum Zitat Haroun AA, Ahmed EF, Abd El-Ghaffar MA (2011) Preparation and antimicrobial activity of poly (vinyl chloride)/gelatin/montmorillonite biocomposite films. J Mater Sci Mater Med 22:2545–2553PubMedCrossRef Haroun AA, Ahmed EF, Abd El-Ghaffar MA (2011) Preparation and antimicrobial activity of poly (vinyl chloride)/gelatin/montmorillonite biocomposite films. J Mater Sci Mater Med 22:2545–2553PubMedCrossRef
108.
Zurück zum Zitat Karaagaclioglu L, Can G, Yilmaz B, Ayhan N, Semiz O, Levent H (2008) The adherence of Candida albicans to acrylic resin reinforced with different fibers. J Mater Sci Mater Med 19:959–963PubMedCrossRef Karaagaclioglu L, Can G, Yilmaz B, Ayhan N, Semiz O, Levent H (2008) The adherence of Candida albicans to acrylic resin reinforced with different fibers. J Mater Sci Mater Med 19:959–963PubMedCrossRef
109.
Zurück zum Zitat Zhou L, Tong Z, Wu G, Feng Z, Bai S, Dong Y, Ni L, Zhao Y (2010) Parylene coating hinders Candida albicans adhesion to silicone elastomers and denture bases resin. Arch Oral Biol 55:401–409PubMedCrossRef Zhou L, Tong Z, Wu G, Feng Z, Bai S, Dong Y, Ni L, Zhao Y (2010) Parylene coating hinders Candida albicans adhesion to silicone elastomers and denture bases resin. Arch Oral Biol 55:401–409PubMedCrossRef
110.
Zurück zum Zitat Hirota K, Murakami K, Nemoto K, Miyake Y (2005) Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms. FEMS Microb Lett 248:37–45CrossRef Hirota K, Murakami K, Nemoto K, Miyake Y (2005) Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms. FEMS Microb Lett 248:37–45CrossRef
111.
Zurück zum Zitat Wiegand C, Abel M, Ruth P, Hipler UC (2011) Superabsorbent polymer-containing wound dressings have a beneficial effect on wound healing by reducing PMN elastase concentration and inhibiting microbial growth. J Mater Sci Mater Med 22:2583–2590PubMedCrossRef Wiegand C, Abel M, Ruth P, Hipler UC (2011) Superabsorbent polymer-containing wound dressings have a beneficial effect on wound healing by reducing PMN elastase concentration and inhibiting microbial growth. J Mater Sci Mater Med 22:2583–2590PubMedCrossRef
112.
Zurück zum Zitat Ardizzoni A, Neglia RG, Baschieri MC, Cermelli C, Caratozzolo M, Righi E, Palmieri B, Blasi E (2011) Influence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens. J Mater Sci Mater Med 22:2329–2338PubMedCrossRef Ardizzoni A, Neglia RG, Baschieri MC, Cermelli C, Caratozzolo M, Righi E, Palmieri B, Blasi E (2011) Influence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens. J Mater Sci Mater Med 22:2329–2338PubMedCrossRef
113.
Zurück zum Zitat Martinez LR, Mihu MR, Tar M, Cordero RJB, Han G, Friedman AJ, Friedman JM, Nosanchuk JD (2010) Demonstration of antibiofilm and antifungal efficacy of chitosan against candidal biofilms, using an in vivo central venous catheter model. J Infec Dis 201:1436–1440CrossRef Martinez LR, Mihu MR, Tar M, Cordero RJB, Han G, Friedman AJ, Friedman JM, Nosanchuk JD (2010) Demonstration of antibiofilm and antifungal efficacy of chitosan against candidal biofilms, using an in vivo central venous catheter model. J Infec Dis 201:1436–1440CrossRef
114.
Zurück zum Zitat Cannon RD, Fischer FJ, Niimi K, Niimi M, Arisawa M (1998) Drug pumping mechanisms in Candida albicans. Nihon Ishinkin Gakkai Zasshi 39:73–78PubMedCrossRef Cannon RD, Fischer FJ, Niimi K, Niimi M, Arisawa M (1998) Drug pumping mechanisms in Candida albicans. Nihon Ishinkin Gakkai Zasshi 39:73–78PubMedCrossRef
115.
Zurück zum Zitat Vandeputte P, Ferrari S, Coste AT (2012) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012:713687PubMed Vandeputte P, Ferrari S, Coste AT (2012) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012:713687PubMed
116.
Zurück zum Zitat Alvarez-Rueda N, Fleury A, Morio F, Pagniez F, Gastinel L, Le Pape P (2011) Amino acid substitutions at the major insertion loop of Candida albicans sterol 14alpha-demethylase are involved in fluconazole resistance. PLoS One 6:e21239PubMedCrossRef Alvarez-Rueda N, Fleury A, Morio F, Pagniez F, Gastinel L, Le Pape P (2011) Amino acid substitutions at the major insertion loop of Candida albicans sterol 14alpha-demethylase are involved in fluconazole resistance. PLoS One 6:e21239PubMedCrossRef
117.
Zurück zum Zitat Martel CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG, Rolley N, Kelly DE, Kelly SL (2010) Identification and characterization of four azole-resistant erg3 mutants of Candida albicans. Antimicrob Agents Chemother 54:4527–4533PubMedCrossRef Martel CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG, Rolley N, Kelly DE, Kelly SL (2010) Identification and characterization of four azole-resistant erg3 mutants of Candida albicans. Antimicrob Agents Chemother 54:4527–4533PubMedCrossRef
118.
Zurück zum Zitat Marie C, White TC (2009) Genetic basis of antifungal drug resistance. Curr Fungal Infect Rep 3:163–169PubMedCrossRef Marie C, White TC (2009) Genetic basis of antifungal drug resistance. Curr Fungal Infect Rep 3:163–169PubMedCrossRef
119.
Zurück zum Zitat Wang H, Kong F, Sorrell TC, Wang B, McNicholas P, Pantarat N, Ellis D, Xiao M, Widmer F, Chen SC (2009) Rapid detection of ERG11 gene mutations in clinical Candida albicans isolates with reduced susceptibility to fluconazole by rolling circle amplification and DNA sequencing. BMC Microbiol 9:167PubMedCrossRef Wang H, Kong F, Sorrell TC, Wang B, McNicholas P, Pantarat N, Ellis D, Xiao M, Widmer F, Chen SC (2009) Rapid detection of ERG11 gene mutations in clinical Candida albicans isolates with reduced susceptibility to fluconazole by rolling circle amplification and DNA sequencing. BMC Microbiol 9:167PubMedCrossRef
120.
Zurück zum Zitat Coste A, Selmecki A, Forche A, Diogo D, Bougnoux ME, d’Enfert C, Berman J, Sanglard D (2007) Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot Cell 6:1889–1904PubMedCrossRef Coste A, Selmecki A, Forche A, Diogo D, Bougnoux ME, d’Enfert C, Berman J, Sanglard D (2007) Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot Cell 6:1889–1904PubMedCrossRef
121.
Zurück zum Zitat Marichal P, Koymans L, Willemsens S, Bellens D, Verhasselt P, Luyten W, Borgers M, Ramaekers FC, Odds FC, Bossche HV (1999) Contribution of mutations in the cytochrome P450 14alpha-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Microbiology 145:2701–2713PubMed Marichal P, Koymans L, Willemsens S, Bellens D, Verhasselt P, Luyten W, Borgers M, Ramaekers FC, Odds FC, Bossche HV (1999) Contribution of mutations in the cytochrome P450 14alpha-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Microbiology 145:2701–2713PubMed
122.
Zurück zum Zitat Sanglard D, Odds FC (2002) Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2:73–85PubMedCrossRef Sanglard D, Odds FC (2002) Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2:73–85PubMedCrossRef
123.
Zurück zum Zitat Shapiro RS, Robbins N, Cowen LE (2011) Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75:213–267PubMedCrossRef Shapiro RS, Robbins N, Cowen LE (2011) Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75:213–267PubMedCrossRef
124.
Zurück zum Zitat Anderson JB (2005) Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nat Rev Microbiol 3:547–556PubMedCrossRef Anderson JB (2005) Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nat Rev Microbiol 3:547–556PubMedCrossRef
125.
Zurück zum Zitat Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA (2003) Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 71:4333–4340PubMedCrossRef Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA (2003) Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 71:4333–4340PubMedCrossRef
126.
Zurück zum Zitat Ramage G, Bachmann S, Patterson TF, Wickes BL, López-Ribot JL (2002) Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49:973–980PubMedCrossRef Ramage G, Bachmann S, Patterson TF, Wickes BL, López-Ribot JL (2002) Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49:973–980PubMedCrossRef
127.
Zurück zum Zitat Prasad R, Sharma M, Rawal MK (2011) Functionally relevant residues of Cdr1p: a multidrug ABC transporter of human pathogenic Candida albicans. J Amino Acids 2011:531412PubMed Prasad R, Sharma M, Rawal MK (2011) Functionally relevant residues of Cdr1p: a multidrug ABC transporter of human pathogenic Candida albicans. J Amino Acids 2011:531412PubMed
128.
Zurück zum Zitat Prasad R, Murthy SK, Gupta V, Prasad R (1995) Multiple drug resistance in Candida albicans. Acta Biochim Pol 42:497–504PubMed Prasad R, Murthy SK, Gupta V, Prasad R (1995) Multiple drug resistance in Candida albicans. Acta Biochim Pol 42:497–504PubMed
129.
Zurück zum Zitat Prasad R, De Wergifosse P, Goffeau A, Balzi E (1995) Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 27:320–329PubMedCrossRef Prasad R, De Wergifosse P, Goffeau A, Balzi E (1995) Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 27:320–329PubMedCrossRef
130.
Zurück zum Zitat Sanglard D, Ischer F, Monod M, Bille J (1997) Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 143:405–416PubMedCrossRef Sanglard D, Ischer F, Monod M, Bille J (1997) Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 143:405–416PubMedCrossRef
131.
Zurück zum Zitat Tsao S, Rahkhoodaee F, Raymond M (2009) Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. Antimicrob Agents Chemother 53:1344–1352PubMedCrossRef Tsao S, Rahkhoodaee F, Raymond M (2009) Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. Antimicrob Agents Chemother 53:1344–1352PubMedCrossRef
132.
Zurück zum Zitat Basso LR Jr, Gast CE, Mao Y, Wong B (2010) Fluconazole transport into Candida albicans secretory vesicles by the membrane proteins Cdr1p, Cdr2p, and Mdr1p. Eukaryot Cell 9:960–970PubMedCrossRef Basso LR Jr, Gast CE, Mao Y, Wong B (2010) Fluconazole transport into Candida albicans secretory vesicles by the membrane proteins Cdr1p, Cdr2p, and Mdr1p. Eukaryot Cell 9:960–970PubMedCrossRef
133.
Zurück zum Zitat White TC (1997) Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 41:1482–1487PubMed White TC (1997) Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 41:1482–1487PubMed
134.
Zurück zum Zitat Albertson GD, Niimi M, Cannon RD, Jenkinson HF (1996) Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother 40:2835–2841PubMed Albertson GD, Niimi M, Cannon RD, Jenkinson HF (1996) Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother 40:2835–2841PubMed
135.
Zurück zum Zitat Krishnamurthy S, Gupta V, Prasad R, Panwar SL, Prasad R (1998) Expression of CDR1, a multidrug resistance gene of Candida albicans: transcriptional activation by heat shock, drugs and human steroid hormones. FEMS Microbiol Lett 160:191–197PubMedCrossRef Krishnamurthy S, Gupta V, Prasad R, Panwar SL, Prasad R (1998) Expression of CDR1, a multidrug resistance gene of Candida albicans: transcriptional activation by heat shock, drugs and human steroid hormones. FEMS Microbiol Lett 160:191–197PubMedCrossRef
136.
Zurück zum Zitat Calabrese D, Bille J, Sanglard D (2000) A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Microbiology 146:2743–2754PubMed Calabrese D, Bille J, Sanglard D (2000) A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Microbiology 146:2743–2754PubMed
137.
Zurück zum Zitat Mogavero S, Tavanti A, Senesi S, Rogers PD, Morschhäuser J (2011) Differential requirement of the transcription factor Mcm1 for activation of the Candida albicans multidrug efflux pump MDR1 by its regulators Mrr1 and Cap1. Antimicrob Agents Chemother 55:2061–2066PubMedCrossRef Mogavero S, Tavanti A, Senesi S, Rogers PD, Morschhäuser J (2011) Differential requirement of the transcription factor Mcm1 for activation of the Candida albicans multidrug efflux pump MDR1 by its regulators Mrr1 and Cap1. Antimicrob Agents Chemother 55:2061–2066PubMedCrossRef
138.
Zurück zum Zitat Morschhäuser J, Barker KS, Liu TT, BlaB-Warmuth J, Homayouni R, Rogers PD (2007) The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog 3:e164PubMedCrossRef Morschhäuser J, Barker KS, Liu TT, BlaB-Warmuth J, Homayouni R, Rogers PD (2007) The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog 3:e164PubMedCrossRef
139.
Zurück zum Zitat Gupta V, Kohli A, Krishnamurthy S, Puri N, Aalamgeer SA, Panwar S, Prasad R (1998) Identification of polymorphic mutant alleles of CaMDR1, a major facilitator of Candida albicans which confers multidrug resistance, and its in vitro transcriptional activation. Curr Genet 34:192–199PubMedCrossRef Gupta V, Kohli A, Krishnamurthy S, Puri N, Aalamgeer SA, Panwar S, Prasad R (1998) Identification of polymorphic mutant alleles of CaMDR1, a major facilitator of Candida albicans which confers multidrug resistance, and its in vitro transcriptional activation. Curr Genet 34:192–199PubMedCrossRef
140.
Zurück zum Zitat Ben-Yaacov R, Knoller S, Caldwell GA, Becker JM, Koltin Y (1994) Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene. Antimicrob Agents Chemother 38:648–652PubMedCrossRef Ben-Yaacov R, Knoller S, Caldwell GA, Becker JM, Koltin Y (1994) Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene. Antimicrob Agents Chemother 38:648–652PubMedCrossRef
141.
Zurück zum Zitat Fling ME, Kopf J, Tamarkin A, Gorman JA, Smith HA, Koltin Y (1991) Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Mol Gen Genet 227:318–329PubMedCrossRef Fling ME, Kopf J, Tamarkin A, Gorman JA, Smith HA, Koltin Y (1991) Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Mol Gen Genet 227:318–329PubMedCrossRef
142.
Zurück zum Zitat Chau AS, Mendrick CA, Sabatelli FJ, Loebenberg D, McNicholas PM (2004) Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles. Antimicrob Agents Chemother 48:2124–2131PubMedCrossRef Chau AS, Mendrick CA, Sabatelli FJ, Loebenberg D, McNicholas PM (2004) Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles. Antimicrob Agents Chemother 48:2124–2131PubMedCrossRef
143.
Zurück zum Zitat Rogers PD, Barker KS (2003) Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother 47:1220–1227PubMedCrossRef Rogers PD, Barker KS (2003) Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother 47:1220–1227PubMedCrossRef
144.
Zurück zum Zitat Rogers PD, Barker KS (2002) Evaluation of differential gene expression in fluconazole-susceptible and -resistant isolates of Candida albicans by cDNA microarray analysis. Antimicrob Agents Chemother 46:3412–3417PubMedCrossRef Rogers PD, Barker KS (2002) Evaluation of differential gene expression in fluconazole-susceptible and -resistant isolates of Candida albicans by cDNA microarray analysis. Antimicrob Agents Chemother 46:3412–3417PubMedCrossRef
145.
Zurück zum Zitat Lopez-Ribot JL, McAtee RK, Lee LN, Kirkpatrick WR, White TC, Sanglard D, Patterson TF (1998) Distinct patterns of gene expression associated with development of fluconazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob Agents Chemother 42:2932–2937PubMed Lopez-Ribot JL, McAtee RK, Lee LN, Kirkpatrick WR, White TC, Sanglard D, Patterson TF (1998) Distinct patterns of gene expression associated with development of fluconazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob Agents Chemother 42:2932–2937PubMed
146.
Zurück zum Zitat White TC, Holleman S, Dy F, Mirels LF, Stevens DA (2002) Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother 46:1704–17013PubMedCrossRef White TC, Holleman S, Dy F, Mirels LF, Stevens DA (2002) Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother 46:1704–17013PubMedCrossRef
147.
Zurück zum Zitat Karababa M, Coste AT, Rognon B, Bille J, Sanglard D (2004) Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob Agents Chemother 48:3064–3079PubMedCrossRef Karababa M, Coste AT, Rognon B, Bille J, Sanglard D (2004) Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob Agents Chemother 48:3064–3079PubMedCrossRef
148.
Zurück zum Zitat Xu Z, Zhang LX, Zhang JD, Cao YB, Yu YY, Wang DJ, Ying K, Chen WS, Jiang YY (2006) cDNA microarray analysis of differential gene expression and regulation in clinically drug-resistant isolates of Candida albicans from bone marrow transplanted patients. Int J Med Microbiol 296:421–434PubMedCrossRef Xu Z, Zhang LX, Zhang JD, Cao YB, Yu YY, Wang DJ, Ying K, Chen WS, Jiang YY (2006) cDNA microarray analysis of differential gene expression and regulation in clinically drug-resistant isolates of Candida albicans from bone marrow transplanted patients. Int J Med Microbiol 296:421–434PubMedCrossRef
149.
Zurück zum Zitat Morschhäuser J (2002) The genetic basis of fluconazole resistance development in Candida albicans. Biochim Biophys Acta 1587:240–248PubMedCrossRef Morschhäuser J (2002) The genetic basis of fluconazole resistance development in Candida albicans. Biochim Biophys Acta 1587:240–248PubMedCrossRef
150.
Zurück zum Zitat Khot PD, Suci PA, Miller RL, Nelson RD, Tyler BJ (2006) A small subpopulation of blastospores in Candida albicans biofilms exhibit resistance to amphotericin B associated with differential regulation of ergosterol and beta-1,6-glucan pathway genes. Antimicrob Agents Chemother 50:3708–3716PubMedCrossRef Khot PD, Suci PA, Miller RL, Nelson RD, Tyler BJ (2006) A small subpopulation of blastospores in Candida albicans biofilms exhibit resistance to amphotericin B associated with differential regulation of ergosterol and beta-1,6-glucan pathway genes. Antimicrob Agents Chemother 50:3708–3716PubMedCrossRef
151.
Zurück zum Zitat Henry KW, Nickels JT, Edlind TD (2000) Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 44:2693–2700PubMedCrossRef Henry KW, Nickels JT, Edlind TD (2000) Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 44:2693–2700PubMedCrossRef
152.
Zurück zum Zitat White TC (1997) The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14α demethylase in Candida albicans. Antimicrob Agents Chemother 42:1488–1494 White TC (1997) The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14α demethylase in Candida albicans. Antimicrob Agents Chemother 42:1488–1494
153.
Zurück zum Zitat Borecká-Melkusová S, Moran GP, Sullivan DJ, Kucharíková S, Chorvát D Jr, Bujdáková H (2009) The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole. Mycoses 52:118–128PubMedCrossRef Borecká-Melkusová S, Moran GP, Sullivan DJ, Kucharíková S, Chorvát D Jr, Bujdáková H (2009) The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole. Mycoses 52:118–128PubMedCrossRef
154.
Zurück zum Zitat Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-Ribot JL, Andes D, Cowen LE (2011) Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 7:e1002257PubMedCrossRef Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-Ribot JL, Andes D, Cowen LE (2011) Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 7:e1002257PubMedCrossRef
155.
Zurück zum Zitat Perumal P, Mekala S, Chaffin WL (2007) Role for cell density in antifungal drug resistance in Candida albicans biofilms. Antimicrob Agents Chemother 51:2454–2463PubMedCrossRef Perumal P, Mekala S, Chaffin WL (2007) Role for cell density in antifungal drug resistance in Candida albicans biofilms. Antimicrob Agents Chemother 51:2454–2463PubMedCrossRef
156.
Zurück zum Zitat Sanguinetti M, Posteraro B, Fiori B, Ranno S, Torelli R, Fadda G (2005) Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob Agents Chemother 49:668–679PubMedCrossRef Sanguinetti M, Posteraro B, Fiori B, Ranno S, Torelli R, Fadda G (2005) Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob Agents Chemother 49:668–679PubMedCrossRef
157.
Zurück zum Zitat Sanglard D, Ischer F, Calabrese D, Majcherczyk PA, Bille J (1999) The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother 43:2753–2765PubMed Sanglard D, Ischer F, Calabrese D, Majcherczyk PA, Bille J (1999) The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother 43:2753–2765PubMed
158.
Zurück zum Zitat Sanglard D, Ischer F, Bille J (2001) Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother 45:1174–1183PubMedCrossRef Sanglard D, Ischer F, Bille J (2001) Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother 45:1174–1183PubMedCrossRef
159.
Zurück zum Zitat Marichal P, Vanden Bossche H, Odds FC, Nobels G, Warnock DW, Timmerman V, Van Broeckhoven C, Fay S, Mose-Larsen P (1997) Molecular biological characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother 41:2229–2237PubMed Marichal P, Vanden Bossche H, Odds FC, Nobels G, Warnock DW, Timmerman V, Van Broeckhoven C, Fay S, Mose-Larsen P (1997) Molecular biological characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother 41:2229–2237PubMed
160.
Zurück zum Zitat Ferrari S, Ischer F, Calabrese D, Posteraro B, Sanguinetti M, Fadda G, Rohde B, Bauser C, Bader O, Sanglard D (2009) Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathog 5:e1000268PubMedCrossRef Ferrari S, Ischer F, Calabrese D, Posteraro B, Sanguinetti M, Fadda G, Rohde B, Bauser C, Bader O, Sanglard D (2009) Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathog 5:e1000268PubMedCrossRef
161.
Zurück zum Zitat Tsai HF, Sammons LR, Zhang X, Suffis SD, Su Q, Myers TG, Marr KA, Bennett JE (2010) Microarray and molecular analyses of the azole resistance mechanism in Candida glabrata oropharyngeal isolates. Antimicrob Agents Chemother 54:3308–3317PubMedCrossRef Tsai HF, Sammons LR, Zhang X, Suffis SD, Su Q, Myers TG, Marr KA, Bennett JE (2010) Microarray and molecular analyses of the azole resistance mechanism in Candida glabrata oropharyngeal isolates. Antimicrob Agents Chemother 54:3308–3317PubMedCrossRef
162.
Zurück zum Zitat Caudle KE, Barker KS, Wiederhold NP, Xu L, Homayouni R, Rogers PD (2011) Genomewide expression profile analysis of the Candida glabrata Pdr1 regulon. Eukaryot Cell 10:373–383PubMedCrossRef Caudle KE, Barker KS, Wiederhold NP, Xu L, Homayouni R, Rogers PD (2011) Genomewide expression profile analysis of the Candida glabrata Pdr1 regulon. Eukaryot Cell 10:373–383PubMedCrossRef
163.
Zurück zum Zitat Ferrari S, Sanguinetti M, Torelli R, Posteraro B, Sanglard D (2011) Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata. PLoS One 6:e17589PubMedCrossRef Ferrari S, Sanguinetti M, Torelli R, Posteraro B, Sanglard D (2011) Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata. PLoS One 6:e17589PubMedCrossRef
164.
Zurück zum Zitat Vermitsky JP, Earhart KD, Smith WL, Homayouni R, Edlind TD, Rogers PD (2006) Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies. Mol Microbiol 61:704–722PubMedCrossRef Vermitsky JP, Earhart KD, Smith WL, Homayouni R, Edlind TD, Rogers PD (2006) Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies. Mol Microbiol 61:704–722PubMedCrossRef
165.
Zurück zum Zitat Song JW, Shin JH, Kee SJ, Kim SH, Shin MG, Suh SP, Ryang DW (2009) Expression of CgCDR1, CgCDR2, and CgERG11 in Candida glabrata biofilms formed by bloodstream isolates. Med Mycol 47:545–548PubMedCrossRef Song JW, Shin JH, Kee SJ, Kim SH, Shin MG, Suh SP, Ryang DW (2009) Expression of CgCDR1, CgCDR2, and CgERG11 in Candida glabrata biofilms formed by bloodstream isolates. Med Mycol 47:545–548PubMedCrossRef
166.
Zurück zum Zitat Bizerra FC, Nakamura CV, de Poersch C, Estivalet Svidzinski TI, Borsato Quesada RM, Goldenberg S, Krieger MA, Yamada-Ogatta SF (2008) Characteristics of biofilm formation by Candida tropicalis and antifungal resistance. FEMS Yeast Res 8:442–450PubMedCrossRef Bizerra FC, Nakamura CV, de Poersch C, Estivalet Svidzinski TI, Borsato Quesada RM, Goldenberg S, Krieger MA, Yamada-Ogatta SF (2008) Characteristics of biofilm formation by Candida tropicalis and antifungal resistance. FEMS Yeast Res 8:442–450PubMedCrossRef
Metadaten
Titel
The effect of biomaterials and antifungals on biofilm formation by Candida species: a review
verfasst von
M. Cuéllar-Cruz
A. Vega-González
B. Mendoza-Novelo
E. López-Romero
E. Ruiz-Baca
M. A. Quintanar-Escorza
J. C. Villagómez-Castro
Publikationsdatum
01.10.2012
Verlag
Springer-Verlag
Erschienen in
European Journal of Clinical Microbiology & Infectious Diseases / Ausgabe 10/2012
Print ISSN: 0934-9723
Elektronische ISSN: 1435-4373
DOI
https://doi.org/10.1007/s10096-012-1634-6

Weitere Artikel der Ausgabe 10/2012

European Journal of Clinical Microbiology & Infectious Diseases 10/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.