Skip to main content
Erschienen in: Reviews in Endocrine and Metabolic Disorders 2/2007

01.06.2007

The insulin-like growth factor system and the fetal brain: Effects of poor maternal nutrition

verfasst von: Thomas J. McDonald, Mark J. Nijland, Peter W. Nathanielsz

Erschienen in: Reviews in Endocrine and Metabolic Disorders | Ausgabe 2/2007

Einloggen, um Zugang zu erhalten

Abstract

The insulin-like growth factor (IGF) signaling system plays indispensable roles in pre- and post-natal brain growth and development. A large body of studies using both in vivo null mutant and transgenic mice and in vitro neuronal culture techniques indicate that IGF-I acts directly on the brain while IGF-II effects are mediated to a large extent by IGF-II control of placental growth. It appears that all of the mechanisms, except migration, that are involved in normal brain development, e.g., proliferation, apoptosis, maturation and differentiation, are influenced by IGF-I. While IGF system members are produced in the brain, recent reports in post-natal animals indicate that normal brain health and function are dependent upon transfer of circulating IGF-I from the liver and its transfer across the blood brain barrier. Data showing that this phenomenon applies to pre-natal brain growth and development would make an important contribution to fetal physiology. A number of kinase pathways are able to participate in IGF signaling in brain with respect to nutrient restriction; among the most important are the PI3K/AKT, Ras–Raf–MEK–ERK and mTOR-nutrient sensing pathways. Both maternal and fetal IGF-I peripheral plasma concentrations are greatly reduced in nutrient restriction while IGF-II does not appear to be affected. Nutrient restriction also affects IGF binding protein concentrations while effects on the IGF-I receptor appear to vary with the paradigm. Studies on the effects of nutrient restriction on the fetal primate brain in relation to activity of the IGF system are needed to determine the applicability of rodent studies to humans.
Literatur
1.
Zurück zum Zitat Han VKM, Hill DJ. Growth factors in fetal growth. In: Thorburn GD, Harding R, editors. Textbook of fetal physiology. Oxford University Press; 1994. p. 48–69. Han VKM, Hill DJ. Growth factors in fetal growth. In: Thorburn GD, Harding R, editors. Textbook of fetal physiology. Oxford University Press; 1994. p. 48–69.
2.
Zurück zum Zitat Deayton JM, Young IR, Thorburn GD. Early hypophysectomy of sheep fetuses: effects on growth, placental steroidogenesis and prostaglandin production. J Reprod Fertil 1993;97:513–20.PubMedCrossRef Deayton JM, Young IR, Thorburn GD. Early hypophysectomy of sheep fetuses: effects on growth, placental steroidogenesis and prostaglandin production. J Reprod Fertil 1993;97:513–20.PubMedCrossRef
3.
Zurück zum Zitat Latimer AM, Hausman GJ, McCusker RH, Buonomo FC. The effects of thyroxine on serum and tissue concentrations of insulin-like growth factors (IGF-I and -II) and IGF-binding proteins in the fetal pig. Endocrinology 1993;133:1312–9.PubMed Latimer AM, Hausman GJ, McCusker RH, Buonomo FC. The effects of thyroxine on serum and tissue concentrations of insulin-like growth factors (IGF-I and -II) and IGF-binding proteins in the fetal pig. Endocrinology 1993;133:1312–9.PubMed
4.
Zurück zum Zitat Hausman DB, Hausman GJ, Martin RJ. Endocrine regulation of fetal adipose tissue metabolism in the pig: interaction of porcine growth hormone and thyroxine. Obes Res 1999;7:76–82.PubMed Hausman DB, Hausman GJ, Martin RJ. Endocrine regulation of fetal adipose tissue metabolism in the pig: interaction of porcine growth hormone and thyroxine. Obes Res 1999;7:76–82.PubMed
5.
Zurück zum Zitat Han VK, Carter AM. Spatial and temporal patterns of expression of messenger RNA for insulin-like growth factors and their binding proteins in the placenta of man and laboratory animals. Placenta 2000;21:289–305.PubMed Han VK, Carter AM. Spatial and temporal patterns of expression of messenger RNA for insulin-like growth factors and their binding proteins in the placenta of man and laboratory animals. Placenta 2000;21:289–305.PubMed
6.
Zurück zum Zitat Langford K, Blum W, Nicolaides K, Jones J, McGregor A, Miell J. The pathophysiology of the insulin-like growth factor axis in fetal growth failure: a basis for programming by undernutrition? Eur J Clin Invest 1994;24:851–6.PubMed Langford K, Blum W, Nicolaides K, Jones J, McGregor A, Miell J. The pathophysiology of the insulin-like growth factor axis in fetal growth failure: a basis for programming by undernutrition? Eur J Clin Invest 1994;24:851–6.PubMed
7.
Zurück zum Zitat Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 1993;75:59–72.PubMed Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 1993;75:59–72.PubMed
8.
Zurück zum Zitat Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993;75:73–82.PubMed Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993;75:73–82.PubMed
9.
Zurück zum Zitat Rother KI, Accili D. Role of insulin receptors and IGF receptors in growth and development. Pediatr Nephrol 2000;14:558–61.PubMed Rother KI, Accili D. Role of insulin receptors and IGF receptors in growth and development. Pediatr Nephrol 2000;14:558–61.PubMed
10.
Zurück zum Zitat Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B, et al. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci USA 1999;96:7324–9.PubMed Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B, et al. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci USA 1999;96:7324–9.PubMed
11.
Zurück zum Zitat Sjogren K, Liu JL, Blad K, Skrtic S, Vidal O, Wallenius V, et al. Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci USA 1999;96:7088–92.PubMed Sjogren K, Liu JL, Blad K, Skrtic S, Vidal O, Wallenius V, et al. Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci USA 1999;96:7088–92.PubMed
12.
Zurück zum Zitat Han VK, Lund PK, Lee DC, D’Ercole AJ. Expression of somatomedin/insulin-like growth factor messenger ribonucleic acids in the human fetus: identification, characterization, and tissue distribution. J Clin Endocrinol Metab 1988;66:422–9.PubMed Han VK, Lund PK, Lee DC, D’Ercole AJ. Expression of somatomedin/insulin-like growth factor messenger ribonucleic acids in the human fetus: identification, characterization, and tissue distribution. J Clin Endocrinol Metab 1988;66:422–9.PubMed
13.
Zurück zum Zitat Gluckman PD, Butler JH. Circulating insulin-like growth factor-I and -II concentrations are not dependent on pituitary influences in the midgestation fetal sheep. J Dev Physiol 1985;7:405–9.PubMed Gluckman PD, Butler JH. Circulating insulin-like growth factor-I and -II concentrations are not dependent on pituitary influences in the midgestation fetal sheep. J Dev Physiol 1985;7:405–9.PubMed
14.
Zurück zum Zitat Kim JD, Nanto-Salonen K, Szczepankiewicz JR, Rosenfeld RG, Glasscock GF. Evidence for pituitary regulation of somatic growth, insulin-like growth factors-I and -II, and their binding proteins in the fetal rat. Pediatr Res 1993;33:144–51.PubMed Kim JD, Nanto-Salonen K, Szczepankiewicz JR, Rosenfeld RG, Glasscock GF. Evidence for pituitary regulation of somatic growth, insulin-like growth factors-I and -II, and their binding proteins in the fetal rat. Pediatr Res 1993;33:144–51.PubMed
15.
Zurück zum Zitat Gluckman PD, Gunn AJ, Wray A, Cutfield WS, Chatelain PG, Guilbaud O, et al. Congenital idiopathic growth hormone deficiency associated with prenatal and early postnatal growth failure. The International Board of the Kabi Pharmacia International Growth Study. J Pediatr 1992;121:920–3.PubMed Gluckman PD, Gunn AJ, Wray A, Cutfield WS, Chatelain PG, Guilbaud O, et al. Congenital idiopathic growth hormone deficiency associated with prenatal and early postnatal growth failure. The International Board of the Kabi Pharmacia International Growth Study. J Pediatr 1992;121:920–3.PubMed
16.
Zurück zum Zitat Gluckman PD, Grumbach MM, Kaplan SL. The neurendocrine regulation and function of growth hormone and prolactin in the mammalian fetus. Endo Rev 1981;2:363–95. Gluckman PD, Grumbach MM, Kaplan SL. The neurendocrine regulation and function of growth hormone and prolactin in the mammalian fetus. Endo Rev 1981;2:363–95.
17.
Zurück zum Zitat Woods KA, Camacho-Hubner C, Savage MO, Clark AJ. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med 1996;335:1363–7.PubMed Woods KA, Camacho-Hubner C, Savage MO, Clark AJ. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med 1996;335:1363–7.PubMed
18.
Zurück zum Zitat Vaessen N, Janssen JA, Heutink P, Hofman A, Lamberts SW, Oostra BA, et al. Association between genetic variation in the gene for insulin-like growth factor-I and low birthweight. Lancet 2002;359:1036–7.PubMed Vaessen N, Janssen JA, Heutink P, Hofman A, Lamberts SW, Oostra BA, et al. Association between genetic variation in the gene for insulin-like growth factor-I and low birthweight. Lancet 2002;359:1036–7.PubMed
19.
Zurück zum Zitat Woods KA, Camacho-Hubner C, Barter D, Clark AJ, Savage MO. Insulin-like growth factor I gene deletion causing intrauterine growth retardation and severe short stature. Acta Paediatr Suppl 1997;423:39–45.PubMed Woods KA, Camacho-Hubner C, Barter D, Clark AJ, Savage MO. Insulin-like growth factor I gene deletion causing intrauterine growth retardation and severe short stature. Acta Paediatr Suppl 1997;423:39–45.PubMed
20.
Zurück zum Zitat Mesiano S, Mellon SH, Jaffe RB. Mitogenic action, regulation, and localization of insulin-like growth factors in the human fetal adrenal gland. J Clin Endocrinol Metab 1993;76:968–76.PubMed Mesiano S, Mellon SH, Jaffe RB. Mitogenic action, regulation, and localization of insulin-like growth factors in the human fetal adrenal gland. J Clin Endocrinol Metab 1993;76:968–76.PubMed
21.
Zurück zum Zitat Han VK, D’Ercole AJ, Lund PK. Cellular localization of somatomedin (insulin-like growth factor) messenger RNA in the human fetus. Science 1987;236:193–7.PubMed Han VK, D’Ercole AJ, Lund PK. Cellular localization of somatomedin (insulin-like growth factor) messenger RNA in the human fetus. Science 1987;236:193–7.PubMed
22.
Zurück zum Zitat Rechler MM, Zapf J, Nissley SP, Froesch ER, Moses AC, Podskalny JM, et al. Interactions of insulin-like growth factors I and II and multiplication-stimulating activity with receptors and serum carrier proteins. Endocrinology 1980;107:1451–9.PubMed Rechler MM, Zapf J, Nissley SP, Froesch ER, Moses AC, Podskalny JM, et al. Interactions of insulin-like growth factors I and II and multiplication-stimulating activity with receptors and serum carrier proteins. Endocrinology 1980;107:1451–9.PubMed
23.
Zurück zum Zitat LeRoith D, Werner H, Beitner-Johnson D, Roberts CT, Jr. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev 1995;16:143–63.PubMed LeRoith D, Werner H, Beitner-Johnson D, Roberts CT, Jr. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev 1995;16:143–63.PubMed
24.
Zurück zum Zitat Hernandez-Sanchez C, Werner H, Roberts CT, Jr, Woo EJ, Hum DW, Rosenthal SM, et al. Differential regulation of insulin-like growth factor-I (IGF-I) receptor gene expression by IGF-I and basic fibroblastic growth factor. J Biol Chem 1997;272:4663–70.PubMed Hernandez-Sanchez C, Werner H, Roberts CT, Jr, Woo EJ, Hum DW, Rosenthal SM, et al. Differential regulation of insulin-like growth factor-I (IGF-I) receptor gene expression by IGF-I and basic fibroblastic growth factor. J Biol Chem 1997;272:4663–70.PubMed
25.
Zurück zum Zitat Schlueter PJ, Royer T, Farah MH, Laser B, Chan SJ, Steiner DF, et al. Gene duplication and functional divergence of the zebrafish insulin-like growth factor 1 receptors. FASEB J 2006;20:1230–2.PubMed Schlueter PJ, Royer T, Farah MH, Laser B, Chan SJ, Steiner DF, et al. Gene duplication and functional divergence of the zebrafish insulin-like growth factor 1 receptors. FASEB J 2006;20:1230–2.PubMed
26.
Zurück zum Zitat Sklar MM, Kiess W, Thomas CL, Nissley SP. Developmental expression of the tissue insulin-like growth factor II/mannose 6-phosphate receptor in the rat. Measurement by quantitative immunoblotting. J Biol Chem 1989;264:16733–8.PubMed Sklar MM, Kiess W, Thomas CL, Nissley SP. Developmental expression of the tissue insulin-like growth factor II/mannose 6-phosphate receptor in the rat. Measurement by quantitative immunoblotting. J Biol Chem 1989;264:16733–8.PubMed
27.
Zurück zum Zitat Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin-like growth factors. Endocr Rev 1994;15:80–101.PubMed Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin-like growth factors. Endocr Rev 1994;15:80–101.PubMed
28.
Zurück zum Zitat Kornfeld S. Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem 1992;l61:307–30. Kornfeld S. Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem 1992;l61:307–30.
29.
Zurück zum Zitat Hemberger M, Redies C, Krause R, Oswald J, Walter J, Fundele RH. H19 and Igf2 are expressed and differentially imprinted in neuroectoderm-derived cells in the mouse brain. Dev Genes Evol 1998;208:393–402.PubMed Hemberger M, Redies C, Krause R, Oswald J, Walter J, Fundele RH. H19 and Igf2 are expressed and differentially imprinted in neuroectoderm-derived cells in the mouse brain. Dev Genes Evol 1998;208:393–402.PubMed
30.
Zurück zum Zitat Germain-Lee EL, Janicot M, Lammers R, Ullrich A, Casella SJ. Expression of a type I insulin-like growth factor receptor with low affinity for insulin-like growth factor II. Biochem J 1992;281(Pt 2):413–7.PubMed Germain-Lee EL, Janicot M, Lammers R, Ullrich A, Casella SJ. Expression of a type I insulin-like growth factor receptor with low affinity for insulin-like growth factor II. Biochem J 1992;281(Pt 2):413–7.PubMed
31.
Zurück zum Zitat De Keyser J, Wilczak N, De Backer JP, Herroelen L, Vauquelin G. Insulin-like growth factor-I receptors in human brain and pituitary gland: an autoradiographic study. Synapse 1994;17:196–202.PubMed De Keyser J, Wilczak N, De Backer JP, Herroelen L, Vauquelin G. Insulin-like growth factor-I receptors in human brain and pituitary gland: an autoradiographic study. Synapse 1994;17:196–202.PubMed
32.
Zurück zum Zitat Wilczak N, De Bleser P, Luiten P, Geerts A, Teelken A, De Keyser J. Insulin-like growth factor II receptors in human brain and their absence in astrogliotic plaques in multiple sclerosis. Brain Res 2000;863:282–8.PubMed Wilczak N, De Bleser P, Luiten P, Geerts A, Teelken A, De Keyser J. Insulin-like growth factor II receptors in human brain and their absence in astrogliotic plaques in multiple sclerosis. Brain Res 2000;863:282–8.PubMed
33.
Zurück zum Zitat Furlanetto RW, DiCarlo JN, Wisehart C. The type II insulin-like growth factor receptor does not mediate deoxyribonucleic acid synthesis in human fibroblasts. J Clin Endocrinol Metab 1987;64:1142–9.PubMed Furlanetto RW, DiCarlo JN, Wisehart C. The type II insulin-like growth factor receptor does not mediate deoxyribonucleic acid synthesis in human fibroblasts. J Clin Endocrinol Metab 1987;64:1142–9.PubMed
34.
Zurück zum Zitat Kiess W, Haskell JF, Lee L, Greenstein LA, Miller BE, Aarons AL, et al. An antibody that blocks insulin-like growth factor (IGF) binding to the type II IGF receptor is neither an agonist nor an inhibitor of IGF-stimulated biologic responses in L6 myoblasts. J Biol Chem 1987;262:12745–51.PubMed Kiess W, Haskell JF, Lee L, Greenstein LA, Miller BE, Aarons AL, et al. An antibody that blocks insulin-like growth factor (IGF) binding to the type II IGF receptor is neither an agonist nor an inhibitor of IGF-stimulated biologic responses in L6 myoblasts. J Biol Chem 1987;262:12745–51.PubMed
35.
Zurück zum Zitat Chard T. Insulin-like growth factors and their binding proteins in normal and abnormal human fetal growth. Growth Regul 1994;4:91–100.PubMed Chard T. Insulin-like growth factors and their binding proteins in normal and abnormal human fetal growth. Growth Regul 1994;4:91–100.PubMed
36.
Zurück zum Zitat Wood TL, Rogler LE, Czick ME, Schuller AG, Pintar JE. Selective alterations in organ sizes in mice with a targeted disruption of the insulin-like growth factor binding protein-2 gene. Mol Endocrinol 2000;14:1472–82.PubMed Wood TL, Rogler LE, Czick ME, Schuller AG, Pintar JE. Selective alterations in organ sizes in mice with a targeted disruption of the insulin-like growth factor binding protein-2 gene. Mol Endocrinol 2000;14:1472–82.PubMed
37.
Zurück zum Zitat Ning Y, Schuller AG, Bradshaw S, Rotwein P, Ludwig T, Frystyk J, et al. Diminished growth and enhanced glucose metabolism in triple knockout mice containing mutations of insulin-like growth factor binding protein-3, -4, and -5. Mol Endocrinol 2006;20:2173–86.PubMed Ning Y, Schuller AG, Bradshaw S, Rotwein P, Ludwig T, Frystyk J, et al. Diminished growth and enhanced glucose metabolism in triple knockout mice containing mutations of insulin-like growth factor binding protein-3, -4, and -5. Mol Endocrinol 2006;20:2173–86.PubMed
38.
Zurück zum Zitat Boisclair YR, Rhoads RP, Ueki I, Wang J, Ooi GT. The acid-labile subunit (ALS) of the 150 kDa IGF-binding protein complex: an important but forgotten component of the circulating IGF system. J Endocrinol 2001;170:63–70.PubMed Boisclair YR, Rhoads RP, Ueki I, Wang J, Ooi GT. The acid-labile subunit (ALS) of the 150 kDa IGF-binding protein complex: an important but forgotten component of the circulating IGF system. J Endocrinol 2001;170:63–70.PubMed
39.
Zurück zum Zitat Hill DJ, Camacho-Hubner C, Rashid P, Strain AJ, Clemmons DR. Insulin-like growth factor (IGF)-binding protein release by human fetal fibroblasts: dependency on cell density and IGF peptides. J Endocrinol 1989;122:87–98.PubMed Hill DJ, Camacho-Hubner C, Rashid P, Strain AJ, Clemmons DR. Insulin-like growth factor (IGF)-binding protein release by human fetal fibroblasts: dependency on cell density and IGF peptides. J Endocrinol 1989;122:87–98.PubMed
40.
Zurück zum Zitat Cutfield WS, Hofman PL, Vickers M, Breier B, Blum WF, Robinson EM. IGFs and binding proteins in short children with intrauterine growth retardation. J Clin Endocrinol Metab 2002;87:235–9.PubMed Cutfield WS, Hofman PL, Vickers M, Breier B, Blum WF, Robinson EM. IGFs and binding proteins in short children with intrauterine growth retardation. J Clin Endocrinol Metab 2002;87:235–9.PubMed
41.
Zurück zum Zitat Watson CS, Bialek P, Anzo M, Khosravi J, Yee SP, Han VK. Elevated circulating insulin-like growth factor binding protein-1 is sufficient to cause fetal growth restriction. Endocrinology 2006;147:1175–86.PubMed Watson CS, Bialek P, Anzo M, Khosravi J, Yee SP, Han VK. Elevated circulating insulin-like growth factor binding protein-1 is sufficient to cause fetal growth restriction. Endocrinology 2006;147:1175–86.PubMed
42.
Zurück zum Zitat Popovici RM, Lu M, Bhatia S, Faessen GH, Giaccia AJ, Giudice LC. Hypoxia regulates insulin-like growth factor-binding protein 1 in human fetal hepatocytes in primary culture: suggestive molecular mechanisms for in utero fetal growth restriction caused by uteroplacental insufficiency. J Clin Endocrinol Metab 2001;86:2653–9.PubMed Popovici RM, Lu M, Bhatia S, Faessen GH, Giaccia AJ, Giudice LC. Hypoxia regulates insulin-like growth factor-binding protein 1 in human fetal hepatocytes in primary culture: suggestive molecular mechanisms for in utero fetal growth restriction caused by uteroplacental insufficiency. J Clin Endocrinol Metab 2001;86:2653–9.PubMed
43.
Zurück zum Zitat Kajimura S, Aida K, Duan C. Insulin-like growth factor-binding protein-1 (IGFBP-1) mediates hypoxia-induced embryonic growth and developmental retardation. Proc Natl Acad Sci USA 2005;102:1240–5. Kajimura S, Aida K, Duan C. Insulin-like growth factor-binding protein-1 (IGFBP-1) mediates hypoxia-induced embryonic growth and developmental retardation. Proc Natl Acad Sci USA 2005;102:1240–5.
44.
Zurück zum Zitat Bienvenu G, Seurin D, Grellier P, Froment P, Baudrimont M, Monget P, et al. Insulin-like growth factor binding protein-6 transgenic mice: postnatal growth, brain development, and reproduction abnormalities. Endocrinology 2004;145:2412–20.PubMed Bienvenu G, Seurin D, Grellier P, Froment P, Baudrimont M, Monget P, et al. Insulin-like growth factor binding protein-6 transgenic mice: postnatal growth, brain development, and reproduction abnormalities. Endocrinology 2004;145:2412–20.PubMed
45.
Zurück zum Zitat Fowden AL. The role of insulin in prenatal growth. J Dev Physiol 1989;12:173–82.PubMed Fowden AL. The role of insulin in prenatal growth. J Dev Physiol 1989;12:173–82.PubMed
46.
Zurück zum Zitat Leibush BN, Lappova YL, Bondareva VM, Chistyacova OV, Gutierrez J, Plisetskaya EM. Insulin-family peptide-receptor interaction at the early stage of vertebrate evolution. Comp Biochem Physiol B Biochem Mol Biol 1998;121:57–63.PubMed Leibush BN, Lappova YL, Bondareva VM, Chistyacova OV, Gutierrez J, Plisetskaya EM. Insulin-family peptide-receptor interaction at the early stage of vertebrate evolution. Comp Biochem Physiol B Biochem Mol Biol 1998;121:57–63.PubMed
47.
Zurück zum Zitat Adamo M, Roberts CT, Jr., LeRoith D. How distinct are the insulin and insulin-like growth factor I signalling systems? Biofactors 1992;3:151–7.PubMed Adamo M, Roberts CT, Jr., LeRoith D. How distinct are the insulin and insulin-like growth factor I signalling systems? Biofactors 1992;3:151–7.PubMed
48.
Zurück zum Zitat Louvi A, Accili D, Efstratiadis A. Growth-promoting interaction of IGF-II with the insulin receptor during mouse embryonic development. Dev Biol 1997;189:33–48.PubMed Louvi A, Accili D, Efstratiadis A. Growth-promoting interaction of IGF-II with the insulin receptor during mouse embryonic development. Dev Biol 1997;189:33–48.PubMed
49.
Zurück zum Zitat Marin-Padilla M. Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Z Anat Entwicklungsgesch 1971;134:117–45.PubMed Marin-Padilla M. Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Z Anat Entwicklungsgesch 1971;134:117–45.PubMed
50.
Zurück zum Zitat D’Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T. Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci 1997;17:23–31.PubMed D’Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T. Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci 1997;17:23–31.PubMed
51.
Zurück zum Zitat Marin-Padilla M. Cajal–Retzius cells and the development of the neocortex. Trends Neurosci 1998;21:64–71.PubMed Marin-Padilla M. Cajal–Retzius cells and the development of the neocortex. Trends Neurosci 1998;21:64–71.PubMed
52.
Zurück zum Zitat Kandel ER, Schwartz JH, Jessell TM, editors. Principles of Neural Science 3rd edition. New York: Elsevier; 1991. Kandel ER, Schwartz JH, Jessell TM, editors. Principles of Neural Science 3rd edition. New York: Elsevier; 1991.
53.
Zurück zum Zitat Bayer SA, Altman J, Russo RJ, Zhang X. Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology 1993;14:83–144.PubMed Bayer SA, Altman J, Russo RJ, Zhang X. Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology 1993;14:83–144.PubMed
54.
Zurück zum Zitat Watson WE. Physiology of neuroglia. Physiol Rev 1974;54:245–71.PubMed Watson WE. Physiology of neuroglia. Physiol Rev 1974;54:245–71.PubMed
55.
Zurück zum Zitat Angevine JBJ, Sidman RL. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 1961;192:766–8.PubMed Angevine JBJ, Sidman RL. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 1961;192:766–8.PubMed
56.
Zurück zum Zitat Zecevic N, Rakic P. Development of layer I neurons in the primate cerebral cortex. J Neurosci 2001;21:5607–19.PubMed Zecevic N, Rakic P. Development of layer I neurons in the primate cerebral cortex. J Neurosci 2001;21:5607–19.PubMed
57.
Zurück zum Zitat Levitt P, Eagleson KL. Regionalization of the cerebral cortex: developmental mechanisms and models. Novartis Found Symp 2000;228:173–81.PubMed Levitt P, Eagleson KL. Regionalization of the cerebral cortex: developmental mechanisms and models. Novartis Found Symp 2000;228:173–81.PubMed
58.
Zurück zum Zitat Uylings HB, van Eden CG. Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog Brain Res 1990;85:31–62.PubMedCrossRef Uylings HB, van Eden CG. Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog Brain Res 1990;85:31–62.PubMedCrossRef
59.
Zurück zum Zitat Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 2000;108 Suppl 3:511–33.PubMed Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 2000;108 Suppl 3:511–33.PubMed
60.
Zurück zum Zitat Giaume C, Froger N, Koulakoff A. Gap junction-mediated intercellular communication in astrocytes and neuroprotection. Ann Fr Anesth Reanim 2006;24:695–6. Giaume C, Froger N, Koulakoff A. Gap junction-mediated intercellular communication in astrocytes and neuroprotection. Ann Fr Anesth Reanim 2006;24:695–6.
61.
Zurück zum Zitat Chandran S, Compston A. Neural stem cells as a potential source of oligodendrocytes for myelin repair. J Neurol Sci 2005;233:179–81.PubMed Chandran S, Compston A. Neural stem cells as a potential source of oligodendrocytes for myelin repair. J Neurol Sci 2005;233:179–81.PubMed
62.
Zurück zum Zitat Lai C. Peripheral glia: Schwann cells in motion. Curr Biol 2005;15:R332–4.PubMed Lai C. Peripheral glia: Schwann cells in motion. Curr Biol 2005;15:R332–4.PubMed
63.
Zurück zum Zitat Gotz M, Barde YA. Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons. Neuron 2005;46:369–72.PubMed Gotz M, Barde YA. Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons. Neuron 2005;46:369–72.PubMed
64.
Zurück zum Zitat Deng X, Sriram S. Role of microglia in multiple sclerosis. Curr Neurol Neurosci Rep 2005;5:239–44.PubMed Deng X, Sriram S. Role of microglia in multiple sclerosis. Curr Neurol Neurosci Rep 2005;5:239–44.PubMed
65.
Zurück zum Zitat Sherman DL, Brophy PJ. Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 2005;6:683–90.PubMed Sherman DL, Brophy PJ. Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 2005;6:683–90.PubMed
66.
Zurück zum Zitat Blaschke AJ, Weiner JA, Chun J. Programmed cell death is a universal feature of embryonic and postnatal neuroproliferative regions throughout the central nervous system. J Comp Neurol 1998;396:39–50.PubMed Blaschke AJ, Weiner JA, Chun J. Programmed cell death is a universal feature of embryonic and postnatal neuroproliferative regions throughout the central nervous system. J Comp Neurol 1998;396:39–50.PubMed
67.
Zurück zum Zitat Sonntag WE, Lynch CD, Bennett SA, Khan AS, Thornton PL, Cooney PT, et al. Alterations in insulin-like growth factor-1 gene and protein expression and type 1 insulin-like growth factor receptors in the brains of ageing rats. Neuroscience 1999;88:269–79.PubMed Sonntag WE, Lynch CD, Bennett SA, Khan AS, Thornton PL, Cooney PT, et al. Alterations in insulin-like growth factor-1 gene and protein expression and type 1 insulin-like growth factor receptors in the brains of ageing rats. Neuroscience 1999;88:269–79.PubMed
68.
Zurück zum Zitat Andersson IK, Edwall D, Norstedt G, Rozell B, Skottner A, Hansson HA. Differing expression of insulin-like growth factor I in the developing and in the adult rat cerebellum. Acta Physiol Scand 1988;132:167–73.PubMed Andersson IK, Edwall D, Norstedt G, Rozell B, Skottner A, Hansson HA. Differing expression of insulin-like growth factor I in the developing and in the adult rat cerebellum. Acta Physiol Scand 1988;132:167–73.PubMed
69.
Zurück zum Zitat Bartlett WP, Li XS, Williams M. Expression of IGF-1 mRNA in the murine subventricular zone during postnatal development. Brain Res Mol Brain Res 1992;12:285–91.PubMed Bartlett WP, Li XS, Williams M. Expression of IGF-1 mRNA in the murine subventricular zone during postnatal development. Brain Res Mol Brain Res 1992;12:285–91.PubMed
70.
Zurück zum Zitat Garcia-Segura LM, Perez J, Pons S, Rejas MT, Torres-Aleman I. Localization of insulin-like growth factor I (IGF-I)-like immunoreactivity in the developing and adult rat brain. Brain Res 1991;560:167–74.PubMed Garcia-Segura LM, Perez J, Pons S, Rejas MT, Torres-Aleman I. Localization of insulin-like growth factor I (IGF-I)-like immunoreactivity in the developing and adult rat brain. Brain Res 1991;560:167–74.PubMed
71.
Zurück zum Zitat Ayer-le Lievre C, Stahlbom PA, Sara VR. Expression of IGF-I and -II mRNA in the brain and craniofacial region of the rat fetus. Development 1991;111:105–15.PubMed Ayer-le Lievre C, Stahlbom PA, Sara VR. Expression of IGF-I and -II mRNA in the brain and craniofacial region of the rat fetus. Development 1991;111:105–15.PubMed
72.
Zurück zum Zitat Marks JL, Porte D, Jr, Baskin DG. Localization of type I insulin-like growth factor receptor messenger RNA in the adult rat brain by in situ hybridization. Mol Endocrinol 1991;5:1158–68.PubMed Marks JL, Porte D, Jr, Baskin DG. Localization of type I insulin-like growth factor receptor messenger RNA in the adult rat brain by in situ hybridization. Mol Endocrinol 1991;5:1158–68.PubMed
73.
Zurück zum Zitat Jafferali S, Dumont Y, Sotty F, Robitaille Y, Quirion R, Kar S. Insulin-like growth factor-I and its receptor in the frontal cortex, hippocampus, and cerebellum of normal human and Alzheimer disease brains. Synapse 2000;38:450–9.PubMed Jafferali S, Dumont Y, Sotty F, Robitaille Y, Quirion R, Kar S. Insulin-like growth factor-I and its receptor in the frontal cortex, hippocampus, and cerebellum of normal human and Alzheimer disease brains. Synapse 2000;38:450–9.PubMed
74.
Zurück zum Zitat Ye P, Carson J, D’Ercole AJ. Insulin-like growth factor-I influences the initiation of myelination: studies of the anterior commissure of transgenic mice. Neurosci Lett 1995;201:235–8.PubMed Ye P, Carson J, D’Ercole AJ. Insulin-like growth factor-I influences the initiation of myelination: studies of the anterior commissure of transgenic mice. Neurosci Lett 1995;201:235–8.PubMed
75.
Zurück zum Zitat O’Kusky JR, Ye P, D’Ercole AJ. Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J Neurosci 2000;20:8435–42.PubMed O’Kusky JR, Ye P, D’Ercole AJ. Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J Neurosci 2000;20:8435–42.PubMed
76.
Zurück zum Zitat Caroni P, Grandes P. Nerve sprouting in innervated adult skeletal muscle induced by exposure to elevated levels of insulin-like growth factors. J Cell Biol 1990;110:1307–17.PubMed Caroni P, Grandes P. Nerve sprouting in innervated adult skeletal muscle induced by exposure to elevated levels of insulin-like growth factors. J Cell Biol 1990;110:1307–17.PubMed
77.
Zurück zum Zitat Recio-Pinto E, Ishii DN. Insulin and insulinlike growth factor receptors regulating neurite formation in cultured human neuroblastoma cells. J Neurosci Res 1988;19:312–20.PubMed Recio-Pinto E, Ishii DN. Insulin and insulinlike growth factor receptors regulating neurite formation in cultured human neuroblastoma cells. J Neurosci Res 1988;19:312–20.PubMed
78.
Zurück zum Zitat Lenoir D, Honegger P. Insulin-like growth factor I (IGF I) stimulates DNA synthesis in fetal rat brain cell cultures. Brain Res 1983;283:205–13.PubMed Lenoir D, Honegger P. Insulin-like growth factor I (IGF I) stimulates DNA synthesis in fetal rat brain cell cultures. Brain Res 1983;283:205–13.PubMed
79.
Zurück zum Zitat Shindler KS, Yunker AM, Cahn R, Zha J, Korsmeyer SJ, Roth KA. Trophic support promotes survival of bcl-x-deficient telencephalic cells in vitro. Cell Death Differ 1998;5:901–10.PubMed Shindler KS, Yunker AM, Cahn R, Zha J, Korsmeyer SJ, Roth KA. Trophic support promotes survival of bcl-x-deficient telencephalic cells in vitro. Cell Death Differ 1998;5:901–10.PubMed
80.
Zurück zum Zitat McMorris FA, Smith TM, DeSalvo S, Furlanetto RW. Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development. Proc Natl Acad Sci USA 1986;83:822–6.PubMed McMorris FA, Smith TM, DeSalvo S, Furlanetto RW. Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development. Proc Natl Acad Sci USA 1986;83:822–6.PubMed
81.
Zurück zum Zitat Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 1997;275:661–5.PubMed Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 1997;275:661–5.PubMed
82.
Zurück zum Zitat Chrysis D, Calikoglu AS, Ye P, D’Ercole AJ. Insulin-like growth factor-I overexpression attenuates cerebellar apoptosis by altering the expression of Bcl family proteins in a developmentally specific manner. J Neurosci 2001;21:1481–9.PubMed Chrysis D, Calikoglu AS, Ye P, D’Ercole AJ. Insulin-like growth factor-I overexpression attenuates cerebellar apoptosis by altering the expression of Bcl family proteins in a developmentally specific manner. J Neurosci 2001;21:1481–9.PubMed
83.
Zurück zum Zitat D’Mello SR, Galli C, Ciotti T, Calissano P. Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci USA 1993;90:10989–93.PubMed D’Mello SR, Galli C, Ciotti T, Calissano P. Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci USA 1993;90:10989–93.PubMed
84.
Zurück zum Zitat Feldman EL, Sullivan KA, Kim B, Russell JW. Insulin-like growth factors regulate neuronal differentiation and survival. Neurobiol Dis 1997;4:201–14.PubMed Feldman EL, Sullivan KA, Kim B, Russell JW. Insulin-like growth factors regulate neuronal differentiation and survival. Neurobiol Dis 1997;4:201–14.PubMed
85.
Zurück zum Zitat Cheng CM, Reinhardt RR, Lee WH, Joncas G, Patel SC, Bondy CA. Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci USA 2000;97:10236–41.PubMed Cheng CM, Reinhardt RR, Lee WH, Joncas G, Patel SC, Bondy CA. Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci USA 2000;97:10236–41.PubMed
86.
Zurück zum Zitat Lopez-Lopez C, LeRoith D, Torres-Aleman I. Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci USA 2004;101:9833–8. Lopez-Lopez C, LeRoith D, Torres-Aleman I. Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci USA 2004;101:9833–8.
87.
Zurück zum Zitat Hellstrom A, Carlsson B, Niklasson A, Segnestam K, Boguszewski M, de Lacerda L, et al. IGF-I is critical for normal vascularization of the human retina. J Clin Endocrinol Metab 2002;87:3413–6.PubMed Hellstrom A, Carlsson B, Niklasson A, Segnestam K, Boguszewski M, de Lacerda L, et al. IGF-I is critical for normal vascularization of the human retina. J Clin Endocrinol Metab 2002;87:3413–6.PubMed
88.
Zurück zum Zitat Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I. Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med 2002;8:1390–7.PubMed Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I. Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med 2002;8:1390–7.PubMed
89.
Zurück zum Zitat Castro-Alamancos MA, Torres-Aleman I. Long-term depression of glutamate-induced gamma-aminobutyric acid release in cerebellum by insulin-like growth factor I. Proc Natl Acad Sci USA 1993;90:7386–90.PubMed Castro-Alamancos MA, Torres-Aleman I. Long-term depression of glutamate-induced gamma-aminobutyric acid release in cerebellum by insulin-like growth factor I. Proc Natl Acad Sci USA 1993;90:7386–90.PubMed
90.
Zurück zum Zitat Nunez A, Carro E, Torres-Aleman I. Insulin-like growth factor I modifies electrophysiological properties of rat brain stem neurons. J Neurophysiol 2003;89:3008–17.PubMed Nunez A, Carro E, Torres-Aleman I. Insulin-like growth factor I modifies electrophysiological properties of rat brain stem neurons. J Neurophysiol 2003;89:3008–17.PubMed
91.
Zurück zum Zitat Beck KD, Powell-Braxton L, Widmer HR, Valverde J, Hefti F. Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron 1995;14:717–30.PubMed Beck KD, Powell-Braxton L, Widmer HR, Valverde J, Hefti F. Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron 1995;14:717–30.PubMed
92.
Zurück zum Zitat Carson MJ, Behringer RR, Brinster RL, McMorris FA. Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 1993;10:729–40.PubMed Carson MJ, Behringer RR, Brinster RL, McMorris FA. Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 1993;10:729–40.PubMed
93.
Zurück zum Zitat Gutierrez-Ospina G, Calikoglu AS, Ye P, D’Ercole AJ. In vivo effects of insulin-like growth factor-I on the development of sensory pathways: analysis of the primary somatic sensory cortex (S1) of transgenic mice. Endocrinology 1996;137:5484–92.PubMed Gutierrez-Ospina G, Calikoglu AS, Ye P, D’Ercole AJ. In vivo effects of insulin-like growth factor-I on the development of sensory pathways: analysis of the primary somatic sensory cortex (S1) of transgenic mice. Endocrinology 1996;137:5484–92.PubMed
94.
Zurück zum Zitat Cheng CM, Joncas G, Reinhardt RR, Farrer R, Quarles R, Janssen J, et al. Biochemical and morphometric analyses show that myelination in the insulin-like growth factor 1 null brain is proportionate to its neuronal composition. J Neurosci 1998;18:5673–81.PubMed Cheng CM, Joncas G, Reinhardt RR, Farrer R, Quarles R, Janssen J, et al. Biochemical and morphometric analyses show that myelination in the insulin-like growth factor 1 null brain is proportionate to its neuronal composition. J Neurosci 1998;18:5673–81.PubMed
95.
Zurück zum Zitat Ye P, Li L, Richards RG, Diaugustine RP, D’Ercole AJ. Myelination is altered in insulin-like growth factor-I null mutant mice. J Neurosci 2002;22:6041–51.PubMed Ye P, Li L, Richards RG, Diaugustine RP, D’Ercole AJ. Myelination is altered in insulin-like growth factor-I null mutant mice. J Neurosci 2002;22:6041–51.PubMed
96.
Zurück zum Zitat Ye P, Carson J, D’Ercole AJ. In vivo actions of insulin-like growth factor-I (IGF-I) on brain myelination: studies of IGF-I and IGF binding protein-1 (IGFBP-1) transgenic mice. J Neurosci 1995;15:7344–56.PubMed Ye P, Carson J, D’Ercole AJ. In vivo actions of insulin-like growth factor-I (IGF-I) on brain myelination: studies of IGF-I and IGF binding protein-1 (IGFBP-1) transgenic mice. J Neurosci 1995;15:7344–56.PubMed
97.
Zurück zum Zitat Dentremont KD, Ye P, D’Ercole AJ, O’Kusky JR. Increased insulin-like growth factor-I (IGF-I) expression during early postnatal development differentially increases neuron number and growth in medullary nuclei of the mouse. Brain Res Dev Brain Res 1999;114:135–41.PubMed Dentremont KD, Ye P, D’Ercole AJ, O’Kusky JR. Increased insulin-like growth factor-I (IGF-I) expression during early postnatal development differentially increases neuron number and growth in medullary nuclei of the mouse. Brain Res Dev Brain Res 1999;114:135–41.PubMed
98.
Zurück zum Zitat Reinhardt RR, Bondy CA. Insulin-like growth factors cross the blood-brain barrier. Endocrinology 1994;135:1753–61.PubMed Reinhardt RR, Bondy CA. Insulin-like growth factors cross the blood-brain barrier. Endocrinology 1994;135:1753–61.PubMed
99.
Zurück zum Zitat Hoffman GE, Smith MS, Verbalis JG. c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front Neuroendocrinol 1996;14:172–213. Hoffman GE, Smith MS, Verbalis JG. c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front Neuroendocrinol 1996;14:172–213.
100.
Zurück zum Zitat Carro E, Nunez A, Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 2000;20:2926–33.PubMed Carro E, Nunez A, Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 2000;20:2926–33.PubMed
101.
Zurück zum Zitat Trejo JL, Carro E, Garcia-Galloway E, Torres-Aleman I. Role of insulin-like growth factor I signaling in neurodegenerative diseases. J Mol Med 2004;82:156–62.PubMed Trejo JL, Carro E, Garcia-Galloway E, Torres-Aleman I. Role of insulin-like growth factor I signaling in neurodegenerative diseases. J Mol Med 2004;82:156–62.PubMed
102.
Zurück zum Zitat Carro E, Trejo JL, Spuch C, Bohl D, Heard JM, Torres-Aleman I. Blockade of the insulin-like growth factor I receptor in the choroid plexus originates Alzheimer’s-like neuropathology in rodents: new cues into the human disease? Neurobiol Aging 2006;27:1618–31.PubMed Carro E, Trejo JL, Spuch C, Bohl D, Heard JM, Torres-Aleman I. Blockade of the insulin-like growth factor I receptor in the choroid plexus originates Alzheimer’s-like neuropathology in rodents: new cues into the human disease? Neurobiol Aging 2006;27:1618–31.PubMed
103.
Zurück zum Zitat Chowen JA, Goya L, Ramos S, Busiguina S, Garcia-Segura LM, Argente J, et al. Effects of early undernutrition on the brain insulin-like growth factor-I system. J Neuroendocrinol 2002;14:163–9.PubMed Chowen JA, Goya L, Ramos S, Busiguina S, Garcia-Segura LM, Argente J, et al. Effects of early undernutrition on the brain insulin-like growth factor-I system. J Neuroendocrinol 2002;14:163–9.PubMed
104.
Zurück zum Zitat D’Ercole AJ, Ye P, Gutierrez-Ospina G. Use of transgenic mice for understanding the physiology of insulin-like growth factors. Horm Res 1996;45 Suppl 1:5–7.PubMed D’Ercole AJ, Ye P, Gutierrez-Ospina G. Use of transgenic mice for understanding the physiology of insulin-like growth factors. Horm Res 1996;45 Suppl 1:5–7.PubMed
105.
Zurück zum Zitat Sullivan KA, Feldman EL. Immunohistochemical localization of insulin-like growth factor-II (IGF-II) and IGF-binding protein-2 during development in the rat brain. Endocrinology 1994;135:540–7.PubMed Sullivan KA, Feldman EL. Immunohistochemical localization of insulin-like growth factor-II (IGF-II) and IGF-binding protein-2 during development in the rat brain. Endocrinology 1994;135:540–7.PubMed
106.
Zurück zum Zitat Sara VR, Hall K, Von Holtz H, Humbel R, Sjogren B, Wetterberg L. Evidence for the presence of specific receptors for insulin-like growth factors 1 (IGF-1) and 2 (IGF-2) and insulin throughout the adult human brain. Neurosci Lett 1982;34:39–44.PubMed Sara VR, Hall K, Von Holtz H, Humbel R, Sjogren B, Wetterberg L. Evidence for the presence of specific receptors for insulin-like growth factors 1 (IGF-1) and 2 (IGF-2) and insulin throughout the adult human brain. Neurosci Lett 1982;34:39–44.PubMed
107.
Zurück zum Zitat D’Ercole AJ, Ye P, Calikoglu AS, Gutierrez-Ospina G. The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol 1996;13:227–55.PubMed D’Ercole AJ, Ye P, Calikoglu AS, Gutierrez-Ospina G. The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol 1996;13:227–55.PubMed
108.
Zurück zum Zitat Chernausek SD. Insulin-like growth factor-I (IGF-I) production by astroglial cells: regulation and importance for epidermal growth factor-induced cell replication. J Neurosci Res 1993;34:189–97.PubMed Chernausek SD. Insulin-like growth factor-I (IGF-I) production by astroglial cells: regulation and importance for epidermal growth factor-induced cell replication. J Neurosci Res 1993;34:189–97.PubMed
109.
Zurück zum Zitat Shinar Y, McMorris FA. Developing oligodendroglia express mRNA for insulin-like growth factor-I, a regulator of oligodendrocyte development. J Neurosci Res 1995;42:516–27.PubMed Shinar Y, McMorris FA. Developing oligodendroglia express mRNA for insulin-like growth factor-I, a regulator of oligodendrocyte development. J Neurosci Res 1995;42:516–27.PubMed
110.
Zurück zum Zitat Hill DJ, Clemmons DR. Similar distribution of insulin-like growth factor binding proteins-1, -2, -3 in human fetal tissues. Growth Factors 1992;6:315–26.PubMed Hill DJ, Clemmons DR. Similar distribution of insulin-like growth factor binding proteins-1, -2, -3 in human fetal tissues. Growth Factors 1992;6:315–26.PubMed
111.
Zurück zum Zitat Lee WH, Michels KM, Bondy CA. Localization of insulin-like growth factor binding protein-2 messenger RNA during postnatal brain development: correlation with insulin-like growth factors I and II. Neuroscience 1993;53:251–65.PubMed Lee WH, Michels KM, Bondy CA. Localization of insulin-like growth factor binding protein-2 messenger RNA during postnatal brain development: correlation with insulin-like growth factors I and II. Neuroscience 1993;53:251–65.PubMed
112.
Zurück zum Zitat Bondy C, Lee WH. Correlation between insulin-like growth factor (IGF)-binding protein 5 and IGF-I gene expression during brain development. J Neurosci 1993;13:5092–104.PubMed Bondy C, Lee WH. Correlation between insulin-like growth factor (IGF)-binding protein 5 and IGF-I gene expression during brain development. J Neurosci 1993;13:5092–104.PubMed
113.
Zurück zum Zitat Martin DP, Schmidt RE, DiStefano PS, Lowry OH, Carter JG, Johnson EM, Jr. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol 1988;106:829–44.PubMed Martin DP, Schmidt RE, DiStefano PS, Lowry OH, Carter JG, Johnson EM, Jr. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol 1988;106:829–44.PubMed
114.
Zurück zum Zitat Purves D. Body and brain: a trophic theory of neural connections. Cambridge, MA: Harvard Press, 1988. Purves D. Body and brain: a trophic theory of neural connections. Cambridge, MA: Harvard Press, 1988.
115.
Zurück zum Zitat Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis. Cell 1997;88:435–7.PubMed Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis. Cell 1997;88:435–7.PubMed
116.
Zurück zum Zitat Butler AA, Yakar S, Gewolb IH, Karas M, Okubo Y, LeRoith D. Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp Biochem Physiol B Biochem Mol Biol 1998;121:19–26.PubMed Butler AA, Yakar S, Gewolb IH, Karas M, Okubo Y, LeRoith D. Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp Biochem Physiol B Biochem Mol Biol 1998;121:19–26.PubMed
117.
Zurück zum Zitat Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997;91:231–41.PubMed Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997;91:231–41.PubMed
118.
Zurück zum Zitat Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998;282:1318–21.PubMed Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998;282:1318–21.PubMed
119.
Zurück zum Zitat Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857–68.PubMed Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857–68.PubMed
120.
Zurück zum Zitat Yuan J, Yankner BA. Apoptosis in the nervous system. Nature 2000;407:802–9.PubMed Yuan J, Yankner BA. Apoptosis in the nervous system. Nature 2000;407:802–9.PubMed
121.
Zurück zum Zitat Summers SA, Kao AW, Kohn AD, Backus GS, Roth RA, Pessin JE, et al. The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism. J Biol Chem 1999;274:17934–40.PubMed Summers SA, Kao AW, Kohn AD, Backus GS, Roth RA, Pessin JE, et al. The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism. J Biol Chem 1999;274:17934–40.PubMed
122.
Zurück zum Zitat Quevedo C, Alcazar A, Salinas M. Two different signal transduction pathways are implicated in the regulation of initiation factor 2B activity in insulin-like growth factor-1-stimulated neuronal cells. J Biol Chem 2000;275:19192–7.PubMed Quevedo C, Alcazar A, Salinas M. Two different signal transduction pathways are implicated in the regulation of initiation factor 2B activity in insulin-like growth factor-1-stimulated neuronal cells. J Biol Chem 2000;275:19192–7.PubMed
123.
Zurück zum Zitat Quevedo C, Salinas M, Alcazar A. Regulation of cap-dependent translation by insulin-like growth factor-1 in neuronal cells. Biochem Biophys Res Commun 2002;291:560–6.PubMed Quevedo C, Salinas M, Alcazar A. Regulation of cap-dependent translation by insulin-like growth factor-1 in neuronal cells. Biochem Biophys Res Commun 2002;291:560–6.PubMed
124.
Zurück zum Zitat Vincent AM, Mobley BC, Hiller A, Feldman EL. IGF-I prevents glutamate-induced motor neuron programmed cell death. Neurobiol Dis 2004;16:407–16.PubMed Vincent AM, Mobley BC, Hiller A, Feldman EL. IGF-I prevents glutamate-induced motor neuron programmed cell death. Neurobiol Dis 2004;16:407–16.PubMed
125.
Zurück zum Zitat Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene 2005;24:2899–908.PubMed Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene 2005;24:2899–908.PubMed
126.
Zurück zum Zitat Edinger AL, Thompson CB. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 2002;13:2276–88.PubMed Edinger AL, Thompson CB. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 2002;13:2276–88.PubMed
127.
Zurück zum Zitat Summers SA, Birnbaum MJ. A role for the serine/threonine kinase, Akt, in insulin-stimulated glucose uptake. Biochem Soc Trans 1997;25:981–8.PubMed Summers SA, Birnbaum MJ. A role for the serine/threonine kinase, Akt, in insulin-stimulated glucose uptake. Biochem Soc Trans 1997;25:981–8.PubMed
128.
Zurück zum Zitat Cheng CM, Cohen M, Wang J, Bondy CA. Estrogen augments glucose transporter and IGF1 expression in primate cerebral cortex. FASEB J 2001;15:907–15.PubMed Cheng CM, Cohen M, Wang J, Bondy CA. Estrogen augments glucose transporter and IGF1 expression in primate cerebral cortex. FASEB J 2001;15:907–15.PubMed
129.
Zurück zum Zitat Regnault TR, Friedman JE, Wilkening RB, Anthony RV, Hay WW, Jr. Fetoplacental transport and utilization of amino acids in IUGR—a review. Placenta 2005;26 Suppl A:S52–62.PubMed Regnault TR, Friedman JE, Wilkening RB, Anthony RV, Hay WW, Jr. Fetoplacental transport and utilization of amino acids in IUGR—a review. Placenta 2005;26 Suppl A:S52–62.PubMed
130.
Zurück zum Zitat Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 2001;3:1014–9.PubMed Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 2001;3:1014–9.PubMed
131.
Zurück zum Zitat Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002;110:163–75.PubMed Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002;110:163–75.PubMed
132.
Zurück zum Zitat Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004;23:3151–71.PubMed Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004;23:3151–71.PubMed
133.
Zurück zum Zitat Morgane PJ, Austin-LaFrance R, Bronzino J, Tonkiss J, Diaz-Cintra S, Cintra L, et al. Prenatal malnutrition and development of the brain. Neurosci Biobehav Rev 1993;17:91–128.PubMed Morgane PJ, Austin-LaFrance R, Bronzino J, Tonkiss J, Diaz-Cintra S, Cintra L, et al. Prenatal malnutrition and development of the brain. Neurosci Biobehav Rev 1993;17:91–128.PubMed
134.
Zurück zum Zitat Davenport ML, D’Ercole AJ, Underwood LE. Effect of maternal fasting on fetal growth, serum insulin-like growth factors (IGFs), and tissue IGF messenger ribonucleic acids. Endocrinology 1990;126:2062–7.PubMedCrossRef Davenport ML, D’Ercole AJ, Underwood LE. Effect of maternal fasting on fetal growth, serum insulin-like growth factors (IGFs), and tissue IGF messenger ribonucleic acids. Endocrinology 1990;126:2062–7.PubMedCrossRef
135.
Zurück zum Zitat Chanez C, Priam M, Flexor MA, Hamon M, Bourgoin S, Kordon C, et al. Long lasting effects of intrauterine growth retardation of 5-HT metabolism in the brain of developing rats. Brain Res 1981;207:397–408.PubMed Chanez C, Priam M, Flexor MA, Hamon M, Bourgoin S, Kordon C, et al. Long lasting effects of intrauterine growth retardation of 5-HT metabolism in the brain of developing rats. Brain Res 1981;207:397–408.PubMed
136.
Zurück zum Zitat Smart JL, Dobbing J, Adlard BP, Lynch A, Sands J. Vulnerability of developing brain: relative effects of growth restriction during the fetal and suckling periods on behavior and brain composition of adult rats. J Nutr 1973;103:1327–38.PubMed Smart JL, Dobbing J, Adlard BP, Lynch A, Sands J. Vulnerability of developing brain: relative effects of growth restriction during the fetal and suckling periods on behavior and brain composition of adult rats. J Nutr 1973;103:1327–38.PubMed
137.
Zurück zum Zitat Resnick O, Morgane PJ, Hasson R, Miller M. Overt and hidden forms of chronic malnutrition in the rat and their relevance to man. Neurosci Biobehav Rev 1982;6:55–75.PubMed Resnick O, Morgane PJ, Hasson R, Miller M. Overt and hidden forms of chronic malnutrition in the rat and their relevance to man. Neurosci Biobehav Rev 1982;6:55–75.PubMed
138.
Zurück zum Zitat Soto-Moyano R, Fernandez V, Sanhueza M, Belmar J, Kusch C, Perez H, et al. Effects of mild protein prenatal malnutrition and subsequent postnatal nutritional rehabilitation on noradrenaline release and neuronal density in the rat occipital cortex. Brain Res Dev Brain Res 1999;116:51–8.PubMed Soto-Moyano R, Fernandez V, Sanhueza M, Belmar J, Kusch C, Perez H, et al. Effects of mild protein prenatal malnutrition and subsequent postnatal nutritional rehabilitation on noradrenaline release and neuronal density in the rat occipital cortex. Brain Res Dev Brain Res 1999;116:51–8.PubMed
139.
Zurück zum Zitat Leuba G, Rabinowicz T. Long-term effects of postnatal undernutrition and maternal malnutrition on mouse cerebral cortex. I. Cellular densities, cortical volume and total numbers of cells. Exp Brain Res 1979;37:283–98.PubMed Leuba G, Rabinowicz T. Long-term effects of postnatal undernutrition and maternal malnutrition on mouse cerebral cortex. I. Cellular densities, cortical volume and total numbers of cells. Exp Brain Res 1979;37:283–98.PubMed
140.
Zurück zum Zitat Warren MA, Bedi KS. A quantitative assessment of the development of synapses and neurons in the visual cortex of control and undernourished rats. J Comp Neurol 1984;227:104–8.PubMed Warren MA, Bedi KS. A quantitative assessment of the development of synapses and neurons in the visual cortex of control and undernourished rats. J Comp Neurol 1984;227:104–8.PubMed
141.
Zurück zum Zitat Angulo-Colmenares AG, Vaughan DW, Hinds JW. Rehabilitation following early malnutrition in the rat: body weight, brain size, and cerebral cortex development. Brain Res 1979;169:121–38.PubMed Angulo-Colmenares AG, Vaughan DW, Hinds JW. Rehabilitation following early malnutrition in the rat: body weight, brain size, and cerebral cortex development. Brain Res 1979;169:121–38.PubMed
142.
Zurück zum Zitat Diaz-Cintra S, Cintra L, Ortega A, Kemper T, Morgane PJ. Effects of protein deprivation on pyramidal cells of the visual cortex in rats of three age groups. J Comp Neurol 1990;292:117–26.PubMed Diaz-Cintra S, Cintra L, Ortega A, Kemper T, Morgane PJ. Effects of protein deprivation on pyramidal cells of the visual cortex in rats of three age groups. J Comp Neurol 1990;292:117–26.PubMed
143.
Zurück zum Zitat Leuba G, Rabinowicz T. Long-term effects of postnatal undernutrition and maternal malnutrition on mouse cerebral cortex. II. Evolution of dendritic branchings and spines in the visual region. Exp Brain Res 1979;37:299–308.PubMedCrossRef Leuba G, Rabinowicz T. Long-term effects of postnatal undernutrition and maternal malnutrition on mouse cerebral cortex. II. Evolution of dendritic branchings and spines in the visual region. Exp Brain Res 1979;37:299–308.PubMedCrossRef
144.
Zurück zum Zitat Bedi KS. Undernutrition of rats during early life does not affect the total number of cortical neurons. J Comp Neurol 1994;342:596–602.PubMed Bedi KS. Undernutrition of rats during early life does not affect the total number of cortical neurons. J Comp Neurol 1994;342:596–602.PubMed
145.
Zurück zum Zitat Bourre JM, Morand O, Chanez C, Dumont O, Flexor MA. Influence of intrauterine malnutrition on brain development: alteration of myelination. Biol Neonate 1981;39:96–9.PubMedCrossRef Bourre JM, Morand O, Chanez C, Dumont O, Flexor MA. Influence of intrauterine malnutrition on brain development: alteration of myelination. Biol Neonate 1981;39:96–9.PubMedCrossRef
146.
Zurück zum Zitat Debassio WA, Kemper TL. The effects of protein deprivation on neuronal migration in rats. Brain Res 1985;352:191–6.PubMed Debassio WA, Kemper TL. The effects of protein deprivation on neuronal migration in rats. Brain Res 1985;352:191–6.PubMed
147.
Zurück zum Zitat Shambaugh GE, III, Radosevich JA, Glick RP, Gu DS, Metzger BE, Unterman TG. Insulin-like growth factors and binding proteins in the fetal rat: alterations during maternal starvation and effects in fetal brain cell culture. Neurochem Res 1993;18:695–703.PubMed Shambaugh GE, III, Radosevich JA, Glick RP, Gu DS, Metzger BE, Unterman TG. Insulin-like growth factors and binding proteins in the fetal rat: alterations during maternal starvation and effects in fetal brain cell culture. Neurochem Res 1993;18:695–703.PubMed
148.
Zurück zum Zitat Lassarre C, Hardouin S, Daffos F, Forestier F, Frankenne F, Binoux M. Serum insulin-like growth factors and insulin-like growth factor binding proteins in the human fetus. Relationships with growth in normal subjects and in subjects with intrauterine growth retardation. Pediatr Res 1991;29:219–25.PubMed Lassarre C, Hardouin S, Daffos F, Forestier F, Frankenne F, Binoux M. Serum insulin-like growth factors and insulin-like growth factor binding proteins in the human fetus. Relationships with growth in normal subjects and in subjects with intrauterine growth retardation. Pediatr Res 1991;29:219–25.PubMed
149.
Zurück zum Zitat Maheshwari HG, Mermelstein S, vonSchlegell AS, Shambaugh GE, III. Alteration in IGF-I binding in the cerebral cortex and cerebellum of neonatal rats during protein–calorie malnutrition. Neurochem Res 1997;22:313–9.PubMed Maheshwari HG, Mermelstein S, vonSchlegell AS, Shambaugh GE, III. Alteration in IGF-I binding in the cerebral cortex and cerebellum of neonatal rats during protein–calorie malnutrition. Neurochem Res 1997;22:313–9.PubMed
150.
Zurück zum Zitat Matsumura Y, Domeki M, Sugahara K, Kubo T, Roberts Jr CT, LeRoith D, et al. Nutritional regulation of insulin-like growth factor-I receptor mRNA levels in growing chickens. Biosci Biotechnol Biochem 1996;60:979–82.PubMedCrossRef Matsumura Y, Domeki M, Sugahara K, Kubo T, Roberts Jr CT, LeRoith D, et al. Nutritional regulation of insulin-like growth factor-I receptor mRNA levels in growing chickens. Biosci Biotechnol Biochem 1996;60:979–82.PubMedCrossRef
Metadaten
Titel
The insulin-like growth factor system and the fetal brain: Effects of poor maternal nutrition
verfasst von
Thomas J. McDonald
Mark J. Nijland
Peter W. Nathanielsz
Publikationsdatum
01.06.2007
Verlag
Springer US
Erschienen in
Reviews in Endocrine and Metabolic Disorders / Ausgabe 2/2007
Print ISSN: 1389-9155
Elektronische ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-007-9044-2

Weitere Artikel der Ausgabe 2/2007

Reviews in Endocrine and Metabolic Disorders 2/2007 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Chronische Verstopfung: „Versuchen Sie es mit grünen Kiwis!“

22.05.2024 Obstipation Nachrichten

Bei chronischer Verstopfung wirken Kiwis offenbar besser als Flohsamenschalen. Das zeigen die Daten aus einer randomisierten Studie, die der Gastroenterologe Oliver Pech beim Praxis-Update vorstellte.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.