Skip to main content
Erschienen in: European Archives of Psychiatry and Clinical Neuroscience 5/2016

30.07.2015 | Original Paper

The role of Pannexin gene variants in schizophrenia: systematic analysis of phenotypes

verfasst von: Micha Gawlik, Martin Wagner, Bruno Pfuhlmann, Gerald Stöber

Erschienen in: European Archives of Psychiatry and Clinical Neuroscience | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

Pannexins are a group of brain-expressed channel proteins thought to be regulators of schizophrenia-linked pathways including glutamate release, synaptic plasticity and neural stem proliferation. We got evidence for linkage of a catatonic phenotype to the PANX2 locus in a family study. Aim of our study was to evaluate the role of Pannexins in schizophrenia and clinical phenotypes, particularly with regard to periodic catatonia. We genotyped six single-nucleotide polymorphisms at PANX1, five at PANX2 and three at PANX3 in 1173 German cases with schizophrenia according to DSM-5 and 480 controls. Our sample included 338 cases with periodic catatonia corresponding to Leonhard’s classification. Association with schizophrenia according to DSM-5 was limited to genotype rs4838858–TT [p = 0.02, odds ratio (OR) 3.1] and haplotype rs4838858T–rs5771206G (p = 0.02, OR 2.7) at PANX2. We found no significant association with clinical phenotypes. Our limited findings do not support a major contribution of PANX1–3 to disease risk of schizophrenia according to DSM-5. We cannot confirm an association of the PANX2 loci at chromosome 22q13 with periodic catatonia.
Literatur
1.
Zurück zum Zitat Cardno AG, Gottesman II (2000) Twin studies of schizophrenia, from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 97:12–17CrossRefPubMed Cardno AG, Gottesman II (2000) Twin studies of schizophrenia, from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 97:12–17CrossRefPubMed
2.
Zurück zum Zitat Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait, evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187–1192CrossRefPubMed Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait, evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187–1192CrossRefPubMed
3.
Zurück zum Zitat Wray NR, Visscher PM (2010) Narrowing the boundaries of the genetic architecture of schizophrenia. Schizophr Bull 36:14–23CrossRefPubMed Wray NR, Visscher PM (2010) Narrowing the boundaries of the genetic architecture of schizophrenia. Schizophr Bull 36:14–23CrossRefPubMed
4.
Zurück zum Zitat Ripke S, Neale BM, Corvin A, Walters JT, Farh KH, Holmans PA (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427CrossRefPubMedCentral Ripke S, Neale BM, Corvin A, Walters JT, Farh KH, Holmans PA (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427CrossRefPubMedCentral
5.
Zurück zum Zitat Stöber G, Ben-Shachar D, Cardon M, Falkai P, Fonteh AN, Gawlik M et al (2009) Schizophrenia, from the brain to peripheral markers. A consensus paper of the WFSBP task force on biological markers. World J Biol Psychiatry 10:127–155CrossRefPubMed Stöber G, Ben-Shachar D, Cardon M, Falkai P, Fonteh AN, Gawlik M et al (2009) Schizophrenia, from the brain to peripheral markers. A consensus paper of the WFSBP task force on biological markers. World J Biol Psychiatry 10:127–155CrossRefPubMed
6.
Zurück zum Zitat Bulayeva KB, Glatt SJ, Bulayev OA, Pavlova TA, Tsuang MT (2007) Genome-wide linkage scan of schizophrenia: a cross-isolate study. Genomics 89:167–177CrossRefPubMed Bulayeva KB, Glatt SJ, Bulayev OA, Pavlova TA, Tsuang MT (2007) Genome-wide linkage scan of schizophrenia: a cross-isolate study. Genomics 89:167–177CrossRefPubMed
7.
Zurück zum Zitat Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS et al (2001) Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23. Am J Hum Genet 68:661–673CrossRefPubMedPubMedCentral Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS et al (2001) Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23. Am J Hum Genet 68:661–673CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part II, schizophrenia. Am J Hum Genet 73:34–48CrossRefPubMedPubMedCentral Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part II, schizophrenia. Am J Hum Genet 73:34–48CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Stöber G, Kohlmann B, Siekiera M, Rubie C, Gawlik M, Möller-Ehrlich K et al (2005) Systematic mutation analysis of KIAA0767 and KIAA1646 in chromosome 22q-linked periodic catatonia. BMC Psychiatry 5:36CrossRefPubMedPubMedCentral Stöber G, Kohlmann B, Siekiera M, Rubie C, Gawlik M, Möller-Ehrlich K et al (2005) Systematic mutation analysis of KIAA0767 and KIAA1646 in chromosome 22q-linked periodic catatonia. BMC Psychiatry 5:36CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Ambrosi C, Gassmann O, Pranskevich JN, Boassa D, Smock A, Wang J et al (2010) Pannexin1 and Pannexin2 channels show quaternary similarities to connexons and different oligomerization numbers from each other. J Biol Chem 285:24420–24431CrossRefPubMedPubMedCentral Ambrosi C, Gassmann O, Pranskevich JN, Boassa D, Smock A, Wang J et al (2010) Pannexin1 and Pannexin2 channels show quaternary similarities to connexons and different oligomerization numbers from each other. J Biol Chem 285:24420–24431CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Orellana JA, Martinez AD, Retamal MA (2013) Gap junction channels and hemichannels in the CNS. Regulation by signalling molecules. Neuropharmacology 75:567–582CrossRefPubMed Orellana JA, Martinez AD, Retamal MA (2013) Gap junction channels and hemichannels in the CNS. Regulation by signalling molecules. Neuropharmacology 75:567–582CrossRefPubMed
12.
Zurück zum Zitat Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Nat Acad Sci 100:13644–13649CrossRefPubMedPubMedCentral Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Nat Acad Sci 100:13644–13649CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Penuela S, Gehi R, Laird DW (2013) The biochemistry and function of pannexin channels. Biochim Biophys Acta 1828:15–22CrossRefPubMed Penuela S, Gehi R, Laird DW (2013) The biochemistry and function of pannexin channels. Biochim Biophys Acta 1828:15–22CrossRefPubMed
14.
Zurück zum Zitat Thompson RJ, MacVicar BA (2008) Connexin and pannexin hemichannels of neurons and astrocytes. Channels 2:81–86CrossRefPubMed Thompson RJ, MacVicar BA (2008) Connexin and pannexin hemichannels of neurons and astrocytes. Channels 2:81–86CrossRefPubMed
15.
Zurück zum Zitat Prochnow N, Abdulazim A, Kurtenbach S, Wildförster V, Dvoriantchikova G, Hanske J et al (2012) Pannexin1 stabilizes synaptic plasticity and is needed for learning. PLoS One 7:e51767CrossRefPubMedPubMedCentral Prochnow N, Abdulazim A, Kurtenbach S, Wildförster V, Dvoriantchikova G, Hanske J et al (2012) Pannexin1 stabilizes synaptic plasticity and is needed for learning. PLoS One 7:e51767CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Thompson RJ, Jackson MF, Olah ME, Rungta RL, Hines DJ, Beazely MA et al (2008) Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 322:1555–1559CrossRefPubMed Thompson RJ, Jackson MF, Olah ME, Rungta RL, Hines DJ, Beazely MA et al (2008) Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 322:1555–1559CrossRefPubMed
17.
Zurück zum Zitat Wicki-Stordeur LE, Dzugalo AD, Swansburg RM, Suits JM, Swayne LA (2012) Pannexin1 regulates postnatal neural stem and progenitor cell proliferation. Neural Dev 7:11CrossRefPubMedPubMedCentral Wicki-Stordeur LE, Dzugalo AD, Swansburg RM, Suits JM, Swayne LA (2012) Pannexin1 regulates postnatal neural stem and progenitor cell proliferation. Neural Dev 7:11CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Vogt A, Hormuzdi SG, Monyer H (2005) Pannexin1 and Pannexin2 expression in the developing and mature rat brain. Mol Brain Res 141:113–120CrossRefPubMed Vogt A, Hormuzdi SG, Monyer H (2005) Pannexin1 and Pannexin2 expression in the developing and mature rat brain. Mol Brain Res 141:113–120CrossRefPubMed
19.
Zurück zum Zitat Swayne LA, Sorbara CD, Bennett SA (2010) Pannexin 2 is expressed by postnatal hippocampal neural progenitors and modulates neuronal commitment. J Biol Chem 285:24977–24986CrossRefPubMedPubMedCentral Swayne LA, Sorbara CD, Bennett SA (2010) Pannexin 2 is expressed by postnatal hippocampal neural progenitors and modulates neuronal commitment. J Biol Chem 285:24977–24986CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Bargiotas P, Krenz A, Hormuzdi SG, Ridder DA, Herb A, Barakat W et al (2011) Pannexins in ischemia-induced neurodegeneration. Proc Natl Acad Sci USA 108:20772–22077CrossRefPubMedPubMedCentral Bargiotas P, Krenz A, Hormuzdi SG, Ridder DA, Herb A, Barakat W et al (2011) Pannexins in ischemia-induced neurodegeneration. Proc Natl Acad Sci USA 108:20772–22077CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Bennett MV, Garré JM, Orellana JA, Bukauskas FF, Nedergaard M, Sáez JC (2012) Connexin and pannexin hemichannels in inflammatory responses of glia and neurons. Brain Res 1487:3–15CrossRefPubMedPubMedCentral Bennett MV, Garré JM, Orellana JA, Bukauskas FF, Nedergaard M, Sáez JC (2012) Connexin and pannexin hemichannels in inflammatory responses of glia and neurons. Brain Res 1487:3–15CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Orellana JA, Shoji KF, Abudara V, Ezan P, Amigou E, Saez PJ et al (2011) Amyloid beta-induced death in neurons involves glial and neuronal hemichannels. J Neurosci 31:4962–4977CrossRefPubMed Orellana JA, Shoji KF, Abudara V, Ezan P, Amigou E, Saez PJ et al (2011) Amyloid beta-induced death in neurons involves glial and neuronal hemichannels. J Neurosci 31:4962–4977CrossRefPubMed
23.
Zurück zum Zitat Davis LK, Gamazon ER, Kistner-Griffin E, Badner JA, Liu C, Cook EH et al (2012) Loci nominally associated with autism from genome-wide analysis show enrichment of brain expression quantitative trait loci but not lymphoblastoid cell line expression quantitative trait loci. Mol Autism 3:3CrossRefPubMedPubMedCentral Davis LK, Gamazon ER, Kistner-Griffin E, Badner JA, Liu C, Cook EH et al (2012) Loci nominally associated with autism from genome-wide analysis show enrichment of brain expression quantitative trait loci but not lymphoblastoid cell line expression quantitative trait loci. Mol Autism 3:3CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Association, Arlington American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Association, Arlington
25.
Zurück zum Zitat Leonhard K (1999) Classification of endogenous psychoses and their differentiated etiology. 2nd rev. and enlarged edition. Springer, Vienna Leonhard K (1999) Classification of endogenous psychoses and their differentiated etiology. 2nd rev. and enlarged edition. Springer, Vienna
26.
Zurück zum Zitat Beckmann H, Franzek E (2000) The genetic heterogeneity of “schizophrenia”. World J Biol Psychiatry 1:35–41CrossRefPubMed Beckmann H, Franzek E (2000) The genetic heterogeneity of “schizophrenia”. World J Biol Psychiatry 1:35–41CrossRefPubMed
27.
Zurück zum Zitat Pfuhlmann B, Franzek E, Beckmann H (1999) Absence of a subgroup of chronic schizophrenia in monozygotic twins. Consequences for considerations on the pathogenesis of schizophrenic psychoses. Eur Arch Psychiatry Clin Neurosci 249:50–54CrossRefPubMed Pfuhlmann B, Franzek E, Beckmann H (1999) Absence of a subgroup of chronic schizophrenia in monozygotic twins. Consequences for considerations on the pathogenesis of schizophrenic psychoses. Eur Arch Psychiatry Clin Neurosci 249:50–54CrossRefPubMed
28.
Zurück zum Zitat Pfuhlmann B, Jabs B, Althaus G, Schmidtke A, Bartsch A, Stöber G et al (2004) Cycloid psychoses are not part of a bipolar affective spectrum, results of a controlled family study. J Affect Disord 83:11–19CrossRefPubMed Pfuhlmann B, Jabs B, Althaus G, Schmidtke A, Bartsch A, Stöber G et al (2004) Cycloid psychoses are not part of a bipolar affective spectrum, results of a controlled family study. J Affect Disord 83:11–19CrossRefPubMed
29.
Zurück zum Zitat Herold C, Becker T (2009) Genetic association analysis with FAMHAP, a major program update. Bioinformatics 2:134–136CrossRef Herold C, Becker T (2009) Genetic association analysis with FAMHAP, a major program update. Bioinformatics 2:134–136CrossRef
30.
Zurück zum Zitat Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265CrossRefPubMed Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265CrossRefPubMed
31.
Zurück zum Zitat Purcell S, Cherny SS, Sham PC (2003) Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19:149–150CrossRefPubMed Purcell S, Cherny SS, Sham PC (2003) Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19:149–150CrossRefPubMed
32.
Zurück zum Zitat Aleksic B, Ishihara R, Takahashi N, Maeno N, Ji X, Saito S et al (2007) Gap junction coding genes and schizophrenia: a genetic association study. J Hum Genet 52:498–501CrossRefPubMed Aleksic B, Ishihara R, Takahashi N, Maeno N, Ji X, Saito S et al (2007) Gap junction coding genes and schizophrenia: a genetic association study. J Hum Genet 52:498–501CrossRefPubMed
Metadaten
Titel
The role of Pannexin gene variants in schizophrenia: systematic analysis of phenotypes
verfasst von
Micha Gawlik
Martin Wagner
Bruno Pfuhlmann
Gerald Stöber
Publikationsdatum
30.07.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
European Archives of Psychiatry and Clinical Neuroscience / Ausgabe 5/2016
Print ISSN: 0940-1334
Elektronische ISSN: 1433-8491
DOI
https://doi.org/10.1007/s00406-015-0619-8

Weitere Artikel der Ausgabe 5/2016

European Archives of Psychiatry and Clinical Neuroscience 5/2016 Zur Ausgabe

Update Psychiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.