Skip to main content
Erschienen in: Journal of Echocardiography 1/2019

Open Access 21.11.2018 | Review Article

The transition from transesophageal to transthoracic echocardiography during transcatheter aortic valve replacement: an evolving field

verfasst von: Menhel Kinno, Eric P. Cantey, Vera H. Rigolin

Erschienen in: Journal of Echocardiography | Ausgabe 1/2019

Abstract

The advent of transcatheter aortic valve replacement (TAVR) has dramatically transformed the clinical approach to severe aortic stenosis. Over the last decade, several trials have shown the equivalence or even superiority of transcatheter valve replacement over the conventional surgical approach. As a result, TAVR as a treatment for severe, symptomatic aortic stenosis has rapidly extended from inoperable or prohibited-risk patients to intermediate-risk patients. The success of TAVR has led to the wide adaptation of this technique and, subsequently, a significant increase in the number of these procedures performed annually. As the number of these procedures is expected to further increase, especially if its indication will include those with low surgical risk, there is a great demand to improve patient recovery and early discharge without compromising outcomes. In this review, we will discuss the role of echocardiography in the perioperative planning and assessment of transcatheter aortic valve replacement. In addition, we will review the current evidence behind the use of intraprocedureal transthoracic echocardiography and the recommended steps for successful transition from transesophageal to transthoracic echocardiography.
Abkürzungen
AS
Aortic stenosis
AV
Aortic valve
EOA
Effective orifice area
LVOT
Left ventricular outflow tract
MDCT
Multidetector computed tomography
PVR
Paravalvular regurgitation
TAVR
Transcatheter aortic valve replacement
TEE
Transesophageal echocardiography
THV
Transcatheter heart valve
TTE
Transthoracic echocardiography
VTI
Velocity time Integral
2-D
2-dimensional
3-D
3-dimensional

Introduction

Transcatheter aortic valve replacement (TAVR) has revolutionized the approach to symptomatic severe aortic stenosis (AS). As the clinical trials showed equivalence or even superiority of TAVR in the treatment of severe AS in inoperable/prohibited-risk and high-risk patients over the conventional treatment [14], TAVR was granted a Class I recommendation in American Heart Association/American College of Cardiology (AHA/ACC) valvular guidelines for the treatment of this group of patients [5, 6]. In addition, TAVR has a Class IIa recommendation in the AHA/ACC guidelines for the treatment of intermediate-risk patients with severe symptomatic AS [5, 6]. However, this recommendation is expected to advance to Class I as subsequent clinical trials have shown overwhelming evidence of safety and efficacy [7, 8].
During the early years of TAVR, the primary focus was on patient safety and procedural success. All of these early cases were performed using general anesthesia and transesophageal echocardiography (TEE). As the number of TAVR procedure performed annually has steadily increased [9, 10], attention has shifted to reducing patient recovery time and hospital length of stay. Such measures are important to address, especially with ongoing trials assessing the efficacy of TAVR among low-risk patients and the anticipation of its utilization among this patient population [11]. In an attempt to reduce the invasiveness, cost, and post-operative hospitalization, a “minimalistic approach” was adopted to perform TAVR utilizing the transfemoral access with monitored anesthesia care (MAC)/conscious sedation and intraprocedural transthoracic echocardiography (TTE). This minimalist approach has shown similar outcomes in comparison to conventional TAVR performed in the hybrid operating room using general anesthesia and transesophageal echocardiography (TEE) guidance [1214].
Many centers, including ours, have made this transitional change from the use of general anesthesia and intraprocedural TEE to the use of MAC and TTE guidance. This transition was made possible with the advances and improvement in transcatheter heart valve (THV) design and the increased experience of the TAVR team. For a successful and smooth transition to perform TAVR under MAC and TTE guidance, the TAVR team (including the imagers) must acquire in-depth knowledge about the aortic root complex anatomy, echocardiographic imaging of the aortoannular complex, and the technical features and nuances of the commercially available THV.

Echocardiography for transcatheter aortic valve replacement

Pre-procedural assessment

The first step in the preprocedural imaging for TAVR is the assessment of the aortic valve (AV) morphology and the severity of the valve stenosis using TTE (Table 1). Identifying the presence of a bicuspid aortic valve, a traditional exclusion criteria for early TAVR trials, is essential. The number of leaflets is determined using the AV short-axis view during systole. In addition, it is important to determine the severity of the valvular calcification and its extension into the left ventricular outflow tract (LVOT), a strong predictor of post-TAVR paravalvular regurgitation (PVR) [15, 16]. To assess the AS severity, three parameters must be quantified accurately, namely, AV velocity and velocity time integral (VTIAV), left ventricular outflow tract (LVOT) velocity and velocity time integral (VTILVOT), and LVOT diameter. Careful calculation of stroke volume is also important since gradients are dependent on flow. In addition, it is essential to assess the left ventricular systolic and diastolic function and the presence of any concomitant significant valvular lesion(s). Published guidelines elegantly outline how to perform accurate assessment and quantification of AS [17].
Table 1
Preprocedural echocardiographic assessment of TAVR
 
Parameter (s)
Technical consideration (s)
AV morphology and severity assessment
 AV leaflets
Short-axis viewa
Determine the number of leaflets in systole by visualizing the opening at the raphe
 AV/LVOT calcification
Short-axis viewa
Quantify the severity and location of the AV and LVOT calcification
 LVOT Diameter
Long axis viewb
Measure in early to mid systole when the LVOT is more circular using the inner-edge-to-inner-edge convention
Preferably measured at the level of the aortic annulus, especially in the setting of basal septal budging, from the point where the right cusp meets the anteroseptal wall to the point where the posterior interleaflet triangle meets the anterior mitral leaflet
 AV Doppler Imaging
CW Doppler
Multiple windows (including the right parasternal space) are mandatory to ensure the highest gradient
 LVOT Doppler imaging
PW Doppler
Place sample volume just proximal to the area of flow acceleration (absence of AV opening and closure clicks).
Optimize the gain to ensure a clean modal velocity signal
Aortoannular complex measurements
 Aortic annulus
Long axis viewb
3D imagingc
Measure in systole as described above for the LVOT
3D TEE has a higher resolution and it can be an alternative for those with contraindication to MDCT
Use MPR to determine the nadir of the aortic valve and to provide measurement of the annulus perimeter, area, and maximum and minimum dimensions
 Sinus of valsalva
Long axis viewb
3D imagingc
Measure in diastole using the leading-edge-to-leading-edge convention (from the right sinus to the posterior sinus)
Use MPR to measure the maximum dimension between the sinuses
 ST junction
Long axis viewb
3D imagingc
Measure in diastole using the leading-edge-to-leading-edge convention
Use MPR to measure the maximum and minimum dimensions
 Coronary ostial height
3D imagingc
RCA height is measured in the sagittal view
Left main height is measured in the coronal view
AV aortic valve, CW continuous-wave, LVTO left ventricular outflow tract, MPR multiplanar reconstruction, PW pulsed-wave, PLAX parasternal long-axis, PSAX parasternal short-axis, RCA right coronary artery, ST sinotubular junction, TEE transesophageal echo, TTE transthoracic echo
aUsing PSAX and Mid-esophageal view at ~ 45° for TTE and TEE, respectively
bUsing PLAX and Mid-esophageal view at ~ 120° for TTE and TEE, respectively
cUsing narrow-angle or zoom acquisition usually obtained from short-axis view
The other essential step in the preprocedural imaging is the assessment of the aortoannular complex. Piazza et al. [18] described the aortic root as a complex 3-dimensional (3D) structure that separates the LVOT from the systemic circulation with 3 circular rings (sinotubular junction, anatomic ventriculo-arterial junction, and the aortic annulus) and a crown-like ring (interleaflet trigones) (Fig. 1). The tightest point in the aortic root is the aortic annulus, a virtual ring with its three anchors at nadir of the AV leaflets. Aortic annulus measured in systole is the main parameter used for sizing of TAVR [19, 20]. Accurate sizing of the aortic annulus is essential to avoid undersizing of the THV, which increases the risk of prosthesis embolization and PVR, or oversizing of the THV, which can result in underexpansion of the THV, conduction disturbances, and annulus rupture [19, 20].
Multidetector computed tomography (MDCT) is currently the primary modality used for aortoannular assessment given its high resolution and the 3D nature of the study. MDCT also provides essential information about the coronary height, severity and location of the aortic root calcification, and peripheral vascular assessment for the determination of the appropriate access site for TAVR [19, 20]. Although MDCT has shown to be more accurate in measuring the aortic annulus and reducing PVR after TAVR compared to 2-dimensional (2D) echo [2123], other studies utilizing 3D echo have demonstrated similar precision in assessing the aortic annulus and equivalent accuracy in predicting PVR. Therefore, 3D echo, especially when TEE is utilized [2428], is a feasible alternative modality for the assessment of aortic root and coronary heights in preprocedural planning for TAVR when the patient cannot undergo MDCT (Table 1).

Intraprocedural assessment

Echocardiography is useful for intraprocedural monitoring of TAVR during the different steps of THV deployment. Either TTE or TEE can be utilized during the procedure, besides fluoroscopy and aortography, for guiding the wire/catheter positioning, assessing post-balloon valvuloplasty results, appropriate positioning of the THV prior to deployment, and evaluating post-deployment results and complication(s) (Table 2). It is critical to be familiar with the THV used in the institution and the landmarks and measurement used to ensure appropriate landing zone of the valve. For example, in the balloon-expandable (Sapien 3, Edward Lifesciences) prosthesis, the valve depth should be 1–2 mm below the aortic annulus but because this valve, once it is deployed, can only be shortened from the ventricular size, it is more critical to assess the aortic aspect of the valve ensuring the valve is below the sinotubular junction and covering the native leaflets [20]. Another example is the self-expanding (Corevalve, Medtronic), the focus should be on the ventricular side of the valve to ensure that it extends 2-4 mm (not more than 6 mm) below the annulus [20]. Low implantation of the valve can result in conduction abnormalities, inference with mitral valve function, and embolization of the valve to the left ventricle. Too high implantation of the valve increases the risk of valve embolization to the aorta, jeopardizing the coronary flow, and aortic root injury (Fig. 2).
Table 2
Intraprocedural echocardiographic assessment of TAVR
 
Parameter (s)
Technical consideration (s)
Catheter and wire positioning
Long axisa and short axis viewsb
Pigtail catheter is placed in right sinus of valsalve when Sapein 3 (Edward Lifescience)c is used
Pigtail catheter is placed in the NC sinus of valsalve when Corevalve Evolut R (Medtronic)d is used
Post-valvotomy
Short axisa (above, through, and above the AV) and long axisb views
Assessing wall motion to ensure no acute occlusion of the coronary arteries
Assessing the extent of aortic regurgitation
Assessing the development or worsening pericardial effusion, to rule out aortic root injury
THV deployment
AV/LVOT long axisb views
Appropriate positioning of the valve based on the recommended positioning
For Sapien 3 valvec, the valve should be placed 1–2 mm below the aortic annulus, ensuring the valve is below the sinotubular junction and covering the aortic leaflets
For Corevalve Evolut Rd, the valve should be placed 2–4 mm below the aortic annulus
Post-deployment assessment
Short axis* (above, through, and above the AV) and long axisb views
Assess the leaflet movement and absence of valvular regurgitation (central AR)
Assess the shape of the prosthesis and the implantation position
Identify the mechanism and severity of PVR
Rule out other complications such as aortic root rupture, development or worsening of an existing pericardial effusion, new wall motion abnormality due to coronary artery occlusion, and mitral valve disturbances
A3C apical 3-chamber, A5C apical 5-chamber, AR aortic regurgitation, AV aortic valve, LVOT left ventricular outflow tract, NC non-coronary, PVR paravalvular regurgitation, THV transcatheter heart valve
aUsing PSAX and Mid-esophageal view at ~ 45° for TTE and TEE, respectively
bUsing PLAX, A3C, and A5C views for TTE, and Mid-esophageal view at ~ 120° and deep gastric view of the LVOT for TEE
cThird generation balloon-expandable THV
dSecond generation self-expandable THV
The main difference between TTE and TEE during the intraprocedural monitoring for TAVR is that TEE provides continuous monitoring during the procedure with higher image resolution but these advantages are at the expense of being more invasive (Table 3). Otherwise, both TTE and TEE offer comparable information to ensure appropriate THV placement and to identify periprocedural complication(s). In either modality, multiple views above, through, and below the THV with multiple-beat sweeps are essential to identify periprocedural complications, especially PVR (Fig. 3). As experience with TAVR has grown, there has been a further shift to using fluoroscopy alone to guide THV placement [29] and using TTE immediately after valve deployment to assure proper placement and to assess for valvular and perivalvular regurgitation.
Table 3
Comparison between intraprocedural TTE and TEE
Technical Aspects
TTE
TEE
Image resolution
Lower resolution
Suboptimal images due to Patient’s position and body habitus
Higher resolution
In general, the image quality is consistently optimal
Invasiveness
Non-invasive
More invasive
Utility in detecting procedure associated complication
  
PVR assessment
Better in anterior PVR
Better in posterior PVR
Pericardial effusion
Faster and easier to detect
Slower and requires multiple imaging views
Aortic root injury
Less accurate
More accurate
Coronary artery occlusion
Better in evaluating wall motion abnormality
More difficult in interpreting wall motion abnormality
Mitral valve regurgitation
Reasonable accuracy
Better in assessing mechanism and severity
Complications
No complication associated directly to TTE
Oral and teeth injury esophageal injury, stomach injury
Type of anesthesia
MAC or conscious sedation
Usually GA and intubation, may be used under MAC
Access site
Utilized mainly in transfemoral access
Can be utilized in any access site
Monitoring
Interrupted imaging as the sonographer has to be in the fluoroscopy field and fluoroscopy has to be discontinued during image acquisition
Continuous imaging although rare the TEE has to be withdrawn if it interfere with fluoroscopy field
GA general anesthesia, MAC monitor anesthesia care, PVR paravalvular regurgitation, TEE transesophageal echo, TTE transthoracic echo

Postprocedural assessment

A comprehensive TTE is essential after TAVR to establish a baseline evaluation prior to discharge. The post-TAVR echo should have a full evaluation of the cardiac chambers, valvular function and position, including the calculation of the newly implanted THV area and gradients as well as the presence or absence of any procedural complication(s) (Table 4).
Table 4
Postprocedural echocardiographic assessment of TAVR for assessing AV function
 
Echo imaging parameter (s)
Technical consideration (s)
LVOT
PLAX view
For Sapien 3 valvea, the LVOT should be measured at the ventricular side of THV stent (outer-edge-to-outer-edge)
For Corevalve Evolut Rb, can be either measured as above or just below the visualized THV leaflets from the inner-edge to the inner-edge of the stent
LVOT Doppler imaging
PW Doppler
For Sapien 3 valvea, place sample volume apical to the ventricular edge of the THV stent
For Corevalve Evolut Rb, place sample volume either as above or just below the visualized THV leaflets, according the way the LVOT was measured
AV Doppler imaging
CW Doppler
Use multiple imaging views (including the right parasternal window) and consider utilizing the pedoff probe
PVR assessment
PSAX (above, through, and above the AV) and long axisc views
Use multiple parameters as recommended by the VARC II
According to VARC II consensus document [30], normal aortic prosthetic valve has a peak velocity < 3 m/s, pressure gradient < 20 mmHg, Doppler velocity index > 0.35, and EOA > 1.1 cm2 (> 0.9 cm2 if BSA is < 1.6 m2). Moderate–severe stenosis is expected when the peak velocity > 4 m/s, pressure gradient > 40 mmHg, Doppler velocity index < 0.25 (< 0.2 if the LVOT > 2.5 cm), and EOA < 0.8 cm2 (< 0.6 cm2 if BSA is < 1.6 m2)
According to VARC II consensus document [30], semi-quantitative (flow reversal in the descending aorta and the circumferential extent of the PVR) and qualitative parameters (regurgitant volume, regurgitant fraction, and EROA) have been suggested. For the calculation of the regurgitant volume the difference in the stroke volume between the LVOT and RVOT. Mild PVR demonstrate no or brief early flow diastolic reversal in the descending aorta, < 10% circumferential extent, regurgitant volume < 30 mL, regurgitant fraction < 30%, and EROA < 0.1 cm2. Severe PVR has holo-diastolic flow reversal in the descending aorta, ≥ 30% circumferential extent, regurgitant volume ≥ 60 mL, regurgitant fraction ≥ 50%, and EROA ≥ 0.3 cm2
A3C apical 3-chamber, A5C apical 5-chamber, AV aortic valve, BSA body surface area, CW continuous-wave, LVOT left ventricular outflow tract, PLAX parasternal long-axis, PSAX parasternal short-axis, PVR paravalvular regurgitation, PW pulsed-wave, RVOT right ventricular outflow tract, VARC II VALVE Academic Research Consortium-2
aThird generation balloon-expandable THV
bSecond generation self-expandable THV
cUsing PLAX, A3C, and A5C views
For the assessment of the THV function and its effective orifice area (EOA), an accurate measurement of the LVOT is essential. The LVOT should be measured at the ventricular edge of the THV stent, especially when a balloon-expandable valve is used, from the outer-edge to outer-edge while the pulsed-Doppler sample volume placed just proximal to the ventricular edge of the valve stent [20, 30]. Similar to preprocedural assessment, the AV velocity and VTI should be measured using continuous-wave Doppler obtained from multiple views including the right parasternal. A normal THV has a peak velocity of < 3 m/s, a mean pressure gradient of < 20 mmHg, an effective orifice area (EOA) > 1.1 cm2 and indexed EOA > 0.85 cm2/m2. The Doppler velocity index (normally > 0.35) is also useful to report especially when the LVOT diameter is difficult to measure [30].
The determination of the presence or absence of PVR is important to be documented in the baseline echo post-TAVR. This assessment should include describing the location, number, and severity of the PVR. For better identification and quantification of the PVR, multiple imaging planes with color Doppler and multi-beat sweeps are required to ensure complete visualization of the regurgitant jet(s). The main views in TTE for PVR assessment are: parasternal long-axi (with lateral to medial sweeps), parasternal short-axis (with aorta to LVOT sweeps), and Apical 3- and 5-chamber views (with rotational sweeps and off-axis views). Although multiple qualitative, semi-quantitative, and quantitative parameters are suggested by the Valve Academic Research Consortium-consensus document [30] for the determination of PVR severity, frequently these parameters are either difficult to obtain or not accurate in post-TAVR assessment of PVR. The main semi-quantitative parameter proposed for the assessment of PVR is the circumferential extent of PVR. This parameter is measured in the parasternal short-axis view at the ventricular side of the valve stent and, therefore, it is essential to obtain multiple imaging planes through the valve to ensure the full visualization of the jet(s). However, an imaging plane too far into the LVOT will overestimate the extent of the PVR as the jet widens. Due to the complexity and difficulty in determining the PVR severity, Pibarot et al. [31] have suggested a 5-class grading scale for more accurate assessment of PVR.

Outcome comparison between intraprocedural TTE versus TEE

With the rapid adoption of TAVR for the treatment of severe aortic stenosis and the increased experience of operators with pre-TAVR planning and device implantation, there has been a gradual transition to improve the quality and cost of care for the TAVR population. In the early experience of TAVR implantation, TEE was used to assist with valve sizing, to monitor for appropriate valve placement across the aortic valve annulus and to identify procedural complications rapidly. However, newer generation device registries suggest that there is a temporal trend towards simplified or “minimalist” TAVR, with the use of local anesthesia and conscious sedation under TTE guidance and the avoidance of invasive hemodynamic monitoring, general anesthesia, and TEE that characterized the early TAVR experience [32, 33].
At the center of the debate for TEE-guided TAVR versus TTE-guided TAVR is the detection of PVR. This is because major complications are usually quickly identified due to hemodynamic instability. Rapid conversion to general anesthesia and placement of a TEE probe can then quickly be performed. Correct device placement has been shown to be effective with angiographic guidance [29] and, thus, has become less reliant on echo. The presence of moderate or greater perivalvular leak, defined using the Valve Academic Research Consortium 2 guidelines, has been identified as a risk factor for post-procedural mortality and impaired left ventricular remodeling [30, 3438].
The evaluation of PVR by both TTE and TEE can be difficult and thus, skill is required to acquire and interpret the images. The metallic annulus of the deployed valve along with the compacted calcified valve leads to significant acoustic shadowing of the valvular annulus. It is also difficult to follow the true path of the perivalvular leak, as the regurgitant blood likely follows a non-linear pathway around the valvular annulus leading to over- and underestimation of the significance of each regurgitant lesion. Pre-procedural planning using multi-detector computed tomography may assist in the identification of those patients at increased risk of hemodynamically significant PVR, as data suggest that valve calcium score, extremes of implantation depth and valve under-sizing are predictive of greater than moderate perivalvular regurgitation [34, 39]. Abdel-Wahab and colleagues also suggest that pre-procedural use of TEE for determination of valve size is associated with moderate perivalvular regurgitation [40]. Patients with these factors may require extra care in identifying hemodynamically significant PVR. Regardless, post-procedure TTE and intra-procedure TEE have modest agreement in the detection of PVR [14, 41].
The adoption of minimalist TAVR has been extensively studied. The adoption of a minimalist TAVR protocol including local anesthesia combined with conscious sedation, angiographic placement of the TAVR valve, and use of post-procedure TTE has shown to require less procedural adrenergic support [42] and has led to a significantly decreased procedure time [13, 4345]. Patients undergoing minimalist TAVR also have decreased post-procedural monitoring in the cardiac intensive care unit [13, 43, 46] and decreased hospital length of stay [13, 43, 44, 47]. This decreased length of stay translates into decreased cost of hospitalization [13, 47]. Importantly, there is no significant increase in significant PVR, major complications or mortality with minimalist TAVR [13, 4245, 4750]. These profound effects on patient care have led to the development of care pathways to improve and expedite safe and high-quality post-procedure TAVR care [5155].

Transition from TEE to TTE during the TAVR procedure

As the learning curve and experience of the operator increase with the number of procedures performed, the transition from conventional approach with general anesthesia and TEE to the minimalist approach with MAC and TTE is possible. However, the change should be performed in a stepwise fashion and fulfilling specific requirements. In general, centers with low volume (< 50/year) and, thus, less experience would not be advised to adopt the minimalistic approach [56, 57]. Highly experienced sonographers or physicians with extensive training in TAVR imaging are pivotal for this transition. Moreover, the immediate availability of non-invasive cardiologist or anesthesiologist with expertise in TAVR imaging and the ability to quickly switch from TTE to TEE is mandatory.
The transition from the conventional to the minimalist approach is recommended once a center has achieved sufficient experience with TAVR. There is no specific number to determine the appropriate time for safe transition to the minimalistic approach, but in general, approximately one hundred cases is considered to be an acceptable transitional point. During the pre-transition phase, the selected sonographers or physicians that will be performing the TTE imaging during the TAVR procedure should undergo extensive training for TAVR imaging. The training should include an understanding of the aorto-annular anatomy, AV stenosis assessment, the correct positioning of the different THV utilized in the institution, and the methods of assessing complications including PVR and annulus perforation using multiple continuous sweeps and off-axis views. A clear and well-established protocol for periprocedural TTE assessment of TAVR should be reviewed by the TAVR team and approved by the director of the echo lab to ensure a comprehensive assessment of the AV. Table 5 is the protocol adopted by our echo lab for TAVR imaging.
Table 5
Transthoracic echocardiographic protocol for TAVR deployment
View
Imaging
Pre-deployment of TAVR
 PLAX
Zoom/Res over aortic valve with and without color
Sweep with color on starting at aortic valve level into both RVOT & RVIT to evaluate for PVR
 PLAX, PSAX at LV level*, A2C, A3C, A4C
Evaluate for wall motion abnormalities and pericardial effusion
 PSAX AV level
Zoom/Res over aortic valve with and without color
Sweep with color on starting at aortic valve level up to the left ventricle to evaluate for PVR
 A5C
Zoom/Res over aortic valve with and without color
Sweep with color starting at aortic valve level up to the Left ventricle to evaluate for PVR
Surgical team to evaluate the limited echo/fluoroscopy to decide to pull lead wire or to post-dilate the aortic THV if clinically indicated
If post-dilation was performed, repeat the pre-deployment imaging protocol
After lead wire removal
 Repeat the pre-deployment imaging protocol
  MV and TV in best window**
Color Doppler to assess for regurgitation
  A3C, A5C
Obtain CW Doppler of AV and PW Doppler at the LVOT
  PLAX, PSAX at LV level*, A2C, A3C, A4C
Evaluate for wall motion abnormalities and pericardial effusion
 Record standard measurements if image quality allows
A2C apical 2-chamber, A3C apical 3-chamber, A4C apical 4-chamber, A5C apical 5-chamber, AV aortic valve, CW continuous-wave, LV left ventricle, LVOT left ventricular outflow tract, MV mitral valve, PLAX parasternal long-axis, PSAX parasternal short-axis, PVR paravalvular regurgitation, PW pulsed-wave, RVIT right ventricular inflow tract, RVOT right ventricular outflow tract, TC tricuspid valve
aPSAX at the basal, mid, and apical levels of the LV
bPLAX, RVIT, PSAX at TC level, PSAX at MV level, A2C, A3C, A4C, subcostal views
Finally, it is essential to establish a TAVR team consisting of the interventional cardiologist, cardiothoracic surgeon, anesthesiologists and non-invasive cardiac imagers. All cases should be discussed ahead of time to determine the risk of the procedure and whether general anesthesia and TEE are needed based on the patient’s characteristics and the selected access site. In addition, it is critical to distribute a weekly updated list of the TAVR procedures to the assigned team members performing the procedure.

Conclusion

TAVR has become the standard of care for the management of those with symptomatic severe AS and high or prohibitive surgical risk and a reasonable option for those at intermediate risk. The indications for TAVR have expanded rapidly over the last decade. As a result, there has been a dramatic increase in the number of TAVR procedure performed worldwide. A minimalistic approach utilizing MAC and TTE procedural guidance has emerged as a safe and efficient approach in the appropriate patients in institutions with adequate experience with TAVR without compromising the procedural success and clinical outcomes.

Compliance with ethical standards

Conflict of interest

Menhel Kinno, Eric P. Cantey and Vera H. Rigolin declare that they have no conflict of interest.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Radiologie

Kombi-Abonnement

Mit e.Med Radiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Radiologie, den Premium-Inhalten der radiologischen Fachzeitschriften, inklusive einer gedruckten Radiologie-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–607.CrossRefPubMed Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–607.CrossRefPubMed
2.
Zurück zum Zitat Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011;364:2187–98.CrossRef Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011;364:2187–98.CrossRef
3.
Zurück zum Zitat Makkar RR, Fontana GP, Jilaihawi H, et al. Transcatheter aortic-valve replacement for inoperable severe aortic stenosis. N Engl J Med. 2012;366:1696–704.CrossRefPubMed Makkar RR, Fontana GP, Jilaihawi H, et al. Transcatheter aortic-valve replacement for inoperable severe aortic stenosis. N Engl J Med. 2012;366:1696–704.CrossRefPubMed
4.
Zurück zum Zitat Adams DH, Popma JJ, Reardon MJ, et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med. 2014;370:1790–8.CrossRefPubMed Adams DH, Popma JJ, Reardon MJ, et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med. 2014;370:1790–8.CrossRefPubMed
5.
Zurück zum Zitat Nishimura RA, Otto CM, Bonow RO, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC Guideline for the management of patients with valvular heart disease: a report of the american college of cardiology/American heart association task force on clinical practice guidelines. J Am Coll Cardiol. 2017;70:252–89.CrossRefPubMed Nishimura RA, Otto CM, Bonow RO, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC Guideline for the management of patients with valvular heart disease: a report of the american college of cardiology/American heart association task force on clinical practice guidelines. J Am Coll Cardiol. 2017;70:252–89.CrossRefPubMed
6.
Zurück zum Zitat Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017;38:2739–91.CrossRef Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017;38:2739–91.CrossRef
7.
Zurück zum Zitat Leon MB, Smith CR, Mack MJ, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374:1609–20.CrossRefPubMed Leon MB, Smith CR, Mack MJ, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374:1609–20.CrossRefPubMed
8.
Zurück zum Zitat Reardon MJ, Van Mieghem NM, Popma JJ, et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2017;376:1321–31.CrossRef Reardon MJ, Van Mieghem NM, Popma JJ, et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2017;376:1321–31.CrossRef
9.
Zurück zum Zitat Grover FL, Vemulapalli S, Carroll JD, et al. 2016 Annual Report of The Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry. J Am Coll Cardiol. 2017;69:1215–30.CrossRefPubMed Grover FL, Vemulapalli S, Carroll JD, et al. 2016 Annual Report of The Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry. J Am Coll Cardiol. 2017;69:1215–30.CrossRefPubMed
10.
Zurück zum Zitat Holmes DR Jr, Nishimura RA, Grover FL, et al. Annual outcomes with transcatheter valve therapy: from the STS/ACC TVT registry. Ann Thorac Surg. 2016;101:789–800.CrossRefPubMed Holmes DR Jr, Nishimura RA, Grover FL, et al. Annual outcomes with transcatheter valve therapy: from the STS/ACC TVT registry. Ann Thorac Surg. 2016;101:789–800.CrossRefPubMed
11.
Zurück zum Zitat Thyregod HG, Steinbruchel DA, Ihlemann N, et al. Transcatheter versus surgical aortic valve replacement in patients with severe aortic valve stenosis: 1-year results from the all-comers NOTION randomized clinical trial. J Am Coll Cardiol. 2015;65:2184–94.CrossRefPubMed Thyregod HG, Steinbruchel DA, Ihlemann N, et al. Transcatheter versus surgical aortic valve replacement in patients with severe aortic valve stenosis: 1-year results from the all-comers NOTION randomized clinical trial. J Am Coll Cardiol. 2015;65:2184–94.CrossRefPubMed
12.
Zurück zum Zitat Gurevich S, Oestreich B, Kelly RF, et al. Outcomes of transcatheter aortic valve replacement using a minimalist approach. Cardiovasc Revasc Med. 2018;19:192–5.CrossRefPubMed Gurevich S, Oestreich B, Kelly RF, et al. Outcomes of transcatheter aortic valve replacement using a minimalist approach. Cardiovasc Revasc Med. 2018;19:192–5.CrossRefPubMed
13.
Zurück zum Zitat Babaliaros V, Devireddy C, Lerakis S, et al. Comparison of transfemoral transcatheter aortic valve replacement performed in the catheterization laboratory (minimalist approach) versus hybrid operating room (standard approach): outcomes and cost analysis. JACC Cardiovasc Interv. 2014;7:898–904.CrossRefPubMed Babaliaros V, Devireddy C, Lerakis S, et al. Comparison of transfemoral transcatheter aortic valve replacement performed in the catheterization laboratory (minimalist approach) versus hybrid operating room (standard approach): outcomes and cost analysis. JACC Cardiovasc Interv. 2014;7:898–904.CrossRefPubMed
14.
Zurück zum Zitat Hayek SS, Corrigan FE 3rd, Condado JF, et al. Paravalvular regurgitation after transcatheter aortic valve replacement: comparing transthoracic versus transesophageal echocardiographic guidance. J Am Soc Echocardiogr. 2017;30:533–40.CrossRefPubMed Hayek SS, Corrigan FE 3rd, Condado JF, et al. Paravalvular regurgitation after transcatheter aortic valve replacement: comparing transthoracic versus transesophageal echocardiographic guidance. J Am Soc Echocardiogr. 2017;30:533–40.CrossRefPubMed
15.
Zurück zum Zitat Khalique OK, Hahn RT, Gada H, et al. Quantity and location of aortic valve complex calcification predicts severity and location of paravalvular regurgitation and frequency of post-dilation after balloon-expandable transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2014;7:885–94.CrossRefPubMed Khalique OK, Hahn RT, Gada H, et al. Quantity and location of aortic valve complex calcification predicts severity and location of paravalvular regurgitation and frequency of post-dilation after balloon-expandable transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2014;7:885–94.CrossRefPubMed
16.
Zurück zum Zitat Hansson NC, Norgaard BL, Barbanti M, et al. The impact of calcium volume and distribution in aortic root injury related to balloon-expandable transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr. 2015;9:382–92.CrossRefPubMed Hansson NC, Norgaard BL, Barbanti M, et al. The impact of calcium volume and distribution in aortic root injury related to balloon-expandable transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr. 2015;9:382–92.CrossRefPubMed
17.
Zurück zum Zitat Baumgartner H, Hung J, Bermejo J, et al. Recommendations on the Echocardiographic Assessment of Aortic Valve Stenosis: a Focused Update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2017;30:372–92.CrossRefPubMed Baumgartner H, Hung J, Bermejo J, et al. Recommendations on the Echocardiographic Assessment of Aortic Valve Stenosis: a Focused Update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2017;30:372–92.CrossRefPubMed
18.
Zurück zum Zitat Piazza N, de Jaegere P, Schultz C, et al. Anatomy of the aortic valvar complex and its implications for transcatheter implantation of the aortic valve. Circ Cardiovasc Interv. 2008;1:74–81.CrossRefPubMed Piazza N, de Jaegere P, Schultz C, et al. Anatomy of the aortic valvar complex and its implications for transcatheter implantation of the aortic valve. Circ Cardiovasc Interv. 2008;1:74–81.CrossRefPubMed
19.
Zurück zum Zitat Kasel AM, Cassese S, Bleiziffer S, et al. Standardized imaging for aortic annular sizing: implications for transcatheter valve selection. JACC Cardiovasc Imaging. 2013;6:249–62.CrossRefPubMed Kasel AM, Cassese S, Bleiziffer S, et al. Standardized imaging for aortic annular sizing: implications for transcatheter valve selection. JACC Cardiovasc Imaging. 2013;6:249–62.CrossRefPubMed
20.
Zurück zum Zitat Hahn RT, Nicoara A, Kapadia S, et al. Echocardiographic imaging for transcatheter aortic valve replacement. J Am Soc Echocardiogr. 2018;31:405–33.CrossRefPubMed Hahn RT, Nicoara A, Kapadia S, et al. Echocardiographic imaging for transcatheter aortic valve replacement. J Am Soc Echocardiogr. 2018;31:405–33.CrossRefPubMed
21.
Zurück zum Zitat Pontone G, Andreini D, Bartorelli AL, et al. Aortic annulus area assessment by multidetector computed tomography for predicting paravalvular regurgitation in patients undergoing balloon-expandable transcatheter aortic valve implantation: a comparison with transthoracic and transesophageal echocardiography. Am Heart J. 2012;164:576–84.CrossRefPubMed Pontone G, Andreini D, Bartorelli AL, et al. Aortic annulus area assessment by multidetector computed tomography for predicting paravalvular regurgitation in patients undergoing balloon-expandable transcatheter aortic valve implantation: a comparison with transthoracic and transesophageal echocardiography. Am Heart J. 2012;164:576–84.CrossRefPubMed
22.
Zurück zum Zitat Tsang JF, Lytwyn M, Farag A, et al. Multimodality imaging of aortic dimensions: comparison of transthoracic echocardiography with multidetector row computed tomography. Echocardiography. 2012;29:735–41.CrossRefPubMed Tsang JF, Lytwyn M, Farag A, et al. Multimodality imaging of aortic dimensions: comparison of transthoracic echocardiography with multidetector row computed tomography. Echocardiography. 2012;29:735–41.CrossRefPubMed
23.
Zurück zum Zitat Tsuneyoshi H, Komiya T, Shimamoto T. Accuracy of aortic annulus diameter Measurement: comparison of multi-detector CT, two- and three-dimensional echocardiography. J Card Surg. 2016;31:18–22.CrossRefPubMed Tsuneyoshi H, Komiya T, Shimamoto T. Accuracy of aortic annulus diameter Measurement: comparison of multi-detector CT, two- and three-dimensional echocardiography. J Card Surg. 2016;31:18–22.CrossRefPubMed
24.
Zurück zum Zitat Husser O, Holzamer A, Resch M, et al. Prosthesis sizing for transcatheter aortic valve implantation–comparison of three dimensional transesophageal echocardiography with multislice computed tomography. Int J Cardiol. 2013;168:3431–8.CrossRefPubMed Husser O, Holzamer A, Resch M, et al. Prosthesis sizing for transcatheter aortic valve implantation–comparison of three dimensional transesophageal echocardiography with multislice computed tomography. Int J Cardiol. 2013;168:3431–8.CrossRefPubMed
25.
Zurück zum Zitat Janosi RA, Plicht B, Kahlert P, et al. Quantitative analysis of aortic valve stenosis and aortic root dimensions by three-dimensional echocardiography in patients scheduled for transcutaneous aortic valve implantation. Curr Cardiovasc Imaging Rep. United States2014:9296. Janosi RA, Plicht B, Kahlert P, et al. Quantitative analysis of aortic valve stenosis and aortic root dimensions by three-dimensional echocardiography in patients scheduled for transcutaneous aortic valve implantation. Curr Cardiovasc Imaging Rep. United States2014:9296.
26.
Zurück zum Zitat Jilaihawi H, Doctor N, Kashif M, et al. Aortic annular sizing for transcatheter aortic valve replacement using cross-sectional 3-dimensional transesophageal echocardiography. J Am Coll Cardiol. 2013;61:908–16.CrossRefPubMed Jilaihawi H, Doctor N, Kashif M, et al. Aortic annular sizing for transcatheter aortic valve replacement using cross-sectional 3-dimensional transesophageal echocardiography. J Am Coll Cardiol. 2013;61:908–16.CrossRefPubMed
27.
Zurück zum Zitat Khalique OK, Kodali SK, Paradis JM, et al. Aortic annular sizing using a novel 3-dimensional echocardiographic method: use and comparison with cardiac computed tomography. Circ Cardiovasc Imaging. 2014;7:155–63.CrossRefPubMed Khalique OK, Kodali SK, Paradis JM, et al. Aortic annular sizing using a novel 3-dimensional echocardiographic method: use and comparison with cardiac computed tomography. Circ Cardiovasc Imaging. 2014;7:155–63.CrossRefPubMed
28.
Zurück zum Zitat Tamborini G, Fusini L, Muratori M, et al. Feasibility and accuracy of three-dimensional transthoracic echocardiography vs. multidetector computed tomography in the evaluation of aortic valve annulus in patient candidates to transcatheter aortic valve implantation. Eur Heart J Cardiovasc. Imaging. 2014;15:1316–23. Tamborini G, Fusini L, Muratori M, et al. Feasibility and accuracy of three-dimensional transthoracic echocardiography vs. multidetector computed tomography in the evaluation of aortic valve annulus in patient candidates to transcatheter aortic valve implantation. Eur Heart J Cardiovasc. Imaging. 2014;15:1316–23.
29.
Zurück zum Zitat Attizzani GF, Ohno Y, Latib A, et al. Transcatheter aortic valve implantation under angiographic guidance with and without adjunctive transesophageal echocardiography. Am J Cardiol. 2015;116:604–11.CrossRefPubMed Attizzani GF, Ohno Y, Latib A, et al. Transcatheter aortic valve implantation under angiographic guidance with and without adjunctive transesophageal echocardiography. Am J Cardiol. 2015;116:604–11.CrossRefPubMed
30.
Zurück zum Zitat Kappetein AP, Head SJ, Genereux P, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document. J Am Coll Cardiol. 2012;60:1438–54.CrossRefPubMed Kappetein AP, Head SJ, Genereux P, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document. J Am Coll Cardiol. 2012;60:1438–54.CrossRefPubMed
31.
Zurück zum Zitat Pibarot P, Hahn RT, Weissman NJ, et al. Assessment of paravalvular regurgitation following TAVR: a proposal of unifying grading scheme. JACC Cardiovasc Imaging. 2015;8:340–60.CrossRefPubMed Pibarot P, Hahn RT, Weissman NJ, et al. Assessment of paravalvular regurgitation following TAVR: a proposal of unifying grading scheme. JACC Cardiovasc Imaging. 2015;8:340–60.CrossRefPubMed
32.
Zurück zum Zitat Wendler O, Schymik G, Treede H, et al. SOURCE 3: 1-year outcomes post-transcatheter aortic valve implantation using the latest generation of the balloon-expandable transcatheter heart valve. Eur Heart J. 2017;38:2717–26.CrossRefPubMedPubMedCentral Wendler O, Schymik G, Treede H, et al. SOURCE 3: 1-year outcomes post-transcatheter aortic valve implantation using the latest generation of the balloon-expandable transcatheter heart valve. Eur Heart J. 2017;38:2717–26.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Auffret V, Lefevre T, Van Belle E, et al. Temporal trends in transcatheter aortic valve replacement in France: FRANCE 2 to FRANCE TAVI. J Am Coll Cardiol. 2017;70:42–55.CrossRefPubMed Auffret V, Lefevre T, Van Belle E, et al. Temporal trends in transcatheter aortic valve replacement in France: FRANCE 2 to FRANCE TAVI. J Am Coll Cardiol. 2017;70:42–55.CrossRefPubMed
34.
Zurück zum Zitat Athappan G, Patvardhan E, Tuzcu EM, et al. Incidence, predictors, and outcomes of aortic regurgitation after transcatheter aortic valve replacement: meta-analysis and systematic review of literature. J Am Coll Cardiol. 2013;61:1585–95.CrossRef Athappan G, Patvardhan E, Tuzcu EM, et al. Incidence, predictors, and outcomes of aortic regurgitation after transcatheter aortic valve replacement: meta-analysis and systematic review of literature. J Am Coll Cardiol. 2013;61:1585–95.CrossRef
35.
Zurück zum Zitat Kodali S, Pibarot P, Douglas PS, et al. Paravalvular regurgitation after transcatheter aortic valve replacement with the Edwards sapien valve in the PARTNER trial: characterizing patients and impact on outcomes. Eur Heart J. 2015;36:449–56.CrossRefPubMed Kodali S, Pibarot P, Douglas PS, et al. Paravalvular regurgitation after transcatheter aortic valve replacement with the Edwards sapien valve in the PARTNER trial: characterizing patients and impact on outcomes. Eur Heart J. 2015;36:449–56.CrossRefPubMed
36.
Zurück zum Zitat Tamburino C, Capodanno D, Ramondo A, et al. Incidence and predictors of early and late mortality after transcatheter aortic valve implantation in 663 patients with severe aortic stenosis. Circulation. 2011;123:299–308.CrossRef Tamburino C, Capodanno D, Ramondo A, et al. Incidence and predictors of early and late mortality after transcatheter aortic valve implantation in 663 patients with severe aortic stenosis. Circulation. 2011;123:299–308.CrossRef
37.
Zurück zum Zitat Zahn R, Gerckens U, Linke A, et al. Predictors of one-year mortality after transcatheter aortic valve implantation for severe symptomatic aortic stenosis. Am J Cardiol. 2013;112:272–9.CrossRefPubMed Zahn R, Gerckens U, Linke A, et al. Predictors of one-year mortality after transcatheter aortic valve implantation for severe symptomatic aortic stenosis. Am J Cardiol. 2013;112:272–9.CrossRefPubMed
38.
Zurück zum Zitat Abdel-Wahab M, Zahn R, Horack M, et al. Aortic regurgitation after transcatheter aortic valve implantation: incidence and early outcome. Results from the German transcatheter aortic valve interventions registry. Heart. 2011;97:899–906.CrossRefPubMed Abdel-Wahab M, Zahn R, Horack M, et al. Aortic regurgitation after transcatheter aortic valve implantation: incidence and early outcome. Results from the German transcatheter aortic valve interventions registry. Heart. 2011;97:899–906.CrossRefPubMed
39.
Zurück zum Zitat Watanabe Y, Lefevre T, Arai T, et al. Can we predict postprocedural paravalvular leak after Edwards SAPIEN transcatheter aortic valve implantation? Catheter Cardiovasc Interv. 2015;86:144–51.CrossRefPubMed Watanabe Y, Lefevre T, Arai T, et al. Can we predict postprocedural paravalvular leak after Edwards SAPIEN transcatheter aortic valve implantation? Catheter Cardiovasc Interv. 2015;86:144–51.CrossRefPubMed
40.
Zurück zum Zitat Abdel-Wahab M, Comberg T, Buttner HJ, et al. Aortic regurgitation after transcatheter aortic valve implantation with balloon- and self-expandable prostheses: a pooled analysis from a 2-center experience. JACC Cardiovasc Interv. 2014;7:284–92.CrossRefPubMed Abdel-Wahab M, Comberg T, Buttner HJ, et al. Aortic regurgitation after transcatheter aortic valve implantation with balloon- and self-expandable prostheses: a pooled analysis from a 2-center experience. JACC Cardiovasc Interv. 2014;7:284–92.CrossRefPubMed
41.
Zurück zum Zitat Teeter EG, Dakik C, Cooter M, et al. Assessment of paravalvular leak after transcatheter aortic valve replacement: transesophageal echocardiography compared with transthoracic echocardiography. J Cardiothorac Vasc Anesth. 2017;31:1278–84.CrossRefPubMed Teeter EG, Dakik C, Cooter M, et al. Assessment of paravalvular leak after transcatheter aortic valve replacement: transesophageal echocardiography compared with transthoracic echocardiography. J Cardiothorac Vasc Anesth. 2017;31:1278–84.CrossRefPubMed
42.
Zurück zum Zitat Motloch LJ, Rottlaender D, Reda S, et al. Local versus general anesthesia for transfemoral aortic valve implantation. Clin Res Cardiol. 2012;101:45–53.CrossRefPubMed Motloch LJ, Rottlaender D, Reda S, et al. Local versus general anesthesia for transfemoral aortic valve implantation. Clin Res Cardiol. 2012;101:45–53.CrossRefPubMed
43.
Zurück zum Zitat Yamamoto M, Meguro K, Mouillet G, et al. Effect of local anesthetic management with conscious sedation in patients undergoing transcatheter aortic valve implantation. Am J Cardiol. 2013;111:94–9.CrossRefPubMed Yamamoto M, Meguro K, Mouillet G, et al. Effect of local anesthetic management with conscious sedation in patients undergoing transcatheter aortic valve implantation. Am J Cardiol. 2013;111:94–9.CrossRefPubMed
44.
Zurück zum Zitat Frohlich GM, Lansky AJ, Webb J, et al. Local versus general anesthesia for transcatheter aortic valve implantation (TAVR)–systematic review and meta-analysis. BMC Med. 2014;12:41.CrossRefPubMedPubMedCentral Frohlich GM, Lansky AJ, Webb J, et al. Local versus general anesthesia for transcatheter aortic valve implantation (TAVR)–systematic review and meta-analysis. BMC Med. 2014;12:41.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Sengupta PP, Wiley BM, Basnet S, et al. Transthoracic echocardiography guidance for TAVR under monitored anesthesia care. JACC Cardiovasc Imaging. 2015;8:379–80.CrossRefPubMed Sengupta PP, Wiley BM, Basnet S, et al. Transthoracic echocardiography guidance for TAVR under monitored anesthesia care. JACC Cardiovasc Imaging. 2015;8:379–80.CrossRefPubMed
46.
Zurück zum Zitat Jensen HA, Condado JF, Devireddy C, et al. Minimalist transcatheter aortic valve replacement: the new standard for surgeons and cardiologists using transfemoral access? J Thorac Cardiovasc Surg. 2015;150:833–9.CrossRefPubMed Jensen HA, Condado JF, Devireddy C, et al. Minimalist transcatheter aortic valve replacement: the new standard for surgeons and cardiologists using transfemoral access? J Thorac Cardiovasc Surg. 2015;150:833–9.CrossRefPubMed
47.
Zurück zum Zitat Attizzani GF, Alkhalil A, Padaliya B, et al. Comparison of outcomes of transfemoral transcatheter aortic valve implantation using a minimally invasive versus conventional strategy. Am J Cardiol. 2015;116:1731–6.CrossRefPubMed Attizzani GF, Alkhalil A, Padaliya B, et al. Comparison of outcomes of transfemoral transcatheter aortic valve implantation using a minimally invasive versus conventional strategy. Am J Cardiol. 2015;116:1731–6.CrossRefPubMed
48.
Zurück zum Zitat Oguri A, Yamamoto M, Mouillet G, et al. Clinical outcomes and safety of transfemoral aortic valve implantation under general versus local anesthesia: subanalysis of the French Aortic National CoreValve and Edwards 2 registry. Circ Cardiovasc Interv. 2014;7:602–10.CrossRefPubMed Oguri A, Yamamoto M, Mouillet G, et al. Clinical outcomes and safety of transfemoral aortic valve implantation under general versus local anesthesia: subanalysis of the French Aortic National CoreValve and Edwards 2 registry. Circ Cardiovasc Interv. 2014;7:602–10.CrossRefPubMed
49.
Zurück zum Zitat Durand E, Borz B, Godin M, et al. Transfemoral aortic valve replacement with the Edwards SAPIEN and Edwards SAPIEN XT prosthesis using exclusively local anesthesia and fluoroscopic guidance: feasibility and 30-day outcomes. JACC Cardiovasc Interv. 2012;5:461–7.CrossRefPubMed Durand E, Borz B, Godin M, et al. Transfemoral aortic valve replacement with the Edwards SAPIEN and Edwards SAPIEN XT prosthesis using exclusively local anesthesia and fluoroscopic guidance: feasibility and 30-day outcomes. JACC Cardiovasc Interv. 2012;5:461–7.CrossRefPubMed
50.
Zurück zum Zitat Bergmann L, Kahlert P, Eggebrecht H, et al. Transfemoral aortic valve implantation under sedation and monitored anaesthetic care—a feasibility study. Anaesthesia. 2011;66:977–82.CrossRefPubMed Bergmann L, Kahlert P, Eggebrecht H, et al. Transfemoral aortic valve implantation under sedation and monitored anaesthetic care—a feasibility study. Anaesthesia. 2011;66:977–82.CrossRefPubMed
51.
Zurück zum Zitat Lauck SB, Wood DA, Achtem L, et al. Risk stratification and clinical pathways to optimize length of stay after transcatheter aortic valve replacement. Can J Cardiol. 2014;30:1583–7.CrossRefPubMed Lauck SB, Wood DA, Achtem L, et al. Risk stratification and clinical pathways to optimize length of stay after transcatheter aortic valve replacement. Can J Cardiol. 2014;30:1583–7.CrossRefPubMed
52.
Zurück zum Zitat Lauck SB, Wood DA, Baumbusch J, et al. Vancouver transcatheter aortic valve replacement clinical pathway: minimalist approach, standardized care, and discharge criteria to reduce length of stay. Circ Cardiovasc Qual Outcomes. 2016;9:312–21.CrossRefPubMed Lauck SB, Wood DA, Baumbusch J, et al. Vancouver transcatheter aortic valve replacement clinical pathway: minimalist approach, standardized care, and discharge criteria to reduce length of stay. Circ Cardiovasc Qual Outcomes. 2016;9:312–21.CrossRefPubMed
53.
Zurück zum Zitat Noad RL, Johnston N, McKinley A, et al. A pathway to earlier discharge following TAVI: assessment of safety and resource utilization. Catheter Cardiovasc Interv. 2016;87:134–42.CrossRefPubMed Noad RL, Johnston N, McKinley A, et al. A pathway to earlier discharge following TAVI: assessment of safety and resource utilization. Catheter Cardiovasc Interv. 2016;87:134–42.CrossRefPubMed
54.
Zurück zum Zitat Serletis-Bizios A, Durand E, Cellier G, et al. A prospective analysis of early discharge after transfemoral transcatheter aortic valve implantation. Am J Cardiol. 2016;118:866–72.CrossRefPubMed Serletis-Bizios A, Durand E, Cellier G, et al. A prospective analysis of early discharge after transfemoral transcatheter aortic valve implantation. Am J Cardiol. 2016;118:866–72.CrossRefPubMed
55.
Zurück zum Zitat Durand E, Eltchaninoff H, Canville A, et al. Feasibility and safety of early discharge after transfemoral transcatheter aortic valve implantation with the Edwards SAPIEN-XT prosthesis. Am J Cardiol. 2015;115:1116–22.CrossRefPubMed Durand E, Eltchaninoff H, Canville A, et al. Feasibility and safety of early discharge after transfemoral transcatheter aortic valve implantation with the Edwards SAPIEN-XT prosthesis. Am J Cardiol. 2015;115:1116–22.CrossRefPubMed
56.
Zurück zum Zitat Carroll JD, Vemulapalli S, Dai D, et al. Procedural experience for transcatheter aortic valve replacement and relation to outcomes: the STS/ACC TVT registry. J Am Coll Cardiol. 2017;70:29–41.CrossRefPubMed Carroll JD, Vemulapalli S, Dai D, et al. Procedural experience for transcatheter aortic valve replacement and relation to outcomes: the STS/ACC TVT registry. J Am Coll Cardiol. 2017;70:29–41.CrossRefPubMed
57.
Zurück zum Zitat Wassef AWA, Rodes-Cabau J, Liu Y, et al. The learning curve and annual procedure volume standards for optimum outcomes of transcatheter aortic valve replacement: findings from an international registry. JACC Cardiovasc Interv. 2018;11:1669–79.CrossRefPubMed Wassef AWA, Rodes-Cabau J, Liu Y, et al. The learning curve and annual procedure volume standards for optimum outcomes of transcatheter aortic valve replacement: findings from an international registry. JACC Cardiovasc Interv. 2018;11:1669–79.CrossRefPubMed
Metadaten
Titel
The transition from transesophageal to transthoracic echocardiography during transcatheter aortic valve replacement: an evolving field
verfasst von
Menhel Kinno
Eric P. Cantey
Vera H. Rigolin
Publikationsdatum
21.11.2018
Verlag
Springer Japan
Erschienen in
Journal of Echocardiography / Ausgabe 1/2019
Print ISSN: 1349-0222
Elektronische ISSN: 1880-344X
DOI
https://doi.org/10.1007/s12574-018-0409-1

Weitere Artikel der Ausgabe 1/2019

Journal of Echocardiography 1/2019 Zur Ausgabe

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.