Skip to main content

Quantitative Imaging-Based Dosimetry and Treatment Planning in Radionuclide Therapy

  • Chapter
Quantitative Analysis in Nuclear Medicine Imaging
  • 1954 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ICRU, International Commission on Radiation Units and Measurements; Report No. 33, 1980.

    Google Scholar 

  2. ICRP, International Commission on Radiological Protection; Publication 60, 1991.

    Google Scholar 

  3. Loevinger R., Budinger, T. F. and Watson, E. E., MIRD primer for absorbed dose calculations, Revised. The Society of Nuclear Medicine, New York, (1991).

    Google Scholar 

  4. Cristy M. and Eckerman, K. F., Oak Ridge National Laboratory; Report No. ORNL/TM-8381/V1 to ORNL/TM-8381/V7, 1987.

    Google Scholar 

  5. Stabin M. G. and Konijnenberg, M. W., Re-evaluation of absorbed fractions for photons and electrons in spheres of various sizes. J Nucl Med 41: 149–160 (2000).

    Google Scholar 

  6. Lathrop K. A., Johnston, R. E., Blau, M. et al., MIRD Dose Estimate Report No. 1: selenium-75-L-selenomethionine. J Nucl Med 14: 49–50 (1973).

    Google Scholar 

  7. Cloutier R. J., Watson, E. E., Hayes, R. L. et al., MIRD Dose Estimate Report No. 2: Summary of current radiation dose estimates to humans from 66Ga-, 68Ga-, and 72Ga-citrate. J Nucl Med 14: 755–756 (1973).

    Google Scholar 

  8. Atkins H. L., Cloutier, R. J., Lathrop, K. A. et al., MIRD Dose Estimate Report No. 3: Technetium-99m-sulfur colloid in various liver conditions. J Nucl Med 16: 108A–108B (1975).

    Google Scholar 

  9. Cloutier R. J., Freeman, L. M., Mc Afee, J. G. et al., MIRD Dose Estimate Report No. 4: Au-198-Colloidal Gold in Various Liver Conditions. J Nucl Med 16: 173–174 (1975).

    Google Scholar 

  10. Berman M., Braverman, L. E., Burke, J. et al., MIRD Dose Estimate Report No. 5: I-123, I-124, I-125, I-126, I-130, I-131 and I-132 as Sodium Iodide. J Nucl Med 16: 857–860 (1975).

    Google Scholar 

  11. Blau M., Mc Afee, J. G., Rohrer, W. S. et al., MIRD Dose Estimate Report No. 6: Hg-197-and Hg-203-Labeled Chlormerodrin. J Nucl Med 16: 1095–1098 (1975).

    Google Scholar 

  12. Freeman L. M., Patton, D. D., Rosenthall, L. et al., MIRD Dose Estimate Report No. 7: Summary of current radiation dose estimates to humans from 123I, 124I, 126I, 130I, and 131I as sodium rose bengal. J Nucl Med 16: 1214–1217 (1975).

    Google Scholar 

  13. Lathrop K. A., Atkins, H. L., Berman, M. et al., MIRD Dose Estimate Report No. 8: Summary of current radiation dose estimates to normal humans from 99mTc as sodium pertechnetate. J Nucl Med 17: 74–77 (1976).

    Google Scholar 

  14. Atkins H. L., Robertson, J. S., Croft, B. Y. et al., MIRD Dose Estimate Report No. 9: Radioxenons in Lung Imaging. J Nucl Med 21: 459–465 (1980).

    Google Scholar 

  15. Blau M., Wicks, R., Thomas, S. R. et al., MIRD Dose Estimate Report No. 10: Albumin microspheres labeled with Tc-99m. J Nucl Med 23: 915–917 (1982).

    Google Scholar 

  16. Robertson J. S., Price, R. R., Budinger, T. F. et al., MIRD Dose Estimate Report No. 11: Fe-52, Fe-55, and Fe-59 Used to study Ferrokinetics. J Nucl Med 24: 339–348 (1983).

    Google Scholar 

  17. Thomas S. R., Atkins, H. L., Mc Afee, J. G. et al., MIRD Dose Estimate Report No. 12: Tc-99m-diethylenetriaminepentaacetic acid. J Nucl Med 25: 503–505 (1984).

    Google Scholar 

  18. Weber D. A., Makler, P. T., Jr., Watson, E. E. et al., MIRD Dose Estimate Report No. 13: Radiation absorbed dose from technetium-99m-labeled bone imaging agents. J Nucl Med 30: 1117–1122 (1989).

    Google Scholar 

  19. Atkins H. L., Thomas, S. R., Buddemeyer, U. et al., MIRD Dose Estimate Report No. 14: Radiation absorbed dose from technetium-99m-labeled red blood cells. J Nucl Med 31: 378–380 (1990).

    Google Scholar 

  20. Robertson J. S., Ezekowitz, M. D., Dewanjee, M. K. et al., MIRD Dose Estimate Report No. 15: Radiation absorbed dose estimates for radioindium-labeled autologous platelets. J Nucl Med 33: 777–780 (1992).

    Google Scholar 

  21. Atkins H. L., Weber, D. A., Susskind, H. et al., MIRD Dose Estimate Report No. 16: Radiation absorbed dose from technetium-99m-diethylenetriaminepentaacetic acid aerosol. J Nucl Med 33: 1717–1719 (1992).

    Google Scholar 

  22. Atkins H. L., Robertson, J. S. and Akabani, G., MIRD Dose Estimate Report No. 17: Radiation absorbed dose estimates from inhaled krypton-81m gas in lung imaging. J Nucl Med 34: 1382–1384 (1993).

    Google Scholar 

  23. Mardirossian G., Brill, A. B., Harwood, S. J. et al., MIRD Dose Estimate Report No. 18: Radiation absorbed dose estimates for indium-111-labeled B72.3, an IgG antibody to ovarian and colorectal cancer. J Nucl Med 39: 671–676 (1998).

    Google Scholar 

  24. Weber D. A., Eckerman, K. F., Dillman, L. T. et al., MIRD: Radionuclide data and decay schemes, The Society of Nuclear Medicine, New York, (1989).

    Google Scholar 

  25. Stabin M. G., Siegel, J., Hunt, J. et al., RADAR — the radiation dose assessment resource. An online source of dose information for nuclear medicine and occupational radiation safety. [abstract] J Nucl Med 42: 243P (2001).

    Google Scholar 

  26. Snyder W. S., Ford, M. R., Warner, G. G. et al., MIRD Pamphlet No. 11:’ s’, Absorbed dose per unit cumulated activity for selected radionuclides and organs, The Society of Nuclear Medicine, New York, (1975).

    Google Scholar 

  27. Snyder W., Ford, M., Warner, G. et al., Oak Ridge National Laboratory; Report No. ORNL-5000, 1975.

    Google Scholar 

  28. ICRP, ICRP publication 30. Limits for intakes of radionuclides by workers, Pergamon Press, New York, (1979).

    Google Scholar 

  29. Stabin M. G., MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 37: 538–546 (1996).

    Google Scholar 

  30. Stabin M. G. and Sparks, R. B., MIRDOSE4 does not exist. [abstract] J Nucl Med Supplement 40: 309P (1999).

    Google Scholar 

  31. Stabin M. G. and da Luz, C. Q. P. L., New decay data for internal and external dose assessment. Health Phys 83: 471–475 (2002).

    Article  Google Scholar 

  32. Stabin M. G. and Siegel, J. A., Physical models and dose factors for use in internal dose assessment. Health Phys 85: 294–310 (2003).

    Article  Google Scholar 

  33. ICRU, International Commission on Radiation Units and Measurements; Report No. ICRU Report 67, 2002.

    Google Scholar 

  34. Siegel J. A., Thomas, S. R., Stubbs, J. B. et al., MIRD Pamphlet No. 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 40: 37S–61S (1999).

    Google Scholar 

  35. King M. A., Glick, S. J., Pretorius, P. H. et al., “Attenuation, scatter, and spatial resolution compensation in SPECT.” in: Emission Tomography: The Fundamentals of PET and SPECT, edited by M Wernick and J Aarsvold Academic Press, San Diego, (2004), in press

    Google Scholar 

  36. Foster D. and Barrett, P., “Developing and testing integrated multicompartment models to describe a single-input multiple-output study using the SAAM II software system.” Proc. Sixth International Radiopharmaceutical Dosimetry Symposium, Oak Ridge, TN: Oak Ridge Associated Universities, pp 577–599 (1999).

    Google Scholar 

  37. Snyder W. S., Ford, M. R., Warner, G. G. et al., MIRD Pamphlet No. 5: Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. J Nucl Med 10:Suppl 3: 5–52 (1969).

    Google Scholar 

  38. ICRP, ICRP publication 23. Report of a task group on reference man. Pergamon Press, New York, (1975).

    Google Scholar 

  39. Snyder W. S., Ford, M. R. and Warner, G. G., MIRD Pamphlet No. 5 (Revised): Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom., The Society of Nuclear Medicine, New York, (1978).

    Google Scholar 

  40. Stabin M. G., Watson, E. E., Cristy, M. et al., Oak Ridge National Laboratory; Report No. ORNL/TM-12907, 1995.

    Google Scholar 

  41. Eckerman K., Cristy, M. and Warner, G., “Dosimetric evaluation of brain scanning agents.” Proceeding of Third International Radiopharmaceutical Dosimetry Symposium. HHS Publication FDA 81-8166, pp 527–540 (1981).

    Google Scholar 

  42. Holman B., Zimmerman, R., Shapiro, J. et al., Biodistribution and dosimetry of n-isoproyl p-123I iodoamphetamine in the primate. J Nucl Med 24: 922–931 (1983).

    Google Scholar 

  43. Bouchet L. G. and Bolch, W. E., Five pediatric head and brain mathematical models for use in internal dosimetry. J Nucl Med 40: 1327–1336 (1999).

    Google Scholar 

  44. Watson E. E., Stabin, M. G., Davis, J. L. et al., A model of the peritoneal cavity for use in internal dosimetry. J Nucl Med 30: 2002–2011 (1989).

    Google Scholar 

  45. Stabin M. G., A model of the prostate gland for use in internal dosimetry. J Nucl Med 35: 516–520 (1994).

    Google Scholar 

  46. Eckerman K. F. and Stabin, M. G., Electron absorbed fractions and dose conversion factors for marrow and bone by skeletal regions. Health Phys 78: 199–214 (2000).

    Article  Google Scholar 

  47. Bouchet L. G., Bolch, W. E., Howell, R. W. et al., S values for radionuclides localized within the skeleton. J Nucl Med 41: 189–212 (2000).

    Google Scholar 

  48. Mardirossian G., Tagesson, M., Blanco, P. et al., A new rectal model for dosimetry applications. J Nucl Med 40: 1524–1531 (1999).

    Google Scholar 

  49. Siegel J. A. and Stabin, M. G., Absorbed fractions for electrons and beta particles in spheres of various sizes. J Nucl Med 35: 152–156 (1994).

    Google Scholar 

  50. Spiers F. W., “Beta dosimetry in trabecular bone” in: Delayed Effects of Bone-Seeking Radionuclides., edited by C.W. Mays Univ of Utah Press, Salt Lake City, UT, (1969), pp 95–108.

    Google Scholar 

  51. Stabin M., Eckerman, K., Bolch, W. et al., Evolution and status of bone and marrow dose models. Cancer Biother Radiopharm 17: 427–433 (2002).

    Article  Google Scholar 

  52. Jokisch D. W., Patton, P. W., Inglis, B. A. et al., NMR microscopy of trabecular bone and its role in skeletal dosimetry. Health Phys 75: 584–596 (1998).

    Article  Google Scholar 

  53. Williams L. E., Liu, A., Raubitschek, A. A. et al., A method for patient-specific absorbed dose estimation for internal beta emitters. Clin Cancer Res 5: 3015s–3019s (1999).

    Google Scholar 

  54. Bolch W. E., Bouchet, L. G., Robertson, J. S. et al., MIRD pamphlet No. 17: The dosimetry of nonuniform activity distributions. Radionuclide S values at the voxel level. J Nucl Med 40: 11S–36S (1999).

    Google Scholar 

  55. Watson E. E. and Stabin, M. G., “BASIC alternative software package for internal dose calculations.” Computer Applications in Health Physics, Proceedings of the 17th Midyear Topical Symposium of the Health Physics society, Pasco, WA, Feb 5–9, 1984, pp 79–86 (1984).

    Google Scholar 

  56. Johnson T. K., McClure, D. and McCourt, S., MABDOSE. I: Characterization of a general purpose dose estimation code. Med Phys 26: 1389–1395 (1999).

    Article  Google Scholar 

  57. Sgouros G., Chiu, S., Pentlow, K. S. et al., Three-dimensional dosimetry for radioimmunotherapy treatment planning. J Nucl Med 34: 1595–1601 (1993).

    Google Scholar 

  58. Kolbert K. S., Sgouros, G., Scott, A. M. et al., Implementation and evaluation of patient-specific three-dimensional internal dosimetry. J Nucl Med 38: 301–308 (1997).

    Google Scholar 

  59. Tagesson M., Ljungberg, M. and Strand, S. E., “The SIMDOS Monte Carlo code for conversion of activity distributions to absorbed dose and dose-rate distributions.” Sixth International Radiopharmaceutical Dosimetry Symposium, Oak Ridge, TN: Oak Ridge Associated Universities, pp 425–440 (1999).

    Google Scholar 

  60. Liu A., Williams, L. E., Lopatin, G. et al., A radionuclide therapy treatment planning and dose estimation system. J Nucl Med 40: 1151–1153 (1999).

    Google Scholar 

  61. Clairand I., Ricard, M., Gouriou, J. et al., DOSE3D: EGS4 Monte Carlo code-based software for internal radionuclide dosimetry. J Nucl Med 40: 1517–1523 (1999).

    Google Scholar 

  62. Salvat F., Fernandez-Varea, J., Costa, E. et al., PENELOPE — A Code System for Monte Carlo Simulation of Electron and Photon Transport, Workshop Proceedings, Issy-les-Moulineaux, France, 5–7 November 2001, (2001).

    Google Scholar 

  63. Bielajew A. F. and Rogers, D. W. O., PRESTA: The Parameter reduced electron-step transport algorithm for electron Monte Carlo transport. Nucl Instrum Methods Phys Res A B18: 165–181 (1987).

    Google Scholar 

  64. Briesmeister J. F., Los Alamos National Laboratory, NM; Report No. LA-13709-M, 2000.

    Google Scholar 

  65. Yoriyaz H., Stabin, M. G. and dos Santos, A., Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry. J Nucl Med 42: 662–669 (2001).

    Google Scholar 

  66. Stabin M. G. and Yoriyaz, H., Photon specific absorbed fractions calculated in the trunk of an adult male voxel-based phantom. Health Phys 82: 21–44 (2002).

    Article  Google Scholar 

  67. Zubal I. G., Harrell, C. R., Smith, E. O. et al., Computerized 3-dimensional segmented human anatomy. Med Phys 21: 299–302 (1994).

    Article  Google Scholar 

  68. Chao T. C., Bozkurt, A. and Xu, X. G., Organ dose conversion coefficients for 0.1–10 MeV electrons calculated for the VIP-Man tomographic model. Health Phys 81: 203–214 (2001).

    Article  Google Scholar 

  69. Bozkurt A., Xu, X. G. and Chao, T. C., Fluence-to-dose conversion coefficients from monoenergetic neutrons below 20 MeV based on the VIP-man anatomical model. Phys Med Biol 45: 3059–3079 (2000).

    Article  Google Scholar 

  70. Xu X. G., Chao, T. C. and Bozkurt, A., VIP-Man: an image-based whole-body adult male model constructed from color photographs of the Visible Human Project for multi-particle Monte Carlo calculations. Health Phys 78: 476–486 (2000).

    Article  Google Scholar 

  71. Jones D. G., A realistic anthropomorphic phantom for calculating specific absorbed fractions of energy deposited from internal gamma emitters. Radiat Prot Dosimetry 79: 411–414 (1998).

    Google Scholar 

  72. Petoussi-Henss N., Zanki, M., Fill, U. et al., The GSF family of voxel phantoms. Phys Med Biol 47: 89–106 (2002).

    Article  Google Scholar 

  73. Dawant B. M., Zijdenbos, A. P. and Margolin, R. A., Correction of intensity variations in MR images for computer-aided tissue classification. IEEE Trans Med Imaging 12: 770–781 (1993).

    Article  Google Scholar 

  74. Maurer C. R., Fitzpatrick, J. M., Wang, M. Y. et al., Registration of head volume images using implantable fiducial markers. IEEE Trans Med Imaging 16: 447–462 (1997).

    Article  Google Scholar 

  75. Snyder W., “Estimates of absorbed fraction of energy from photon sources in body organs.” Medical Radionuclides: Radiation Dose and Effects. CONF-691212 AEC Symposium Series 20, pp 33–50 (1970).

    Google Scholar 

  76. Emami B., Lyman, J., Brown, A. et al., Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21: 109–122 (1991).

    Google Scholar 

  77. Meredith R. F. and Knox, S., Radioimmunotherapy of B-cell NHL. Curr Pharm Biotechnol 2: 327–339 (2001).

    Article  Google Scholar 

  78. Siegel J. A., Wessels, B. W. and Watson, E. E., Bone marrow dosimetry and toxicity for radioimmunotherapy. Antibody Immunoconj Radiopharm 3: 213–233 (1990).

    Google Scholar 

  79. Siegel J. A., Lee, R. E., Pawlyk, D. A. et al., Sacral scintigraphy for bone marrow dosimetry in radioimmunotherapy. Int J Rad Appl Instrum 16: 553–559 (1989).

    Google Scholar 

  80. DeNardo D., DeNardo, G., O’Donnell, R. et al., Imaging for improved prediction of myelotoxicity after radioimmunotherapy. Cancer 15: 2558–2566 (1997).

    Article  Google Scholar 

  81. Lim S., DeNardo, G., DeNardo, D. et al., Prediction of myelotoxicity using radiation doses to marrow from body, blood and marrow sources. J Nucl Med 38: 1374–1378 (1997).

    Google Scholar 

  82. Breitz H., Fisher, D. and Wessels, B., Marrow toxicity and radiation absorbed dose estimates from rhenium-186-labeled monoclonal antibody. J Nucl Med 39: 1746–1751 (1998).

    Google Scholar 

  83. Eary J., Krohn, K., Press, O. et al., Importance of pre-treatment radiation absorbed dose estimation for radioimmunotherapy of non-Hodgkin’s lymphoma. Nucl Med Biol 24: 635–638 (1997).

    Article  Google Scholar 

  84. Behr T. M., Sharkey, R. M., Juweid, M. E. et al., “Hematological Toxicity in the Radioimmunotherapy of Solid Cancers with 131I-Labeled Anti-CEA NP-4 IgG1: Dependence on Red Marrow Dosimetry and Pretreatment.” Proceedings of Sixth International Radiopharmaceutical Dosimetry Symposium, Oak Ridge, TN: Oak Ridge Associated Universities, Vol. I; pp 113–125 (1999).

    Google Scholar 

  85. Juweid M., Zhang, C., Blumenthal, R. et al., Prediction of hematologic toxicity after radioimmunotherapy with (131)I-labeled anticarcinoembryonic antigen monoclonal antibodies. J Nucl Med 40: 1609–1616 (1999).

    Google Scholar 

  86. Erdi A. K., Erdi, Y. E., Yorke, E. D. et al., Treatment planning for radioimmunotherapy. Phys Med Biol 41: 2009–2026 (1996).

    Article  Google Scholar 

  87. DeNardo G., DeNardo, S., Macey, D. et al., Overview of radiation myelotoxicity secondary to radioimmunotherapy using 131I-Lym-1 as a model. Cancer 73: 1038–1048 (1994).

    Article  Google Scholar 

  88. Gray B., Burton, M., Kelleher, D. et al., Tolerance of the liver to the effects of Yttrium-90 radiation. Int J Radiat Oncol Biol Phys 18: 619–623 (1990).

    Google Scholar 

  89. Behr T. M., Sharkey, R. M., Sgouros, G. et al., Overcoming the nephrotoxicity of radiometal-labeled immunoconjugates: improved cancer therapy administered to a nude mouse model in relation to the internal radiation dosimetry. Cancer 80: 2591–2610 (1997).

    Article  Google Scholar 

  90. Behr T., Goldenberg, D. and Becker, W., Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med 25: 201–212 (1998).

    Article  Google Scholar 

  91. Behr T., Béhé, M., Kluge, G. et al., Nephrotoxicity versus anti-tumour efficacy in radiopeptide therapy: facts and myths about the Scylla and Charybdis. Eur J Nucl Med Mol Imaging 29: 277–279 (2002).

    Article  Google Scholar 

  92. Behr T. M., Béhé, M., Angerstein, C. et al., Radiopeptide therapy with cholecystokinin (CCK)-B/gastrin receptor ligands:toxicity and therapeutic efficacy of Auger e-versus or emitters. [abstract] J Nucl Med 42: 68P (2001).

    Google Scholar 

  93. Willins J. D. and Sgouros, G., Modeling analysis of platinum-195m for targeting individual blood-borne cells in adjuvant radioimmunotherapy. J Nucl Med 36: 315–319 (1995).

    Google Scholar 

  94. Howell R. W., Kassis, A. I., Adelstein, S. J. et al., Radiotoxicity of platinum-195m-labeled trans-platinum (II) in mammalian cells. Radiat Res 140: 55–62 (1994).

    Google Scholar 

  95. Demidecki A. J., Williams, L. E., Wong, J. Y. et al., Considerations on the calibration of small thermoluminescent dosimeters used for measurement of beta particle absorbed doses in liquid environments. Med Phys 20: 1079–1087 (1993).

    Article  Google Scholar 

  96. Yorke E. D., Williams, L. E., Demidecki, A. J. et al., Multicellular dosimetry for beta-emitting radionuclides: autoradiography, thermoluminescent dosimetry and three-dimensional dose calculations. Med Phys 20: 543–550 (1993).

    Article  Google Scholar 

  97. Gladstone D. J., Lu, X. Q., Humm, J. L. et al., A miniature MOSFET radiation dosimeter probe. Med Phys 21: 1721–1728 (1994).

    Article  Google Scholar 

  98. Gladstone D. J. and Chin, L. M., Real-time, in vivo measurement of radiation dose during radioimmunotherapy in mice using a miniature MOSFET dosimeter probe. Radiat Res 141: 330–335 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Stabin, M.G., Brilly, A.B. (2006). Quantitative Imaging-Based Dosimetry and Treatment Planning in Radionuclide Therapy. In: Zaidi, H. (eds) Quantitative Analysis in Nuclear Medicine Imaging. Springer, Boston, MA. https://doi.org/10.1007/0-387-25444-7_17

Download citation

Publish with us

Policies and ethics