Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdou IM, Sartor V, Cao H, Schuster GB (2001) Long-distance radical cation migration in Z-form DNA. J Am Chem Soc 123:6696–6697

    Article  PubMed  CAS  Google Scholar 

  • Abdoul-Carine H, Huels MA, Illenberger E, Sanche L (2001) Sensitizing DNA to secondary electron damage: resonant formation of oxidative radicals from 5-halouracils. J Am Chem Soc 123:5354–5355

    Google Scholar 

  • Abel J, de Ruiter N (1989) Inhibition of hydroxyl-radical-generated DNA degradation by metallothionein. Toxicol Lett 47:191–196

    Article  PubMed  CAS  Google Scholar 

  • Absalon MJ, Krishnamoorthy CR, McGall G, Kozarich JW, Stubbe J (1992) Bleomycin mediated degradation of DNA-RNA hybrids does not involve C-1′ chemistry. Nucleic Acids Res 20:4179–4185

    PubMed  CAS  Google Scholar 

  • Absalon MJ, Kozarich JW, Stubbe J (1995) Sequence-specific double-strand cleavage of DNA by Febleomycin. I. The detection of sequence-specific double-strand breaks using hairpin oligonucleotides. Biochemistry 34:2065–2075

    PubMed  CAS  Google Scholar 

  • Adam W, Arnold MA, Saha-Möller CR (2001a) Photooxidative damage of guanine in DG and DNA by the radicals derived from the α cleavage of the electronically excited carbonyl products generated in the thermolysis of alkoxymethyl-substituted dioxetanes and the photolysis of alkoxyacetones. J Org Chem 66:597–604

    PubMed  CAS  Google Scholar 

  • Adam W, Arnold MA, Nau WM, Pischel U, Saha-Möller CR (2001b) Structure-dependent reactivity of oxyfunctionalized acetophenones in the photooxidation of DNA: base oxidation and strand breaks through photolytical radical formation (spin trapping, EPR spectroscopy, transient kinetics) versus photosensitization (electron transfer, hydrogen-atom-abstraction). Nucleic Acids Res 29:4955–4962

    Article  PubMed  CAS  Google Scholar 

  • Adams GE (1977) Hypoxic cell sensitizers for radiotherapy. In: Becker FF (ed) Radiotherapy, surgery, and immunotherapy. Plenum Press, New York, pp 181–223

    Google Scholar 

  • Adams GE (1985) Cellular fast-mixing techniques: possible applications with particle beams. Radiat Res 104:S40–S46

    Google Scholar 

  • Adams GE, Cooke MS (1969) Electron-affinic sensitization. I. A structural basis for chemical radiosensitizers in bacteria. Int J Radiat Biol 15:457–471

    CAS  Google Scholar 

  • Adams GE, Dewey DL (1963) Hydrated electrons and radiobiological sensitisation. Biochem Biophys Res Commun 12:473–477

    Article  PubMed  CAS  Google Scholar 

  • Adams GE, Jameson DG (1980) Time effects in molecular radiation biology. Radiat Environ Biophys 17:95–113

    Article  PubMed  CAS  Google Scholar 

  • Adams GE, Asquith JC, Watts ME (1974) Electron-affinic sensitizers for hypoxic cells irradiated in vitro and in vivo: Current status. In: Advances in chemical radiosensitization. International Atomic Energy Agency, Vienna, pp 1–12

    Google Scholar 

  • Adams GE, Flockhart IR, Smithen CE, Stratford IJ, Wardman P, Watts ME (1976a) Electron-affinic sensitization. VII. A correlation between structures, one-electron reduction potentials, and efficiencies of nitroimidazoles as hypoxic cell radiosensitizers. Radiat Res 67:9–20

    PubMed  CAS  Google Scholar 

  • Adams GE, Agnew DA, Stratford IJ, Wardman P (1976b) Applications of pulse radiolysis and cellular fast-mixing techniques to the study of radiation damage in cells. In: Booz J, Ebert HG, Smith BGC (eds) Fifth Symp. Microdosimetry Verbania Pallanza, Italy 22–26 9.1975. Euratom Com. Europ. Communities, Luxembourg, pp 17–40

    Google Scholar 

  • Adams GE, Clarke ED, Flockhart IR, Jacobs RS, Sehmi DS, Stratford IJ, Wardman P, Watts ME, Parrick J, Wallace RG, Smithen CE (1979) Structure-activity relationships in the development of hypoxic cell radiosensitizers. I. Sensitization efficiency. Int J Radiat Biol 35:133–150

    CAS  Google Scholar 

  • Adams GE, Fielden EM, Hardy C, Millar BC, Stratford IJ, Williamson C (1981) Radiosensitization of hypoxic mammalian cells in vitro by some 5-substituted-4-nitroimidazoles. Int J Radiat Biol 40:153–162

    CAS  Google Scholar 

  • Adhikary A, Bothe E, Jain V, von Sonntag C (1997a) Inhibition of radiation-induced DNA strand breaks by Hoechst 33258: OH-radical scavenging and DNA radical quenching. Radioprotection 32:C1-89–C1-90

    Google Scholar 

  • Adhikary A, Bothe E, von Sonntag C, Jain V (1997b) DNA radioprotection by bisbenzimidazole derivative Hoechst 33258: model studies on the nucleotide level. Radiat Res 148:493–494

    CAS  Google Scholar 

  • Adhikary A, Bothe E, Jain V, von Sonntag C (2000) Pulse radiolysis of the DNA-binding bisbenzimidazole derivatives Hoechst 33258 and 33342 in aqueous solution. Int J Radiat Biol 76:1157–1166

    PubMed  CAS  Google Scholar 

  • Adhikary A, Buschmann V, Müller C, Sauer M (2003) Ensemble and single-molecule fluorescence spectroscopic study of the binding modes of the bis-benzimidazole derivative Hoechst 33258 with DNA. Nucleic Acids Res 31:2178–2186

    Article  PubMed  CAS  Google Scholar 

  • Ajmera S, Wu JC, Worth J, Rabow LE, Stubbe J, Kozarich JW (1986) DNA degradation by bleomycin: evidence for 2′R-proton abstraction and for C-O bond cleavage accompanying base propenal formation. Biochemistry 25:6586–6592

    Article  PubMed  CAS  Google Scholar 

  • Al-Kazwini AT, O’Neill P, Fielden EM (1988) Radiation-induced luminescence from „dry“ and hydrated DNA and related macromolecules. Radiat Phys Chem 32:385–389

    CAS  Google Scholar 

  • Al-Kazwini AT, O’Neill P, Papworth D, Adams GE, Fielden M (1991) Comments on the estimated distance over which electrons can migrate in solid DNA before being trapped by misonidazole. Radiat Res 125:348–349

    PubMed  CAS  Google Scholar 

  • Al-Kazwini AT, Adams GE, O’Neill P, Naylor MA, Fielden EM (1994) Radiation-induced luminescence in DNA: Evidence for long-range electron migration. Radiat Res 138:307–311

    PubMed  CAS  Google Scholar 

  • Alexander P, Charlesby A (1955) Physico-chemical methods of protection against ionizing radiations. In: Bacq ZM, Alexander P (eds) Radiobiology Symposium 1954. Butterworth, London, pp 49–60

    Google Scholar 

  • Alper T (1979) Cellular Radiobiology. University Press, Cambridge

    Google Scholar 

  • Alper T (1983) Oxygen as radiosensitizer: methods of analysis. Int J Radiat Biol 44:313–314

    CAS  Google Scholar 

  • Alper T (1984) Adding two components of radiosensitization by oxygen. Int J Radiat Biol 46:569–585

    CAS  Google Scholar 

  • Altman SA, Zastawny TH, Randers-Eichhorn L, Cacciuttolo MA, Akman SA, Dizdaroglu M, Rao G (1995) Formation of DNA-protein cross-links in cultured mammalian cells upon treatment with iron ions. Free Radical Biol Med 19:897–902

    Article  CAS  Google Scholar 

  • Ames BN (1983) Dietary carcinogens and anticarcinogens. Science 221:1256–1264

    PubMed  CAS  Google Scholar 

  • Ames BN, Shigenaga MK (1992) DNA damage by endogenous oxidants and mitogenesis as causes of aging and cancer. Curr Comm Cell Molec Biol 5:1–22

    CAS  Google Scholar 

  • Anbar M, Meyerstein D, Neta P (1966) Reactivity of aliphatic compounds towards hydroxyl radicals. J Chem Soc Perkin Trans 2 742–747

    Google Scholar 

  • Anderson RF, Wright GA (1999) Energetics and rate of electron transfer in DNA from base radial anions to electron-affinic intercalators in aqueous solution. Phys Chem Chem Phys 1:4827–4831

    CAS  Google Scholar 

  • Anderson RF, Patel KB, Wilson WR (1991) Pulse radiolysis studies of electron migration in DNA from DNA base-radical anions to nitroacridine intercalators in aqueous solution. J Chem Soc Faraday Trans 87:3739–3746

    CAS  Google Scholar 

  • Anderson RF, Fisher LJ, Hara Y, Harris T, Mak WB, Melton LD, Packer JE (2001) Green tea catechins partially protect DNA from OH radical-induced strand breaks and base damage through fast chemical repair of DNA radicals. Carcinogenesis 22:1189–1193

    PubMed  CAS  Google Scholar 

  • Anderson RF, Harris TA, Hay MP, Denny WA (2003a) Enhanced conversion of DNA radical damage to double strand breaks by 1,2,4-benzotriazine 1,4-dioxides linked to a DNA binder compared to tirapazamine. Chem Res Toxicol 16:1477–1483

    Article  PubMed  CAS  Google Scholar 

  • Anderson RF, Shinde SS, Hay MP, Gamage SA, Denny WA (2003b) Activation of 3-amino-1,2,4-benzotriazine 1,4-dioxide antitumor agents to oxidizing species following their one-electron reduction. J Am Chem Soc 125:748–756

    PubMed  CAS  Google Scholar 

  • Andrews J, Martin-Bertram H, Hagen U (1984) S1 nuclease-sensitive sites in yeast DNA: an assay for radiation-induced base damage. Int J Radiat Biol 45:497–504

    CAS  Google Scholar 

  • Antoku S (1983) Radiosensitization and radioprotection of E. coli by thiourea in nitrous oxide saturated suspensions. Int J Radiat Biol 43:451–458

    CAS  Google Scholar 

  • Arkin MR, Stemp EDA, Holmlin RE, Barton JK, Hörmann A, Olson EJC, Barbara PF (1996) Rates of DNA-mediated electron transfer between metallointercalators. Science 273:475–480

    PubMed  CAS  Google Scholar 

  • Armitage B (1998) Photocleavage of nucleic acids. Chem Rev 98:1171–1200

    Article  PubMed  CAS  Google Scholar 

  • Ayaki H, Yamamoto O, Sawada S (1987) Role of the main cytosine radiolytic product in ionizing radiation-induced mutagenesis. J Radiat Res 28:254–261

    PubMed  CAS  Google Scholar 

  • Ayene IS, Koch CJ, Krisch RE (1995) Role of scavenger-derived radicals in the induction of double-strand and single-strand breaks in irradiated DNA. Radiat Res 142:133–143

    PubMed  CAS  Google Scholar 

  • Babkina OV, Chutko CA, Shaskov AA, Dzhidzhoev MS (2002) Iodouracil-mediated photocrosslinking of DNA to EcoRII restriction endonuclease in catalytic conditions. Photochem Photobiol Sci 1:636–640

    Article  PubMed  CAS  Google Scholar 

  • Bakale G, Gregg EC (1978) Conjecture on the role of dry charges in radiosensitization. Br J Cancer 37Suppl. III:24–28

    CAS  Google Scholar 

  • Balasubramanian B, Pogozelski WK, Tullius TD (1998) DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc Natl Acad Sci USA 95:9738–9743

    Article  PubMed  CAS  Google Scholar 

  • Bales BC, Pitié M, Meunier B, Greenberg MM (2002) A minor groove binding copper-phenanthroline conjugate produces direct strand breaks via β-elimination of 2-deoxyribonolactone. J Am Chem Soc 124:9062–9063

    Article  PubMed  CAS  Google Scholar 

  • Bar-Or D, Winkler JV (2002) Copper is involved in hydrogen-peroxide-induced DNA damage. Free Radical Biol Med 32:197–198

    Article  CAS  Google Scholar 

  • Barbouti A, Doulias P-T, Zhu B-Z, Frei B, Galaris D (2001) Intercellular iron, but not copper, plays a critical role in hydrogen peroxide-induced DNA damage. Free Radical Biol Med 31:490–498

    Article  CAS  Google Scholar 

  • Barciszewski J, Siboska GE, Pedersen BO, Clark BFC, Rattan SIS (1996) Evidence for the presence of kinetin in DNA and cell extracts. FEBS Lett 393:197–200

    Article  PubMed  CAS  Google Scholar 

  • Barciszewski J, Siboska GE, Pedersen BO, Clark BFC, Rattan SIS (1997) A mechanism for the in vivo formation of N6-furfuryladenine, kinetin, as a secondary damage product of DNA. FEBS Lett 414:457–460

    Article  PubMed  CAS  Google Scholar 

  • Barciszewski J, Barciszewska MZ, Siboska G, Rattan SIS, Clark BFC (1999) Some unusual nucleic acid bases are products of hydroxyl radical oxidation of DNA and RNA. Mol Biol Reports 26:231–238

    CAS  Google Scholar 

  • Barciszewski J, Mielcarek M, Stobiecki M, Siboska G, Clark BFC (2000) Identification of 6-furfuryladenine (kinetin) in human urine. Biochem Biophys Res Commun 279:69–73

    Article  PubMed  CAS  Google Scholar 

  • Bashkin JS, Tullius TD (1993) Hydroxyl radical footprinting. In: Revzin A (ed) Footprinting of nucleic acid-protein complexes. Academic Press, San Diego, pp 75–106

    Google Scholar 

  • Bashkin J, Hayes JJ, Tullius TD, Wolffe AP (1993) Structure of DNA in a nucleosome core at high salt concentration and at high temperature. Biochemistry 32:1895–1898

    Article  PubMed  CAS  Google Scholar 

  • Becker D, Sevilla MD (1998) Radiation damage to DNA and related biomolecules. Electron Paramagn Reson 16:79–115

    CAS  Google Scholar 

  • Becker D, La Vere T, Sevilla MD (1994) ESR detection at 77 K of the hydroxyl radical in the hydration layer of gamma-irradiated DNA. Radiat Res 140:123–129

    PubMed  CAS  Google Scholar 

  • Becker D, Bryant-Friedrich A, Trzasko C-A, Sevilla MD (2003) Electron spin resonance study of DNA irradiated with an argon-ion beam: evidence for formation of sugar phosphate backbone radicals. Radiat Res 160:174–185

    PubMed  CAS  Google Scholar 

  • Beesk F, Dizdaroglu M, Schulte-Frohlinde D, von Sonntag C (1979) Radiation-induced DNA strand breaks in deoxygenated aqueous solution. The formation of altered sugars as end groups. Int J Radiat Biol 36:565–576

    CAS  Google Scholar 

  • Begusova M, Tartier L, Syt D, Spotheim-Maurizot M, Michalik V, Charlier M (1999) Monte Carlo simulation of radiolytic attack to 5′-d[T4G4]4 sequence in a unimolecular quadruplex. Int J Radiat Biol 75:913–917

    PubMed  CAS  Google Scholar 

  • Begusova M, Spotheim-Maurizot M, Michalik V, Charlier M (2000a) Effect of ethidium bromide intercalation on DNA radiosensitivity. Int J Radiat Biol 76:1–9

    PubMed  CAS  Google Scholar 

  • Begusova M, Sy D, Charlier M, Spotheim-Maurizot M (2000b) Radiolysis of nucleosome core DNA: a modelling approach. Int J Radiat Biol 76:1063–1073

    PubMed  CAS  Google Scholar 

  • Begusova M, Eon S, Sy D, Culard F, Charlier M, Spotheim-Maurizot M (2001a) Radiosensitivity of DNA in a specific protein-DNA complex: the lac repressor-lac operator complex. Int J Radiat Biol 77:645–654

    PubMed  CAS  Google Scholar 

  • Begusova M, Spotheim-Maurizot M, Sy D, Michalik V, Charlier M (2001b) RADACK, a stochastic simulation of hydroxyl radical attack on DNA. J Biomol Struc Dyn 19:141–158

    CAS  Google Scholar 

  • Begusova M, Gillard N, Sy D, Castaing B, Charlier M, Spotheim-Mauizot M (2005) Radiolysis of DNA-protein complexes. Radiat Phys Chem 72:265–270

    Article  CAS  Google Scholar 

  • Bellon S, Ravanat J-L, Gasparutto D, Cadet J (2002) Cross-linked thymine-purine base tandem lesions: synthesis, characterization, and measurement in γ-irradiated isolated DNA. Chem Res Toxicol 15:598–606

    Article  PubMed  CAS  Google Scholar 

  • Beratan DN, Priyadarshy S, Risser SM (1997) DNA: insulator or wire? Chem Biol 4:3–8

    Article  PubMed  CAS  Google Scholar 

  • Berlin YA, Burin AL, Ratner MA (2000) On the long-range charge transfer in DNA. J Phys Chem A 104:443–445

    Article  CAS  Google Scholar 

  • Berlin YA, Burin AL, Siebbeles LDA, Ratner MA (2001a) Conformationally gated rate processes in biological macromolecules. J Phys Chem A 105:5666–5678

    Article  CAS  Google Scholar 

  • Berlin YA, Burin AL, Ratner MA (2001b) Charge hopping in DNA. J Am Chem Soc 123:260–269

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt P, Paretzke HG (2003) Calculation of electron impact ionization cross sections of DNA using Deutsch-Märk and Binary-Encounter-Bethe formalisms. Int J Mass Spectrom 223–224:599–611

    Google Scholar 

  • Bernhardt P, Friedland W, Jacob P, Paretzke HG (2003) Modeling of ultrasoft X ray induced DNA damage using structured higher order DNA targets. Int J Mass Spectrom 223–224:579–597

    Google Scholar 

  • Bernhardt P, Friedland W, Paretzke HG (2004) The role of atomic inner shell relaxations for photon-induced DNA damage. Radiat Environ Biophys 43:77–84

    Article  PubMed  CAS  Google Scholar 

  • Bernhard WA, Close DM (2003) DNA damage dictates the biological consequences of ionizing radiation: the chemical pathways. In: Mozumder A, Hatano Y (eds) Charged particle and photon interactions with matter. Marcel Dekker, New York, pp 431–470

    Google Scholar 

  • Bernhard WA, Mroczka N, Barnes J (1994) Combination is the dominant free radical process initiated in DNA by ionizing radiation: an overview based on solid-state EPR studies. Int J Radiat Biol 66:491–497

    PubMed  CAS  Google Scholar 

  • Bertinchamps AJ, Hüttermann J, Köhnlein W, Téoule R (1978) Effects of ionizing radiation on DNA. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Biaglow JE, Varnes ME, Clark EP, Epp ER (1983) The role of thiols in cellular response to radiation and drugs. Radiat Res 95:437–455

    PubMed  CAS  Google Scholar 

  • Birincioglu M, Jaruga P, Chowdhury G, Rodriguez G, Dizdaroglu M, Gates KS (2003) DNA base danage by the antitumor agent 3-amino-1,2,4-benzotriazine 1,4-doxide (tirapazamine). J Am Chem Soc 125:11607–11615

    Article  PubMed  CAS  Google Scholar 

  • Bixon M, Jortner J (2001) Hole trapping, detrapping and hopping in DNA. J Phys Chem A 105:10322–10328

    Article  CAS  Google Scholar 

  • Bixon M, Jortner J (2002) Long-range and very long-range charge transport in DNA. Chem Phys 281:393–408

    Article  CAS  Google Scholar 

  • Bixon M, Giese B, Wessely S, Langenbacher T, Michel-Beyerle ME, Jortner J (1999) Long-range charge hopping in DNA. Proc Natl Acad Sci USA 96:11713–11716

    Article  PubMed  CAS  Google Scholar 

  • Blakely WF, Fuciarelli A, Wegher BJ, Dizdaroglu M (1990) Hydrogen peroxide-induced base damage in deoxyribonucleic acid. Radiat Res 121:338–343

    PubMed  CAS  Google Scholar 

  • Blok J, Loman H (1973) The effects of γ-radiation in DNA. Curr Top Radiat Res Q 9:165–245

    PubMed  CAS  Google Scholar 

  • Boger DL, Teramoto S, Zhou J (1995) Key synthetic analogs of bleomycin A2 that directly addresses the effect and role of the disaccharide: demannosylbleomycin A2 and α-D-mannopyransylglycobleomycin A2. J Am Chem Soc 117:7344–7356

    CAS  Google Scholar 

  • Bonifacic M, Armstrong DA, Stefanic I, Asmus K-D (2003) Kinetic isotope effect for hydrogen abstraction by OH radicals from normal and carbon-deuterated ethyl alcohol in aqueous solution. J Phys Chem B 107:7268–7276

    Article  CAS  Google Scholar 

  • Bonura T, Smith KC (1976) The involvement of indirect effects in cell-killing and DNA double-strand breakage in γ-irradiated Escherichia coli K-12. Int J Radiat Biol 29:293–296

    CAS  Google Scholar 

  • Bothe E, Görner H, Opitz J, Schulte-Frohlinde D, Siddiqi A, Wala M (1990) Single-and double-strand break formation in double-stranded DNA upon nanosecond laser-induced photoionization. Photochem Photobiol 52:949–959

    PubMed  CAS  Google Scholar 

  • Botth VK, Roberts JC, Warters RL, Wilmore BH, Lepock JR (2000) Radioprotective thioleamines WR-1065 and WR-33278 selectively denature nonhistone nuclear proteins. BioOne 153:813–822

    Google Scholar 

  • Boudaiffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000a) Resonant formation of DNA strand breaks by low-energy (2 to 20 eV) electrons. Science 287:1658–1660

    PubMed  CAS  Google Scholar 

  • Boudaiffa B, Hunting D, Cloutier P, Huels MA, Sanche L (2000b) Induction of single-and double-strand breaks in plasmid DNA by 100–1500 eV electrons. Int J Radiat Biol 76:1209–1221

    PubMed  CAS  Google Scholar 

  • Boudaiffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2002) Cross sections for low-energy (10–50 eV) electron damage to DNA. Radiat Res 157:227–234

    PubMed  CAS  Google Scholar 

  • Bourdat A-G, Douki T, Frelon S, Gasparutto D, Cadet J (2000) Tandem base lesions are generated by hydroxyl radical within isolated DNA in aerated aqueous solution. J Am Chem Soc 122:4549–4556

    Article  CAS  Google Scholar 

  • Box HC, Patrzyc HB, Dawidzik JB, Wallace JC, Freund HG, Iijima H, Budzinski EE (2000) Double base lesions in X-irradiated DNA in the presence or absence of oxygen. Radiat Res 153:442–446

    PubMed  CAS  Google Scholar 

  • Bradley MO, Erickson LC (1981) Comparison of the effect of hydrogen peroxide and X-ray irradiation on toxicity, mutation and DNA damage/repair in mammalian cells (V-79). Biochim Biophys Acta 654:135–141

    PubMed  CAS  Google Scholar 

  • Brady LW (1980) Radiation sensitizers: their use in the clinical management of cancer. Masson Publishers, New York

    Google Scholar 

  • Braunlin WH, Strick TJ, Record MT (1982) Equilibrium dialysis studies of polyamine binding to DNA. Biopolymers 21:1301–1314

    Article  PubMed  CAS  Google Scholar 

  • Breen AP, Murphy JA (1995) Reactions of oxyl radicals with DNA. Free Radical Biol Med 18:1033–1077

    Article  CAS  Google Scholar 

  • Bremner I (1987) Interactions between metallothionein and trace elements. Progr Food Nutr Sci 11:1–37

    CAS  Google Scholar 

  • Brenner DJ, Ward JF (1992) Constraints on energy deposition and target size of multiply damaged sites associated with DNA double-strand breaks. Int J Radiat Biol 61:737–748

    PubMed  CAS  Google Scholar 

  • Breusegem SY, Clegg RM, Loontiens FG (2002) Base-sequence specificity of Hoechst 33258 and DAPI binding to five (A/T)4 sites with kinetic evidence for more than one highly-affinic Hoechst 33258-AATT complex. J Mol Biol 315:1049–1061

    Article  PubMed  CAS  Google Scholar 

  • Bridges BA (1969) Sensitization of organisms to radiation by sulfhydryl-binding agents. Adv Radiat Biol 3:123–176

    CAS  Google Scholar 

  • Brooks PJ, Wise DS, Berry DA, Kosmoski JV, Smerdon MJ, Somers RL, Mackie H, Spoonde AY, Ackerman EJ, Coleman K, Tarone RE, Robbins JH (2000) The oxidative DNA lesion 8,5′-(S)-cyclo-2′-deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells. J Biol Chem 275:22355–22362

    PubMed  CAS  Google Scholar 

  • Brown AU, Todd AR (1952) Nucleotides 10. Some observations on the structure and chemical behaviour of the nucleic acids. J Chem Soc 52–58

    Google Scholar 

  • Brown JM (1990) Redox activation of benzotriazine N-oxides: mechanisms and potential as anticancer drugs. In: Adams GE (ed) Selective activation of druges by redox processes; NATO ASI Series A 19. Plenum Press, New York, pp 137–148

    Google Scholar 

  • Brown JM (1993) SR 4233 (Tirapazamin): a new anticancer drug exploiting hypoxia in solid tumors. Br J Cancer 67:1163–1170

    PubMed  CAS  Google Scholar 

  • Brown JM, Wang L-H (1998) Tirapazamine: laboratory data relevant to clinical activity. Anti-Cancer Drug Design 13:529–539

    PubMed  CAS  Google Scholar 

  • Bruckmann E, Wojcik A, Obe G (1999) X-irradiation of G1 CHO cells induces SCE which are both true and false in BrdU-substituted cells but only false in biotin-dUTP-substituted cells. Chromosome Res 7:277–288

    PubMed  CAS  Google Scholar 

  • Brun AM, Harriman A (1994) Energy-and electron-transfer processes involving palladium porphyrins bound to DNA. J Am Chem Soc 116:10383–10393

    Article  CAS  Google Scholar 

  • Brustad T, Wold E (1976) Long-lived species in irradiated N2O-flushed saline phosphate buffer, with toxic effect upon E. coli K-12. Radiat Res 66:215–230

    PubMed  CAS  Google Scholar 

  • Bump EA, Yu NY, Brown JM (1982) The use of drugs which deplete intracellular glutathione in hypoxic cell radiosensitization. Int J Radiat Oncol Biol Phys 8:439–442

    PubMed  CAS  Google Scholar 

  • Burger RM (1998) Cleavage of nucleic acids by bleomycin. Chem Rev 98:1153–1169

    Article  PubMed  CAS  Google Scholar 

  • Burger RM (2000) Nature of activated bleomycin. Struct Bonding 97:288–289

    Google Scholar 

  • Burger RM, Drlica K (1996) Bleomycin reaction pathways: kinetic approaches. In: Meunier B (ed) DNA cleavers and chemotherapy of cancer or viral disease. Kluver, Dordercht, pp 91–106

    Google Scholar 

  • Burger RM, Horwitz SB, Peisach J, Wittenberg JB (1979) Oxygenated iron bleomycin. A short-lived intermediate in the reaction of ferrous bleomycin with O2. J Biol Chem 254:12299–12302

    Google Scholar 

  • Burger RM, Berkowitz AR, Peisach J, Horwitz SB (1980) Origin of malondialdehyde from DNA degraded by Fe(II)bleomycin. J Biol Chem 255:11832–11838

    PubMed  CAS  Google Scholar 

  • Burger RM, Peisach J, Horwitz SB (1982a) Stoichiometry of DNA strand scission and aldehyde formation by bleomycin. J Biol Chem 257:8612–8614

    PubMed  CAS  Google Scholar 

  • Burger RM, Peisach J, Horwitz SB (1982b) Effects of O2 on the reactions of activated bleomycin. J Biol Chem 257:3372–3375

    PubMed  CAS  Google Scholar 

  • Burger RM, Kent TA, Horwitz SB, Münck E, Peisach J (1983) Mössbauer study of iron bleomycin and its activation intermediates. J Biol Chem 258:1559–1564

    PubMed  CAS  Google Scholar 

  • Burger RM, Freedman JH, Horwitz SB, Peisach J (1984) DNA degradation by manganese(I)-bleomycin plus peroxide. Inorg Chem 23:2215–2217

    Article  CAS  Google Scholar 

  • Burger RM, Projan SJ, Horwitz SB, Peisach J (1986) The DNA cleavage mechanism of iron-bleomycin. J Biol Chem 261:15955–15959

    PubMed  CAS  Google Scholar 

  • Burrows CJ, Muller JG (1998) Oxidative nucleobase modifications leading to strand scission. Chem Rev 98:1109–1151

    Article  PubMed  CAS  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J Phys Chem Ref Data 17:513–886

    CAS  Google Scholar 

  • Cadet J, Jouve H, Mouret JF, Foray J, Odin F, Berger M, Polverelli M (1989) Oxidation reactions of DNA within Proteus mirabilis cells exposed to hydrogen peroxide. In: Hayaishi O, Niki E, Kondo M, Yoshikawa T (eds) Medical, Biochemical and Chemical Aspects of Free Radicals. Elsevier, Amsterdam, pp 1517–1520

    Google Scholar 

  • Cadet J, Anselmino C, Douki T, Voituriez L (1992) Photochemistry of nucleic acids in cells. J Photochem Photobiol B: Biol 15:277–298

    CAS  Google Scholar 

  • Cadet J, Bellon S, Berger M, Bourdat A-G, Douki T, Duarte V, Frelon S, Gasparutto D, Muller E, Ravanat J-L, Sauvaigo S (2002) Recent aspects of oxidative DNA damage: guanine lesions, measurements and substrate specificity of DNA glycosylases. Biol Chem 383:933–943

    Article  PubMed  CAS  Google Scholar 

  • Cahill A, White INH (1990) Reductive metabolism of 3-amino-1,2,4-benzotriazine-1,4-dioxide (SR 4233) and the induction of unscheduled DNA synthesis in rat and human derived cell lines. Carcinogenesis 11:1407–1411

    PubMed  CAS  Google Scholar 

  • Cai Z, Sevilla MD (2000) Electron spin resonance study of electron transfer in DNA: inter-double-strand tunneling processes. J Phys Chem B 104:6942–6949

    CAS  Google Scholar 

  • Cai Z, Sevilla MD (2003) Electron and hole transfer from DNA base radicals to oxidized products of guanine in DNA. Radiat Res 159:411–419

    PubMed  CAS  Google Scholar 

  • Cai Z, Gu Z, Sevilla MD (2000) Electron spin resonance study of the temperature dependence of electron transfer in DNA: competitive processes of tunneling, protonation at carbon and hopping. J Phys Chem B 104:10406–10411

    CAS  Google Scholar 

  • Cai Z, Gu Z, Sevilla MD (2001) Electron spin resonance study of electron and hole transfer in DNA: effects of hydration, aliphatic amine cations and histone proteins. J Phys Chem B 105:6031–6041

    Article  CAS  Google Scholar 

  • Cai Z, Li X, Sevilla MD (2002) Excess electron transfer in DNA: effect of base sequence and proton transfer. J Phys Chem B 106:2755–2762

    CAS  Google Scholar 

  • Calabro-Jones PM, Fahey RC, Smoluk GD, Ward JF (1985) Alkaline phosphatase promotes radioprotection and accumulation of WR-1065 in V79-171 cells incubated in medium containing WR-2721. Int J Radiat Biol 47:23–27

    CAS  Google Scholar 

  • Calabro-Jones PM, Aguilera JA, Ward JF, Smoluk GD, Fahey RC (1988) Uptake of WR-2721 derivatives by cells in culture: identification of the transported form of the drug. Cancer Res 48:3634–3640

    PubMed  CAS  Google Scholar 

  • Campbell JM, Schulte-Frohlinde D, von Sonntag C (1974) Quantum yields in the UV photolysis of 5-bromo-uracil in the presence of hydrogen donors. Photochem Photobiol 20:465–467

    CAS  Google Scholar 

  • Chapman JD (1984) The cellular basis of radiotherapeutic response. Radiat Phys Chem 24:283–291

    CAS  Google Scholar 

  • Chatterjee M, Mah SC, Tullius TD, Townsend CA (1995) Role of the aryl iodide in the sequence-selective cleavage of DNA by calicheamicin. Importance of thermodynamic binding vs kinetic activation process. J Am Chem Soc 117:8074–8082

    Article  CAS  Google Scholar 

  • Chaudry MA, Weinfeld M (1995) The action of Escherichia coli endonuclease III on multiply damaged sites in DNA. J Mol Biol 249:914–922

    Google Scholar 

  • Chaudry MA, Weinfeld M (1997) Reactivity of human apurinic/apyrimidinic endonuclease and Escherichia coli exonulcease III with bistranded abasic sites in DNA. J Biol Chem 272:15650–15655

    Google Scholar 

  • Chaudry MA, Dedon PC, Wilson DM III, Demple B, Weinfeld M (1999) Removal by human apurinic/apyrimidinic endonuclease 1 (Ape 1) and Escherichia coli exonuclease III of 3′-phosphoglycolates from DNA treated with neocarzinostatin, calicheamicin, and γ-radiation. Biochem Pharmacol 57:531–538

    Google Scholar 

  • Chen C-HB, Sigman DS (1987) Chemical conversion of a DNA-binding protein into a site-specific nuclease. Science 237:1197–1201

    PubMed  CAS  Google Scholar 

  • Chen T, Greenberg MM (1998) Model studies indicate that copper phenanthroline induces direct strand breaks via β-elimination of the 2′-deoxyribonolactone intermediate observed in enediyne mediated DNA damage. J Am Chem Soc 120:3815–3816

    CAS  Google Scholar 

  • Chen T, Cook GP, Koppisch AT, Greenberg MM (2000) Investigation of the origin of the sequence selectivity for the 5-halo-2′-deoxyuridine sensitization of DNA to damage by UV-irradiation. J Am Chem Soc 122:3861–3866

    CAS  Google Scholar 

  • Cheng C-C, Goll JG, Neyhart GA, Welch TW, Singh P, Thorp HH (1995) Relative rates and potentials of competing redox processes during DNA cleavage: oxidation mechanisms and sequence-specific catalysis of the self-inactivation of oxometal oxidants by DNA. J Am Chem Soc 117:2970–2980

    CAS  Google Scholar 

  • Chikira M, Iiyama T, Sakamoto K, Antholine WE, Petering DH (2000) Orientation of iron bleomycin and porphyrin complexes on DNA fibers. Inorg Chem 39:1779–1786

    Article  PubMed  CAS  Google Scholar 

  • Chin D-H, Carr SA, Goldberg IH (1984) Incorporation of 18O2 into thymidine 5′aldehyde in neocarzinostatin chromophore-damaged DNA. J Biol Chem 259:9975–9978

    PubMed  CAS  Google Scholar 

  • Chin D-H, Kappen LS, Goldberg IH (1987) 3′-Formyl phosphate-ended DNA: high energy intermediate in antibiotic-induced DNA sugar damage. Proc Natl Acad Sci 84:7070–7074

    PubMed  CAS  Google Scholar 

  • Chiou S-M, Sokany NM, Friedman LR, Oleinick NL (1984) Differential processing of ultraviolet or ionizing radiation-induced DNA-protein cross-links in Chinese hamster cells. Int J Radiat Biol 46:681–690

    Google Scholar 

  • Chiu S-M, Friedman LR, Oleinick NL (1989) Formation and repair of DNA-protein crosslinks in newly replicated DNA. Radiat Res 120:545–551

    PubMed  CAS  Google Scholar 

  • Chiu S-M, Friedman LR, Oleinick NL (1990) The fate of DNA-protein crosslinks formed in γ-irradiated metaphase cells. Int J Radiat Biol 58:235–247

    PubMed  CAS  Google Scholar 

  • Churchill MEA, Tullius TD, Kallenbach NR, Seeman NC (1988) A Holliday recombination intermediate is twofold symmetric. Proc Natl Acad Sci USA 85:4653–4656

    PubMed  CAS  Google Scholar 

  • Clark EP, Michaels HB, Peterson EC, Epp ER (1983) Irradiation of mammalian cells in the presence of diamide and low concentrations of oxygen at conventional and at ultrahigh dose rates. Radiat Res 93:479–491

    PubMed  CAS  Google Scholar 

  • Close DM (1999) Where are the sugar radicals in irradiated DNA? Radiat Res 147:663–673

    Google Scholar 

  • Close DM (2003) Model calculations of radiation induced damage in DNA constituents using density functional theory. In: Leszczynski J (ed) Computational chemistry, reviews of current trends, Vol. 8. World Scentific, Singapore, pp 209–247

    Google Scholar 

  • Cole A (1965) The study of radiosensitive structures with low voltage electron beams. In: Cellular radiation biology, Williams and Wilkins, Baltimore, pp 267–271

    Google Scholar 

  • Cole A, Meyn RE, Chen R, Corry PM, Hittelman W (1980) Mechanisms of cell injury. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research, pp 33–58

    Google Scholar 

  • Coleman CN, Bump EA, Kramer RA (1988) Chemical modifiers of cancer treatment. J Clin Oncol 6:709–733

    PubMed  CAS  Google Scholar 

  • Conwell EM, Basko DM (2001) Hole traps in DNA. J Am Chem Soc 123:11441–11445

    Article  PubMed  CAS  Google Scholar 

  • Conwell EM, Rakhmanova SV (2000) Polarons in DNA. Proc Natl Acad Sci USA 97:4556–4560

    Article  PubMed  CAS  Google Scholar 

  • Cook GP, Greenberg MM (1996) A novel mechanism for the formation of direct strand breaks upon anaerobic photolysis of duplex DNA containing 5-bromodeoxyuridine. J Am Chem Soc 118:10025–10030

    CAS  Google Scholar 

  • Coquerelle T, Hagen U (1972) Loss of adsorption and injection abilities in γ-irradiated phage T-1. Int J Radiat Biol 21:31–41

    CAS  Google Scholar 

  • Cramp WA (1967) The toxic action on bacteria of irradiated solutions of copper compounds. Radiat Res 30:221–236

    PubMed  CAS  Google Scholar 

  • Culard F, Spotheim-Maurizot M, Sabattier R, Charlier M (1994) Radiosensitivity of DNA minicircles. Int J Radiat Biol 65:651–656

    PubMed  CAS  Google Scholar 

  • Cullen BM, Michalowski A, Walker HC, Revesz L (1980) Correlation between the radiobiological oxygen constant, K, and the non-protein sulphydryl content of mammalian cells. Int J Radiat Biol 38:525–535

    CAS  Google Scholar 

  • Cullis PM, Langmann S, Podmore ID, Symons MCR (1990) Effects of ionizing radiation on deoxyribonucleic acid. Part VI. — Effects of hydroxyl radical scavengers on radiation damage to DNA. J Chem Soc Faraday Trans 86:3267–3271

    CAS  Google Scholar 

  • Cullis PM, McClymont JD, Malone ME, Mather AN, Podmore ID, Sweeney MC, Symons MCR (1992) Effects of ionizing radiation on deoxyribonucleic acid. Part 7. Electron capture at cytosine and thymine. J Chem Soc Perkin Trans 2 1695–1702

    Google Scholar 

  • Czapski G, Goldstein S, Andorn N, Aronovitch J (1992) Radiation induced generation of chlorine derivatives in N2O-saturated phosphate buffered saline: toxic effects on Escherichia coli cells. Free Radical Biol Med 12:353–364

    Article  CAS  Google Scholar 

  • Dabrowiak JC (1980) The coordination chemistry of bleomycin: a review. J Inorg Biochem 13:317–337

    Article  CAS  Google Scholar 

  • Damiani E, Kalinska B, Canapa A, Canestrari S, Wozniak M, Olmo E, Greci L (2000) The effects of nitroxide radicals on oxidative DNA damage. Free Radical Biol Med 28:1257–1265

    CAS  Google Scholar 

  • Dandliker PJ, Holmlin RE, Barton JK (1997) Oxidative thymine dimer repair in the DNA helix. Science 275:1465–1468

    Article  PubMed  CAS  Google Scholar 

  • Dandliker PJ, Nunez ME, Barton JK (1998) Oxidative charge transfer to repair thymine dimers and damage guanine bases in DNA assemblies containing tethered metallointercalators. Biochemistry 37:6491–6502

    Article  PubMed  CAS  Google Scholar 

  • Daniels JS, Gates KS (1996) DNA cleavage by the antitumor agent 3-amino-1,22,4-benzotriazine 1,4-dioxide (SR4233): evidence for involvement of hydroxyl radical. J Am Chem Soc 118:3380–3385

    Article  CAS  Google Scholar 

  • Daniels JS, Gates KS, Tronche C, Greenberg MM (1998) Direct evidence for bimodal damage induced by tirapazamine. Chem Res Toxicol 11:1254–1257

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta D, Goldberg IH (1985) Mode of reversible binding of neocarzinostatin chromophore to DNA: evidence for binding via the minor groove. Biochemistry 24:6913–6920

    PubMed  CAS  Google Scholar 

  • Dasgupta D, Auld DS, Goldberg IH (1985) Cryospectric evidence for the mode of reversible binding of neocarzinostatin chromophore to poly(deoxyadenylic-thymidylic acid). Biochemistry 24:7049–7054

    PubMed  CAS  Google Scholar 

  • Datta R, Cole A, Robinson S (1976) Use of track-end alpha particles from 241Am to study radiosensitive sites in CHO cells. Radiat Res 65:139–151

    PubMed  CAS  Google Scholar 

  • David-Cordonnier M-H, Laval J, O’Neill P (2000) Clustered DNA damage, influence on damage excision by XRS5 nuclear extracts and Escherichia coli Nth and Fpg proteins. J Biol Chem 275:11866–11873

    Article  Google Scholar 

  • David-Cordonnier M-H, Boiteux S, O’Neill P (2001a) Efficiency of excision of 8-oxo-guanine within DNA clustered damage by XRS5 nuclear extracts and purified human OGG1 protein. Biochemistry 40:11881–11818

    Google Scholar 

  • David-Cordonnier M-H, Boiteux S, O’Neill P (2001b) Excision of 8-oxoguanine within clustered damage by the yeast OGG1 protein. Nucleic Acids Res 29:1107–1113

    Article  PubMed  CAS  Google Scholar 

  • Davis WB, Naydenova I, Haselsberger R, Ogrodnik A, Giese B, Michel-Beyerle ME (2000) Dynamics of hole trapping by G, GG, and GGG in DNA. Angew Chem Int Ed 39:3649–3652

    Article  CAS  Google Scholar 

  • de Jong J, Loman H, Blok J (1972) Inactivation of biologically-active DNA by radiation-induced phenylalanine radicals. Int J Radiat Biol 22:11–21

    Google Scholar 

  • de Lara CM, Hill MA, Jenner TJ, Papworth D, O’Neill P (2001) Dependence of the yield of DNA double-strand breaks in Chinese Hamster V79-4 cells on the photon energy of ultrasoft X rays. Radiat Res 155:440–448

    PubMed  Google Scholar 

  • Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18

    PubMed  CAS  Google Scholar 

  • Debieu D, Deschavanne PJ, Midander J, Larsson A, Malaise EP (1985) Survival curves of glutathione synthetase deficient human fibroblasts: correlation between radiosensitivity in hypoxia and glutathione synthetase activity. Int J Radiat Biol 48:525–543

    CAS  Google Scholar 

  • Debije MG, Milano MT, Bernhard WA (1999) DNA responds to ionizing radiation as an insulator not as a „molecular wire“. Angew Chem Int Ed Engl 38:2752–2756

    Article  PubMed  CAS  Google Scholar 

  • Debije MG, Razskazovskiy Y, Bernhard AW (2001) The yield of strand breaks resulting from direct-type effects in crystalline DNA X-irradiated at 4 K and room temperature. J Am Chem Soc 123:2917–2918

    Article  PubMed  CAS  Google Scholar 

  • Dedon PC, Goldberg IH (1992) Free-radical mechanisms involved in the formation of sequence-dependent bistranded DNA lesions by the antitumor antibiotics bleomycin, neocarzinostatin, and calicheamicin. Chem Res Toxicol 5:311–332

    Article  PubMed  CAS  Google Scholar 

  • Delahoussaye YM, Hay MP, Pruijn FB, Denny WA, Brown JM (2003) Improved potency of the hypoxic cytotoxin tirapazamine by DNA targeting. Biochem Pharmacol 65:1807–1815

    PubMed  CAS  Google Scholar 

  • Demple B, Linn S (1982) 5,6-Saturated thymine lesions in DNA: production by UV light or hydrogen peroxide. Nucleic Acids Res 10:3781–3789

    PubMed  CAS  Google Scholar 

  • Denison L, Haigh A, D’Cunha G, Martin RF (1992) DNA ligands as radioprotectors: Molecular studies with Hoechst 33342 and Hoechst 33258. Int J Radiat Biol 61:69–81

    PubMed  CAS  Google Scholar 

  • Deschavanne PJ, Debieu D, Chavaudra N, Malaise EP (1985) Radiosensitizing and cytotoxic properties of misonidazole on glutathione synthetase deficient human fibroblasts. Int J Radiat Biol 48:213–221

    CAS  Google Scholar 

  • Dewey DL (1963) The effect of protectors on Serratia marcescens during anaerobic X-irradiation. Int J Radiat Biol 7:151–154

    CAS  Google Scholar 

  • Dianov GL, O’Neill P, Goodhead DT (2001) Securing genome stability by orchestrating DNA repair: removal of radiation-induced clustered lesions in DNA. BioEssays 23:745–749

    Article  PubMed  CAS  Google Scholar 

  • Dirksen M-L, Blakely WF, Holwitt E, Dizdaroglu M (1988) Effect of DNA conformation on the hydroxyl radical-induced formation of 8,5′-cyclopurine 2′-deoxyribonucleoside residues in DNA. Int J Radiat Biol 54:195–204

    PubMed  CAS  Google Scholar 

  • Distel L, Distel B, Schüssler H (2002) Formation of DNA double-strand breaks and DNA-protein crosslinks by irradiation of DNA in the presence of a protein. Radiat Phys Chem 65:141–129

    Article  CAS  Google Scholar 

  • Dizdaroglu M (1986) Chemical characterization of ionizing radiation-induced damage to DNA. Bio Techniques 4:536–546

    CAS  Google Scholar 

  • Dizdaroglu M, von Sonntag C, Schulte-Frohlinde D (1975) Strand breaks and sugar release by γ-irradiation of DNA in aqueous solution. J Am Chem Soc 97:2277–2278

    Article  PubMed  CAS  Google Scholar 

  • Dizdaroglu M, Leitich J, von Sonntag C (1976) Conversion of D-fructose into 6-deoxy-D-threo-2,5-hexodiulose by γ-irradiation: A chain reaction in the crystalline state. Carbohydr Res 47:15–23

    Article  CAS  Google Scholar 

  • Dizdaroglu M, Schulte-Frohlinde D, von Sonntag C (1977) Isolation of 2-deoxy-D-erythro-pentonic acid from an alkali-labile site in γ-irradiated DNA. Int J Radiat Biol 32:481–483

    CAS  Google Scholar 

  • Dizdaroglu M, Nackerdien Z, Chao B-C, Gajewski E, Rao G (1991) Chemical nature of in vivo DNA base damage in hydrogen peroxide-treated mammalian cells. Arch Biochem Biophys 286:388–390

    Google Scholar 

  • Dizdaroglu M, Jaruga P, Rodriguez H (2001a) Measurement of 8-hydroxy-2′-deoxyguanosine in DNA by high-performance liquid chromatography-mass spectrometry: comparison with measurement by gas chromatography-mass spectrometry. Nucleic Acids Res 29:e12

    Article  PubMed  CAS  Google Scholar 

  • Dizdaroglu M, Jaruga P, Rodriguez H (2001b) Identification and quantification of 8,5′-cyclo-2′-deoxyadenosine in DNA by liquid chromatography/mass spectrometry. Free Radical Biol Med 30:774–784

    Article  CAS  Google Scholar 

  • Doddridge ZA, Cullis PM, Jones GDD, Malone ME (1998) 7,8-Dihydro-8-oxo-2′-deoxyguanosine residues in DNA are radiation damage “hot” spots in the direct γ radiation damage pathway. J Am Chem Soc 120:10998–10999

    Article  CAS  Google Scholar 

  • Dohno C, Nakatani K, Saito I (2002) Guanine of the third strand of CG*G triplex serves as an effective hole trap. J Am Chem Soc 124:14580–14585

    Article  PubMed  CAS  Google Scholar 

  • Dohno C, Ogawa A, Nakatani K, Saito I (2003) Hole trapping at N6-cyclopropyldeoxyadenosine suggests a direct contribution of adenine bases to hole transport through DNA. J Am Chem Soc 125:10154–10155

    PubMed  CAS  Google Scholar 

  • Dornberger U, Leijon M, Fritzsche H (1999) High base opening rates in tracks of GC base pairs. J Biol Chem 274:6957–6962

    Article  PubMed  CAS  Google Scholar 

  • Douki T, Cadet J (1996) Peroxynitrite mediated oxidation of purine bases of nucleosides and isolated DNA. Free Rad Res 24:369–380

    CAS  Google Scholar 

  • Douki T, Bretonniere Y, Cadet J (2000) Protection against radiation-induced degradation of DNA bases by polyamines. Radiat Res 153:29–35

    PubMed  CAS  Google Scholar 

  • Douki T, Ravanat J-L, Angelov D, Wagner JR, Cadet J (2004) Effects of duplex stability on charge-transfer efficiency within DNA. Top Curr Chem 236:1–25

    CAS  Google Scholar 

  • Downey KM, Que BG, So AG (1980) Degradation of DNA by 1,10-phenanthroline. Biochem Biophys Res Commun 93:264–270

    Article  PubMed  CAS  Google Scholar 

  • Draganescu A, Tullius TD (1996) Targeting of nucleic acids by iron complexes. In: Sigel A, Sigel H (eds) Metal ions in biological systems, Vol. 33: Probing of nucleic acids by metal ion complexes of small molecules. Marcel Dekker, New York, pp 453–484

    Google Scholar 

  • Duba VV, Pitkevich VA, Selyova NG, Petrova IV, Myasnik MN (1985) The formation of photoreactivable damage by direct excitation of DNA in X-irradiated E. coli cells. Int J Radiat Biol 47:49–56

    CAS  Google Scholar 

  • Durand RE, Olive PL (1981) Evaluation of nitroheterocyclic radiosensitizers using spheroids. Adv Radiat Biol 9:75–107

    CAS  Google Scholar 

  • Eaton JW, Qian M (2002) Molecular bases of cellular iron toxicity. Free Radical Biol Med 32:833–840

    Article  CAS  Google Scholar 

  • Ebert G (1980) Biopolymere. Steinkopf, Darmstadt

    Google Scholar 

  • Edgren M (1982) Intercellular co-operation in repairing radiation-induced single-strand DNA breaks. Int J Radiat Biol 41:589–593

    CAS  Google Scholar 

  • Edgren M, Revesz L (1985) Glutathione requirement for the rejoining of radiation-induced DNA breaks in misonidazole-treated cells. Int J Radiat Biol 48:207–212

    CAS  Google Scholar 

  • Edgren M, Larsson A, Nilsson K, Revesz L, Scott OCA (1980) Lack of oxygen effect in glutathione-deficient human cells in culture. Int J Radiat Biol 37:299–306

    CAS  Google Scholar 

  • Edgren M, Revesz L, Larsson A (1984) Induction and repair of single-strand DNA breaks after X-irradiation of human fibroblasts deficient in glutathione. Int J Radiat Biol 40:355–363

    Google Scholar 

  • Edgren M, Nishidai T, Scott OCA, Revesz L (1985) Combined effect of misonidazole and glutathione depletion by buthionine sulphoximine on cellular radiation response. Int J Radiat Biol 47:463–474

    CAS  Google Scholar 

  • Edwards JC, Chapman D, Cramp WA, Yatvin MB (1984) The effects of ionizing radiation on biomembrane structure and function. Progr Biophys Molec Biol 43:71–93

    CAS  Google Scholar 

  • Eley DD, Spivey DI (1962) Semiconductivity of organic substances. J Chem Soc Faraday Trans 58:411–415

    CAS  Google Scholar 

  • Elkind MM (1979) DNA repair and cell repair: are they related? Int J Radiat Oncol Biol Phys 5:1089–1094

    PubMed  CAS  Google Scholar 

  • Ensing B, Buda F, Baerends EJ (2003) Fenton-like chemistry in water: oxidation catalysis by Fe(III) and H2O2. J Phys Chem A 107:5722–5731

    Article  CAS  Google Scholar 

  • Eot-Houllier G, Eon-Marchais S, Gasparutto D, Sage E (2005) Processing of a complex multiply damaged DNA site by human cell extract and purified repair proteins. Nucleic Acids Res 33:260–271

    Article  PubMed  CAS  Google Scholar 

  • Epp ER, Weiss H, Kessaris ND, Santomasso A, Heslin J, Ling CC (1973) Oxygen diffusion times in bacterial cells irradiated with high-intensity pulsed electrons: New upper limit to the lifetime of oxygen-sensitive species suspected to be induced at critical sites in bacterial cells. Radiat Res 54:171–180

    PubMed  CAS  Google Scholar 

  • Epp ER, Weiss H, Ling CC (1976) Irradiation of cells by single and double pulses of high intensity radiation: oxygen sensitization and diffusion kinetics. Curr Top Radiat Res 11:201–250

    CAS  Google Scholar 

  • Epstein JL, Zhang X, Doss GA, Liesch JM, Krishnan B, Stubbe J, Kozarich JW (1997) Interplay of hydrogen abstraction and radical repair in the generation of single-and double-strand DNA damage by the esperamicins. J Am Chem Soc 119:6731–6738

    Article  CAS  Google Scholar 

  • Epsztejn S, Kakhlon O, Glickstein H, Breuer W, Cabantchik I (1997) Fluorescence analysis of the labile iron pool of mammalian cells. Anal Biochem 248:31–40

    Article  PubMed  CAS  Google Scholar 

  • Ewing D (1981) Hydroxyl radical damage in irradiated bacteria: A re-evaluation. In: Rodgers MAJ, Powers EL (eds) Oxygen and oxy-radicals in chemistry and biology. Academic Press, New York, pp 269–275

    Google Scholar 

  • Ewing D (1982a) The effects of dimethylsulfoxide (DMSO) on the radiation sensitivity of bacterial spores. Radiat Res 90:348–355

    PubMed  CAS  Google Scholar 

  • Ewing D (1982b) Hydroxyl radical damage in low oxygen concentrations in irradiated bacteria. Int J Radiat Biol 41:203–208

    CAS  Google Scholar 

  • Ewing D, Powers EL (1976) Irradiation of bacterial spores in water: three classes of oxygen-dependent damage. Science 194:1049–1051

    PubMed  CAS  Google Scholar 

  • Ewing D, Powers EL (1980) Oxygen-dependent sensitization of irradiated cells. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Raven Press, New York, pp 143–168

    Google Scholar 

  • Fahey RC, Newton GL (1983) Occurrence of low molecular weight thiols in biological systems. In: A. Larson et al. (eds) In: Functions of glutathione. Biochemical, Physiological. Raven Press, New York, pp 251–260

    Google Scholar 

  • Fahey RC, Newton GL (1985) Measurement of WR-27721, WR-1065, and WR-33278 in plasma. Int J Radiat Oncol 11:1193–1197

    CAS  Google Scholar 

  • Fahey RC, Newton GL (1987) Determination of low-molecular-weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography. Meth Enzymol 143:85–96

    PubMed  CAS  Google Scholar 

  • Fahey RC, Buschbacher RM, Newton GL (1987) The evolution of glutathione metabolism in phototrophic microorganisms. J Mol Evol 25:81–88

    Article  PubMed  CAS  Google Scholar 

  • Fahey RC, Prise KM, Stratford MRL, Watfa RR, Michael BD (1991) Rates for repair of pBR 322 DNA radicals by thiols as measured by the gas explosion technique: evidence that counter-ion condensation and co-ion depletion are significant at physiological ionic strength. Int J Radiat Biol 59:901–917

    PubMed  CAS  Google Scholar 

  • Falcone JM, Box HC (1997) Selective hydrolysis of damaged DNA by nuclease P1. Biochim Biophys Acta 1337:267–275

    PubMed  CAS  Google Scholar 

  • Falcone JM, Becker D, Sevilla MD, Swarts SG (2005) Products of the reaction of the dry and aqueous electron with hydrated DNA: hydrogen and 5,6-dihydropyrimidines. Radiat Phys Chem 72:257–264

    Article  CAS  Google Scholar 

  • Fang X, Wu J, Wei G (1994) Radiolysis of metallothionein in deaerated and oxygen-saturated solutions. Radiat Res 138:165–170

    PubMed  CAS  Google Scholar 

  • Favaudon V, Charnas RL, Goldberg IH (1985) Poly(deoxyadenylic-deoxythymidylic acid) damage by radiolytically activated neocarzinostatin. Biochemistry 24:250–259

    Article  PubMed  CAS  Google Scholar 

  • Feig DI, Sowers LC, Loeb KA (1994) Reverse chemical mutagenesis: Identification of the mutagenic lesions resulting from reactive oxygen species-mediated damage to DNA. Proc Nat Acad Sci USA 91:6609–6613

    PubMed  CAS  Google Scholar 

  • Feiss M, Becker A (1983) DNA packaging and cutting. In: Hendrix RW, Roberts JW, Stahl FW, Weisberg RA (eds) Lambda II; Cold Spring Harbour Monograph Series 13. Cold Spring Harbour Laboratory, Cold Spring Harbour, pp 305–330

    Google Scholar 

  • Fenton SS, Fahey RC (1986) Analysis of biological thiols: determination of thiol components of disulfides and thioesters. Anal Biochem 154:34–42

    Article  PubMed  CAS  Google Scholar 

  • Fink H-W, Schönenberger C (1999) Electrical conduction through DNA molecules. Nature 398:407–410

    PubMed  CAS  Google Scholar 

  • Folkard M, Prise KM, Vojnovic B, Brocklehurst B, Michael BD (2000) Critical energies for ssb and dsb induction in plasmid DNA by vacuum-UV photons: an arrangement for irrdiating dry or hydrated DNA with monochromatic photons. Int J Radiat Biol 76:763–771

    PubMed  CAS  Google Scholar 

  • Folkard M, Prise KM, Turner CJ, Michael BD (2002) The production of single strand and double strand breaks in aqueous solution by vacuum UV photons below 10 eV. Radiat Prot Dosim 99:147–149

    CAS  Google Scholar 

  • Fox RA, Fielden EM, Sapora O (1976) Yield of single-strand breaks in the DNA of E. coli 10 msec after irradiation. Int J Radiat Biol 29:391–394

    CAS  Google Scholar 

  • Franchet-Beuzit J, Spotheim-Maurizot M, Sabattier R, Blazy-Baudras B, Charlier M (1993) Radiolytic footprint. β rays, γ photons, and fast neutrons probe DNA-protein interactions. Biochemistry 32:2104–2110

    Article  PubMed  CAS  Google Scholar 

  • Friedland W, Jacob P, Paretzke HG, Merzagora M, Ottolenghi A (1999) Simulation of DNA fragment distributions after irradiation with photons. Radiat Environ Biophys 38:39–47

    Article  PubMed  CAS  Google Scholar 

  • Friedland W, Dingfelder M, Jacob P, Paretzke H (2005) Calculated DNA double-strand breaks and fragmentation yields after irradiation with He ions. Radiat Phys Chem 72:279–286

    Article  CAS  Google Scholar 

  • Fuciarelli AF, Miller GG, Raleigh JA (1985) An immunochemical probe for 8,5′-cycloadenosine-5′-monophosphate and its deoxy analog in irradiated nucleic acid. Radiat Res 104:272–283

    PubMed  CAS  Google Scholar 

  • Fuciarelli AF, Wegher BJ, Blakeley WF, Dizdaroglu M (1990) Yields of radiation-induced base products in DNA: effects of DNA conformation and gassing conditions. Int J Radiat Biol 58:397–415

    PubMed  CAS  Google Scholar 

  • Fukui K, Tanaka K (1997) Distance dependence of photoinduced electron transfer in DNA. Angew Chem Int Ed 37:158–161

    Google Scholar 

  • Furuta M, Schrader JO, Schrader HS, Kokjohn TA, Nyaga S, McCullough AK, Lloyd RS, Burbank DE, Landstein D, Lane L, van Etten JL (1997) Chlorella virus PBCV-1 encodes a homolog of the bacteriophage T4 UV damage repair gene denV. Appl Environ Microbiol 63:1551–1556

    PubMed  CAS  Google Scholar 

  • Gajewski E, Aruoma OI, Dizdaroglu M, Halliwell B (1991) Bleomycin-dependent damage to the bases in DNA is a minor side reaction. Biochemistry 30:2444–2448

    Article  PubMed  CAS  Google Scholar 

  • Galaris D, Zhu B-Z, Frei B (2002) On the role of iron and copper in hydrogen peroxide-induced cellular DNA damage. Free Radical Biol Med 32:198–199

    Article  CAS  Google Scholar 

  • Gampel-Jobbagy Z, Van de Walle C, Powers EL (1972) Modification of the radiation sensitivity of bacteriophage T7 by O2 and N2O. Int J Radiat Biol 21:115–125

    CAS  Google Scholar 

  • Gandara DR, Lara PN, Goldberg Z, Le QT, Mack PC, Lau DHM, Gumerlock PH (2002) Tirapazamine: Prototype for a novel class of therapeutic agents targeting tumor hypoxia. Semin Oncol 29:102–109

    Article  PubMed  CAS  Google Scholar 

  • Gasper SM, Schuster GB (1997) Intramolecular photoinduced electron transfer to anthraquinones linked to duplex DNA: The effect of gaps and traps on long-range radical cation migration. J Am Chem Soc 119:12762–12771

    Article  CAS  Google Scholar 

  • Gebicki JM (1997) Protein hydroperoxides as new reactive oxygen species. Redox Report 3:99–110

    CAS  Google Scholar 

  • Gebicki S, Gebicki JM (1993) Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochem J 289:743–749

    PubMed  CAS  Google Scholar 

  • Gebicki S, Gebicki JM (1999) Crosslinking of DNA and proteins induced by protein hydroperoxides. Biochem J 338:629–636

    Article  PubMed  CAS  Google Scholar 

  • Gebicki S, Gill KH, Dean RT, Gebicki JM (2002) Action of peroxidases on protein hydroperoxides. Redox Report 7:235–242

    Article  PubMed  CAS  Google Scholar 

  • Gelfand CA, Plum GE, Grollman AP, Johnson F, Breslauer KJ (1998) Thermodynamic consequences of an abasic lesion in duplex DNA are strongly dependent on base sequence. Biochemistry 37:7321–7327

    PubMed  CAS  Google Scholar 

  • George AM, Cramp WA, Yatvin MB (1980) The influence of membrane fluidity on radiation induced changes in the DNA of E. coli K 1060. Int J Radiat Biol 38:427–438

    CAS  Google Scholar 

  • Georgopoulos C, Tilly K, Casjens S (1983) Lambdoid phage head assembly. In: Hendrix RW, Roberts JW, Stahl FW, Weisberg RA (eds) Lambda II. pp 279–304

    Google Scholar 

  • Giese B (2000) Long-distance charge transport in DNA: the hopping mechanism. Acc Chem Res 33:631–636

    Article  PubMed  CAS  Google Scholar 

  • Giese B, Spichty M (2000) Long distance charge transport through DNA: quantification and extension of the hopping model. Chem Phys Chem 1:195–198

    CAS  Google Scholar 

  • Giese B, Beyrich-Graf X, Erdmann P, Giraud L, Imwinkelried P, Müller SN, Schwitter U (1995a) Cleavage of single-stranded 4′-oligonucleotide radicals in the presence of O2. J Am Chem Soc 117:6146–6247

    Article  CAS  Google Scholar 

  • Giese B, Beyrich-Graf X, Erdmann P, Petretta M, Schwitter U (1995b) The chemistry of single-stranded 4′-DNA radicals: influence of the radical precursor on anaerobic and aerobic strand cleavage. Chem Biol 2:376–375

    Article  Google Scholar 

  • Giese B, Wessely S, Sporman M, Lindemann U, Meggers E, Michel-Beyerle ME (1999) On the mechanism of long-range electron transfer through DNA. Angew Chem Int Ed 38:996–998

    CAS  Google Scholar 

  • Giese B, Spichty M, Wessely S (2001a) Long-distance charge transport through DNA. An extended hopping model. Pure Appl Chem 73:449–453

    CAS  Google Scholar 

  • Giese B, Amaudrut J, Köhler A, Spormann M, Wessely S (2001b) Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature 412:318–320

    Article  PubMed  CAS  Google Scholar 

  • Gieseg S, Duggan S, Gebicki JM (2000) Peroxidation of proteins before lipids in U937 cells exposed to peroxyl radicals. Biochem J 350:215–218

    Article  PubMed  CAS  Google Scholar 

  • Giloni L, Takeshita M, Johnson F, Iden C, Grollman AP (1981) Bleomycin-induced strand-scission of DNA. Mechanism of deoxyribose cleavage. J Biol Chem 256:8608–8615

    PubMed  CAS  Google Scholar 

  • Glatthar R, Spichty M, Gugger A, Batra R, Damm W, Mohr M, Zipse H, Giese B (2000) Mechanistic studies in the radical induced DNA strand cleavage-formation and reactivity of the radical cation intermediate. Tetrahedron 56:4117–4128

    Article  CAS  Google Scholar 

  • Goldberg IH (1987) Free radical mechanisms in neocarzinostatin-induced DNA damage. Free Radical Biol Med 3:41–54

    Article  CAS  Google Scholar 

  • Goldberg IH (1991) Mechanism of neocarzinostatin action: role of DNA microstructure in determination of chemistry of bistranded oxidative damage. Acc Chem Res 24:191–198

    Article  CAS  Google Scholar 

  • Goodhead DT (1994) Initial events in the cellular effect of the ionizing radiations: clustered damage in DNA. Int J Radiat Biol 65:7–17

    PubMed  CAS  Google Scholar 

  • Gosule LC, Schellman JA (1976) Compact form of DNA induced by spermidine. Nature 259:333–335

    Article  PubMed  CAS  Google Scholar 

  • Goyne TE, Sigman DS (1987) Nuclease activity of 1,10-phenanthroline-copper ion. Chemistry of deoxyribose oxidation. J Am Chem Soc 109:2846–2848

    Article  CAS  Google Scholar 

  • Görner H (1994) Photochemistry of DNA and related biomolecules: quantum yields and consequences of photoionization. J Photochem Photobiol B: Biol 26:117–139

    Google Scholar 

  • Görner H, Wala M, Schulte-Frohlinde D (1992) Strand breakage in poly(C), poly(A), single-and double-stranded DNA induced by nanosecond laser excitation at 193 nm. Photochem Photobiol 55:173–184

    PubMed  Google Scholar 

  • Gray LH (1954) Conditions which affect the biologic damage resulting from exposure to ionizing radiation. Acta Radiol 41:63–83

    PubMed  CAS  Google Scholar 

  • Gray LH, Conger AD, Ebert M, Hornsey S, Scott OCA (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26:638–648

    PubMed  CAS  Google Scholar 

  • Greenberg MM, Hantosi Z, Wiederholt CJ, Rithner CD (2001) Studies on N4-(2-deoxy-D-pentofuranosyl)-4,6-diamino-5-formamidopyrimidine (FAPYdA) and N6(2-deoxy-D-pentofuranosyl)-6-diamino-5-formamido-4-hydroxyprimidine (FAPYdG). Biochemistry 40:15856–15861

    Article  PubMed  CAS  Google Scholar 

  • Greenberg MM, Weledji YN, Kroeger KM, Kim J, Goodman MF (2004a) In vitro effects of a C4′-oxidized abasic site on DNA polymerases. Biochemistry 43:2656–2663

    PubMed  CAS  Google Scholar 

  • Greenberg MM, Weledji YN, Kroeger KM, Kim J (2004b) In vitro replication and repair of DNA containing a C2′-oxidized abasic site. Biochemistry 43:15217–15222

    PubMed  CAS  Google Scholar 

  • Greenstock CL, Jinot CP, Whitehouse RP, Sargent MD (1987) DNA radiation damage and its modification by metallothionein. Free Radical Res Commun 2:233–239

    CAS  Google Scholar 

  • Grinstaff MW (1999) How do charges travel through DNA? — An update on a current debate. Angew Chem Int Ed 38:3629–3635

    Article  CAS  Google Scholar 

  • Grozema FC, Berlin YA, Siebbeles LDA (1999) Sequence-dependent charge transfer in donor-DNA-acceptor systems: a theoretical study. Int J Quantum Chem 75:1009–1016

    CAS  Google Scholar 

  • Grozema FC, Berlin YA, Siebbeles LDA (2000) Mechanism of charge migration through DNA: molecular wire behavior, single-step tunneling or hopping? J Am Chem Soc 122:10903–10909

    CAS  Google Scholar 

  • Grozema FC, Siebbeles LDA, Berlin YA, Ratner MA (2002) Hole mobility in DNA: effects of static and dynamic structural fluctuations. Chem Phys Chem 536–539

    Google Scholar 

  • Gulston M, Fulford J, Jenner T, de Lara C, O’Neill P (2002) Clustered DNA damage induced by γ radiation in human fibroblasts (HF19), hamster (V79-4) cells and plasmid DNA is revealed as Fpg and Nth sensitive sites. Nucleic Acids Res 30:3664–3672

    Article  Google Scholar 

  • Gulston M, de Lara C, Jenner T, Davis E, O’Neill P (2004) Processing of clustered DNA damage generates additional double-strand breaks in mammalian cells post-irradiation. Nucleic Acids Res 32:1602–1609

    Article  PubMed  CAS  Google Scholar 

  • Gurzadyan GG, Görner H, Schulte-Frohlinde D (1995) Ultraviolet (193, 216 and 254 nm) photoinactivation of Escherichia coli strains with different repair deficiencies. Radiat Res 141:244–251

    PubMed  CAS  Google Scholar 

  • Gutteridge JMC (1982) Free-radical damage to lipids, amino acids, carbohydrates and nucleic acids determined by thiobarbituric acid reactivity. Int J Biochem 14:649–653

    PubMed  CAS  Google Scholar 

  • Gutteridge JMC, Shute DJ (1981) Iron-dioxygen-dependent changes to the biological activities of bleomycin. J Inorg Biochem 15:349–357

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge JMC, Toeg D (1982) Iron-dependent free radical damage to DNA and deoxyribose. Separation of TBA-reactive intermediates. Int J Biochem 14:891–893

    PubMed  CAS  Google Scholar 

  • Hagen U (1967) Bestimmung von Einzel-und Doppelbrüchen in bestrahlter Desoxyribonukleinsäure durch die Molekulargewichtsverteilung. Biochim Biophys Acta 134:45–58

    CAS  Google Scholar 

  • Hall DB, Holmlin RE, Barton JK (1996) Oxidative DNA damage through long-range electron transfer. Nature 382:731–735

    Article  PubMed  CAS  Google Scholar 

  • Hall EJ (1982) CROS Conference on chemical modification-radiation and cytotoxic drugs. Welcome and overview. Int J Radiat Oncol Biol Phys 8:323–325

    Google Scholar 

  • Hamer DH (1986) Metallothionein. In: Richardson CC, Boyer PD, Dawid IB, Meister A (eds) Annual review of biochemistry. Annual Reviews, Inc., Palo Alto, pp 913–951

    Google Scholar 

  • Han A, Sinclair WK, Kimler BF (1976) The effect of N-ethylmaleimide on the response to X rays of synchronized HeLa cells. Radiat Res 65:337–350

    PubMed  CAS  Google Scholar 

  • Haraguchi K, Delaney MO, Wiederholt CJ, Sambandam A, Hantosi Z, Greenberg MM (2002) Synthesis and characterization of oligonucleotides containing formamidopyrimidine lesions and nonhyrolyzable analogues. J Am Chem Soc 124:3263–3269

    Article  PubMed  CAS  Google Scholar 

  • Haromy TP, Raleigh J, Sundaralingam M (1980) Enzyme-bound conformations of nucleotide substrates. X-ray structure and absolute configuration of 8,5′-cycloadenosine monohydrate. Biochemistry 19:1718–1722

    Article  PubMed  CAS  Google Scholar 

  • Harris JW (1982) Mammalian cell studies with diamide. Pharm Ther 7:375–391

    Google Scholar 

  • Hashimoto M, Greenberg MM, Kow YW, Hwang J-T, Cunningham RP (2001) The 2-deoxyribonolactone lesion produced in DNA by neocarzinostatin and other damaging agents forms cross-links with base-excision repair enzyme Endonuclease III. J Am Chem Soc 123:3161–3162

    PubMed  CAS  Google Scholar 

  • Hatayama T, Goldberg IH (1980) Deoxyribonucleic acid sugar damage in the action of neocarzinostatin. Biochemistry 19:5890–5898

    Article  PubMed  CAS  Google Scholar 

  • Hawkins RB (1978) Quantitative determination of cross-linkage of bacteriophage DNA and protein by ionizing radiation. Int J Radiat Biol 33:425–441

    CAS  Google Scholar 

  • Hayes JJ, Kam L, Tullius TD (1990a) Footprinting protein-DNA complexes with γ-rays. Meth Enzymol 186:545–549

    PubMed  CAS  Google Scholar 

  • Hayes JJ, Tullius TD, Wolffe AP (1990b) The structure of DNA in a nucleosome. Proc Nat Acad Sci USA 87:7405–7409

    PubMed  CAS  Google Scholar 

  • Hayes JJ, Bashkin J, Tullius TD, Wolffe AP (1991) The histone core exerts a dominant constraint on the structure of DNA in a nucleosome. Biochemistry 30:8434–8440

    Article  PubMed  CAS  Google Scholar 

  • Hayon E, Simic M (1972) Radiation sensitization reactions of N-ethylmaleimide with model compounds. Radiat Res 50:464–478

    PubMed  CAS  Google Scholar 

  • Hecht SM (1979) Bleomycin: chemical, biochemical and biological aspects. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hecht SM, Long EC, van Atta RB, De Vroom E, Carter BJ (1990) On the mechanism of bleomycin activation and polynucleotide strand scission. In: Bleasdale C, Golding BT (eds) Mol. Mech. Bioorg. Processes, Conference Proceedings. Royal. Soc. Chem., London, pp 100–114

    Google Scholar 

  • Held AM, Halko DJ, Hurst JK (1978) Mechanisms of chlorine oxidation of hydrogen peroxide. J Am Chem Soc 100:5732–5740

    Article  CAS  Google Scholar 

  • Held KD, Harrop HA, Michael BD (1981) Effects of oxygen and sulphydryl-containing compounds on irradiated transforming DNA. Part I. Actions of dithiothreitol. Int J Radiat Biol 40:613–622

    CAS  Google Scholar 

  • Hempel K, Mildenberger E (1987) Determination of G-values for single and double strand break induction in plasmid DNA using agarose gel elctrophoresis and a curve-fitting procedure. Int J Radiat Biol 52:125–138

    CAS  Google Scholar 

  • Hems G (1960) Chemical effects of ionizing radiation on deoxyribonucleic acid in dilute aqueous solution. Nature (London) 186:710–712

    PubMed  CAS  Google Scholar 

  • Henderson PT, Jones D, Hampikian G, Kan Y, Schuster GB (1999) Long-distance charge transport in duplex DNA: the phonon-assisted polaron-like hopping mechanism. Proc Natl Acad Sci USA 96:8353–8358

    Article  PubMed  CAS  Google Scholar 

  • Henke BL, Gullikson EM, Davis JC (1993) X-ray interactions:photoabsorption, scattering, transmission, and reflection at E = 50–30 000 eV, Z = 1–92. Atomic Data and Nuclear Data Tables 54:181–342

    Article  CAS  Google Scholar 

  • Henle ES, Luo Y, Linn S (1996) Fe2+, Fe3+, and oxygen react with DNA-derived radicals formed during iron-mediated Fenton reactions. Biochemistry 35:12212–12219

    Article  PubMed  CAS  Google Scholar 

  • Hesslewood IP, Cramp WA, McBrien DCH, Williamson P, Lott KAK (1978) Copper as a hypoxic cell sensitizer of mammalian cells. Br J Cancer 37Suppl. III:95–97

    CAS  Google Scholar 

  • Hewitt RR, Marburger K (1975) The photolability of DNA containing 5-bromouracil — I. Single-strand breaks and alkali-labile bonds. Photochem Photobiol 21:413–417

    CAS  Google Scholar 

  • Hicke BJ, Willis MC, Koch TH, Cech R (1994) Telomeric protein-DNA point contacts identified by photo-cross-linking using 5-bromodeoxyuridine. Biochemistry 33:3364–3373

    PubMed  CAS  Google Scholar 

  • Holmlin RE, Dandliker PJ, Barton JK (1997) Ladungsübertragung durch DNA-Basenstapel. Angew Chem 109:2830–2848

    Google Scholar 

  • Holmlin RE, Tong RT, Barton JK (1998) Long-range triplet energy transfer between metallointercalators tethered to DNA: Importance of intercalation, stacking, and distance. J Am Chem Soc 120:9724–9725

    Article  CAS  Google Scholar 

  • Hong IS, Greenberg MM (2005) Efficient DNA interstrand cross-link formation from a nucleotide radical. J Am Chem Soc 127:3692–3693

    PubMed  CAS  Google Scholar 

  • Hospers GA, Eisenhauer EA, de Vries EG (1999) The sulfhydryl-containing compounds WR-2721 and glutathione as radio-and chemoprotectice agents. A review, indications for use and prospects. Br J Cancer 80:629–638

    Article  PubMed  CAS  Google Scholar 

  • Huels MA, Boudaiffa B, Cloutier P, Hunting D, Sanche L (2003) Single, double, and multiple strand breaks induced in DNA by 3–100 eV electrons. J Am Chem Soc 125:4467–4477

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson F (1987) Yearly review. A review of some topics concerning mutagenesis by ultraviolet light. Photochem Photobiol 45:897–903

    PubMed  CAS  Google Scholar 

  • Hutchinson F, Köhnlein W (1980) The photochemistry of 5-bromouracil and 5-iodouracil in DNA. Progr Molec Subcell Biol 7:1–42

    CAS  Google Scholar 

  • Hutter M, Clark T (1996) On the enhanced stability of the guanine-cytosine base-pair radical cation. J Am Chem Soc 118:7574–7577

    CAS  Google Scholar 

  • Hülsewede JW, Schulte-Frohlinde D (1986) Radiation protection of E. coli strains by cysteamine in the presence of oxygen. Int J Radiat Biol 50:861–869

    Google Scholar 

  • Hüttermann J (1982) Solid-state radiation chemistry of DNA and its constituents. Ultramicroscopy 10:25–40

    PubMed  Google Scholar 

  • Hüttermann J (1991) Radical ions and their reactions in DNA and its constituents. Contribution of electron spin resonance spectroscopy. In: Lund A, Shiotani M (eds) Radical ionic systems. Kluver, Dordrecht, pp 435–462

    Google Scholar 

  • Hwang J-T, Greenberg MM (1999) Kinetics and stereoselectivity of thiol trapping of deoxyuridin-1′-yl in biopolymers and their relationship to the formation of premutagenic α-deoxynucleotides. J Am Chem Soc 121:4311–4315

    Article  CAS  Google Scholar 

  • Hwang J-T, Tallman KA, Greenberg MM (1999a) The reactivity of the 2-deoxyribonolactone lesion in single-stranded DNA and its implication in reaction mechanisms of DNA damage and repair. Nucleic Acids Res 27:3805–3810

    Article  PubMed  CAS  Google Scholar 

  • Hwang J-T, Greenberg MM, Fuchs T, Gates KS (1999b) Reaction of the hypoxia-selective antitumor agent tirapazamine with a C1′-radical in single-stranded and double-stranded DNA. The drug and its metabolites can serve as surrogates for molecular oxygen in radical-mediated DNA damage reactions. Biochemistry 38:14248–14255

    Article  PubMed  CAS  Google Scholar 

  • Inagaki T, Hamm RN, Arakawa ET, Painter LR (1974) Optical and dielectric properties of DNA in the extreme ultraviolet. J Chem Phys 61:4246–4250

    Article  CAS  Google Scholar 

  • Inouye S (1984) Site-specific cleavage of double-strand DNA by hydroperoxide of linoleic acid. FEBS Lett 172:231–234

    Article  PubMed  CAS  Google Scholar 

  • Inoue S, Kawanishi S (1995) Oxidative DNA damage induced by simultaneous generation of nitric oxide and superoxide. FEBS Lett 371:86–88

    Article  PubMed  CAS  Google Scholar 

  • Isabelle V, Franchet-Beuzit J, Sabattier R, Laine B, Spotheim-Maurizot M, Charlier M (1993) Radioprotection of DNA by a DNA-binding protein: MC1 chromosomal protein from the archaebacterium Methanosarcina sp. CHTI55. Int J Radiat Biol 63:749–758

    PubMed  CAS  Google Scholar 

  • Isabelle V, Franchet-Beuzit J, Spotheim-Maurizot M, Charlier M (1999) L’attaque radiolytique de l’ADN dans les complexes acides nucléiques-protéines. J Chim Phys 91:1121–1131

    Google Scholar 

  • Ishida R, Takahashi T (1975) Increased DNA chain breakage by combined action of bleomycin and superoxide radical. Biochem Biophys Res Commun 66:1432–1438

    Article  PubMed  CAS  Google Scholar 

  • Isildar M, Schuchmann MN, Schulte-Frohlinde D, von Sonntag C (1982) Oxygen uptake in the radiolysis of aqueous solutions of nucleic acids and their constituents. Int J Radiat Biol 41:525–533

    CAS  Google Scholar 

  • Ito T, Taniguchi T (1986) Enzymatic quantification of strand breaks of DNA induced by vacuum-UV radiation. Fed Eur Biochem 206:151–153

    CAS  Google Scholar 

  • Ito K, Kawanishi S (1997) Photoinduced hydroxylation of deoxyguanosine in DNA by pterins: sequence specificity and mechanism. Biochemistry 36:1774–1781

    PubMed  CAS  Google Scholar 

  • Ito KA, Denny CB, Brown CK, Yao M, Seeger ML (1973) Resistance of bacterial spores to hydrogen peroxide. Food Technology — Nov 1973 58–65

    Google Scholar 

  • Ito K, Inoue S, Yamamoto K, Kawanishi S (1993) 8-Hydroxydeoxyguanosine formation at the 5′ site of 5′-GG-3′ sequences in double-stranded DNA by UV radiation in riboflavin. J Biol Chem 268:13221–13227

    PubMed  CAS  Google Scholar 

  • Jacobs GP, Samuni A, Czapski G (1985) The contribution of endogenous and exogenous effects to radiation-induced damage in the bacterial spore. Int J Radiat Biol 47:621–627

    CAS  Google Scholar 

  • Janicek MF, Haseltine WA, Henner WD (1985) Malondialdehyde in gamma-irradiated DNA, deoxynucleotides and deoxynucleosides. Nucleic Acids Res 13:9011–9029

    PubMed  CAS  Google Scholar 

  • Jaruga P, Birincioglu M, Rodriguez H, Dizdaroglu M (2002) Mass spectrometric assay for the tandem lesion 8,5-cyclo-2′-deoxyguanosine in mammalian DNA. Biochemistry 41:373–3711

    Article  Google Scholar 

  • Jaruga P, Theruvathu J, Dizdaroglu M, Brooks PJ (2004) Complete release of (5′S)-8,5′-cyclo-2′-deoxyadenosine from dinucleotides, oligodeoxynucleotides and DNA, and direct comparison of its level in cellular DNA with other oxidatively induced lesions. Nucleic Acids Res 32:e87

    Article  PubMed  Google Scholar 

  • Jenner TJ, Fulford J, O’Neill P (2001) Contribution of base lesions to radiation-induced clustered DNA damage: implication for models of radiation response. Radiat Res 156:590–593

    PubMed  CAS  Google Scholar 

  • Jeppesen C, Buchardt O, Henriksen U, Nielsen PE (1988) Photocleavage of DNA photofootprinting of E. coli RNA polymerase bound to promoter DNA by azido-9-acridinylamines. Nucleic Acids Res 16:5755–5770

    PubMed  CAS  Google Scholar 

  • Jones GDD, Weinfeld M (1996) Dual action of tirapazamine in the induction of DNA strand breaks. Cancer Res 56:1584–1590

    PubMed  CAS  Google Scholar 

  • Jortner J, Bixon M, Langenbacher T, Michel-Beyerle ME (1998) Charge transfer and transport in DNA. Proc Natl Acad Sci USA 95:12759–12765

    Article  PubMed  CAS  Google Scholar 

  • Joshi RR, Ganesh KN (1992) Chemical cleavage of plasmid DNA by Cu(II), Ni(II) and Co(III) despheral complexes. Biochem Biophys Res Commun 182:588–592

    Article  PubMed  CAS  Google Scholar 

  • Joshi RR, Ganesh KN (1994a) Duplex and triplex directed DNA cleavage by oligonucleotide-Cu(II) / Co(III) metallodesferal conjugates. Biochim Biophys Acta 1201:454–460

    PubMed  Google Scholar 

  • Joshi RR, Ganesh KN (1994b) Metallodesferals as a new class of DNA cleavers: Specificity, mechanism and targetting of DNA scission reactions. Proc Indian Acad Sci (Chem Sci) 106:1089–1108

    CAS  Google Scholar 

  • Joshi RR, Ganesh KN (2004) Specific cleavage of DNA at CG sites by Co(III) and Ni(II) desferal complexes. FEBS Lett 313:303–306

    Google Scholar 

  • Joshi RR, Likhite SM, Kumar RK, Ganesh KN (1994) DNA cleavage by Cu(II)-desferal: identification of C1′-hydroxylation as the initial event for DNA damage. Biochim Biophys Acta 1199:285–292

    PubMed  CAS  Google Scholar 

  • Jung H, Sontag W, Lücke-Huhle C, Weibezahn KF, Dertinger H (1977) Effects of vacuum-UV and excited gases on DNA. In: Castellani A (ed) Research in Photobiology. New York, London: Plenum Press, pp 219–227

    Google Scholar 

  • Junker B, Martin-Bertram H, Hagen U (1984) Distribution of S1-nuclease sensitive sites and doublestrand breaks in γ-irradiated λ-DNA. Int J Radiat Biol 46:675–679

    CAS  Google Scholar 

  • Kan Y, Schuster GB (1999a) Radical cation transport and reaction in triplex DNA: long-range guanine damage. J Am Chem Soc 121:11608–11614

    Google Scholar 

  • Kan Y, Schuster GB (1999b) Long range guanine damage in single-stranded DNA: charge transport through a duplex bridge and in a single-stranded overhang. J Am Chem Soc 121:10857–10864

    CAS  Google Scholar 

  • Kang JO, Gallagher KS, Cohen G (1993) Methylation of RNA purine bases by methyl radicals. Arch Biochem Biophys 306:178–182

    Article  PubMed  CAS  Google Scholar 

  • Kanvah S, Schuster GB (2004) One-electron oxidation of DNA: the effect of replacement of cytosine with 5-methylcytosine on long-distance radical cation transport and reaction. J Am Chem Soc 126:7341–7344

    Article  PubMed  CAS  Google Scholar 

  • Kapp DS, Smith KC (1970) Chemical nature of chain breaks in DNA by X-irradiation in vitro. Radiat Res 42:34–49

    PubMed  CAS  Google Scholar 

  • Kappen LS, Goldberg IH (1983) Deoxyribonucleic acid damage by neocarzinostatin chromophore: strand breaks generated by selective oxidation of C-5′ of deoxyribose. Biochemistry 22:4872–4878

    Article  PubMed  CAS  Google Scholar 

  • Kappen LS, Goldberg IH (1984) Nitroaromatic radiation sensitizers substitute for oxygen in neocarzinostatin-induced DNA damage. Proc Natl Acad Sci USA 81:3312–3316

    PubMed  CAS  Google Scholar 

  • Kappen LS, Goldberg IH (1989) Identification of 2-deoxyribobolactone at the site of neocarzinostatin-induced cytosine release in the sequence d(AGC). Biochemistry 28:1027–1032

    PubMed  CAS  Google Scholar 

  • Kappen LS, Goldberg IH, Liesch JM (1982) Identification of thymidine-5′-aldehyde at DNA strand breaks induced by neocarzinostatin chromophore. Proc Natl Acad Sci USA 79:744–748

    CAS  Google Scholar 

  • Kappen LS, Lee TR, Yang C-C, Goldberg IH (1989) Oxygen transfer from the nitro group of a nitroaromatic radiosensitizer to a DNA sugar damage product. Biochemistry 28:4540–4542

    PubMed  CAS  Google Scholar 

  • Kawai K, Majima T (2004) Hole transfer in DNA by monitoring the transient absorption of radical cations of organic molecules conjugated to DNA. Top Curr Chem 236:117–137

    CAS  Google Scholar 

  • Kawai K, Saito I (1999) Intrastrand 2′β hydrogen abstraction of 5′-adjacent deoxyguanosine by deoxyuridin-5-yl in Z-form DNA. Tetrahedron Lett 40:2589–2592

    CAS  Google Scholar 

  • Kawai K, Saito I, Sugiyama H (2000a) Conformation-dependent photochemistry of 5-halouracil-containing DNA: stereospecific 2′α-hydroxylation of deoxyribose in Z-form DNA. J Am Chem Soc 121:1391–1392

    Google Scholar 

  • Kawai K, Wata Y, Ichinose N, Majima T (2000b) Selective enhancement of the one-electron oxidation of guanine by base paring with cytosine. Angew Chem Int Ed 39:4327–4329

    Article  CAS  Google Scholar 

  • Kawai K, Takada T, Tojo S, Ichinose N, Majima T (2001) Observation of hole transfer through DNA by monitoring the transient absorption of pyrene radical cation. J Am Chem Soc 123:12688–12689

    Article  PubMed  CAS  Google Scholar 

  • Kawai K, Takada T, Tojo S, Majima T (2002) Hole transfer through DNA monitored by transient absorption of phenothiazine radical cation. Tetrahedron Lett 43:89–91

    CAS  Google Scholar 

  • Kawai K, Takada T, Tojo S, Majima T (2003a) Kinetics of weak distance-dependent hole transfer in DNA by adenine-hopping mechanism. J Am Chem Soc 125:6842–6843

    PubMed  CAS  Google Scholar 

  • Kawai K, Takada T, Nagai T, Cai X, Sugimoto A, Fujitsuka M, Majima T (2003b) Long-lived charge-separated state leading to DNA damage through hole transfer. J Am Chem Soc 125:16198–16199

    PubMed  CAS  Google Scholar 

  • Kägi HR, Schäffer A (1988) Biochemistry of metallothionein. Biochemistry 27:8509–8515

    PubMed  Google Scholar 

  • Keller B, Horneck G (1992) Action spectra in the vaccum UV and far UV (122–300 nm) for inactivation of wet and vaccum-dry spore of Streptomyces griseus and photoreactivation. J Photochem Photobiol B: Biol 16:61–72

    CAS  Google Scholar 

  • Kelley SO, Barton JK (1998) DNA-mediated electron transfer from a modified base to ethidium; π-stacking as a modulator of reactivity. Chem Biol 5:413–425

    Article  PubMed  CAS  Google Scholar 

  • Kelley SO, Barton JK (1999) Electron transfer between bases in double helical DNA. Science 283:375–381

    Article  PubMed  CAS  Google Scholar 

  • Kelley SO, Holmlin RE, Stemp EDA, Barton JK (1997) Photoinduced electron transfer in ethidium-modified DNA duplexes: dependence on distance and base stacking. J Am Chem Soc 119:9861–9870

    CAS  Google Scholar 

  • Kelley SO, Jackson NM, Hill MG, Barton JK (1999) Long-range electron transfer through DNA films. Angew Chem Int Ed 38:941–945

    Article  CAS  Google Scholar 

  • Kemsley JN, Zaleski KL, Chow MS, Decker A, Shishova EY, Wasinger EC, Hedman B, Hodgson KO, Solomon EI (2003) Spectroscopic studies of the interaction of ferrous bleomycin with DNA. J Am Chem Soc 125:10810–10821

    PubMed  CAS  Google Scholar 

  • Kimball A, Guo Q, Lu M, Cunningham RP, Kallenbach NR, Seeman NC, Tullius TD (1990) Construction and analysis of parallel and antiparallel Holliday junctions. J Biol Chem 265:6544–6547

    PubMed  CAS  Google Scholar 

  • Kimura T, Kawai K, Tojo S, Majima T (2004) One-electron attachment reaction of B-and Z-DNA modified by 8-bromo-2′-deoxyguanosine. J Org Chem 69:1169–1173

    PubMed  CAS  Google Scholar 

  • Klimczak U, Ludwig DC, Mark F, Rettberg P, Schulte-Frohlinde D (1993) Irradiation of plasmid and phage DNA in water-alcohol mixtures: strand breaks and lethal damage as a function of scavenger concentration. Int J Radiat Biol 64:497–510

    PubMed  CAS  Google Scholar 

  • Koch CJ (1985) Radiosensitization/radioprotection: methods of analysis. Int J Radiat Biol 48:651–659

    CAS  Google Scholar 

  • Kotandeniya D, Ganley B, Gates KS (2002) Oxidative DNA base damage by the antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine). Bioorg Medic Chem Lett 12:2325–2329

    CAS  Google Scholar 

  • Krasin F, Hutchinson F (1978a) Strand breaks and alkali-labile bonds induced by ultraviolet light in DNA with 5-bromouracil in vivo. Biophys J 24:657–664

    PubMed  CAS  Google Scholar 

  • Krasin F, Hutchinson F (1978b) Double-strand breaks from single photochemical events in DNA containing 5-bromouracil. Biophys J 24:645–656

    PubMed  CAS  Google Scholar 

  • Kreutzer DA, Essigmann JM (1998) Oxidized deaminated cytosines are a source of C → T transitions in vivo. Proc Nat Acad Sci USA 95:3578–3582

    PubMed  CAS  Google Scholar 

  • Krider ES, Meade TJ (1998) Electron transfer in DNA: covalent attachment of spectroscopically unique donor and acceptor complexes. J Biol Inorg Chem 222–225

    Google Scholar 

  • Kroeger KM, Jiang YL, Kow YW, Goodman MF, Greenberg MM (2004a) Mutagenic effects of 2-deoxyribonolactone in Escherichia coli. An abasic lesion that disobeys the A-rule. Biochemistry 43:6723–6733

    PubMed  CAS  Google Scholar 

  • Kroeger KM, Kim J, Goodman MF, Greenberg MM (2004b) Effect of the C4′-oxidized abasic site on replication in Escherichia coli. An unusually large deletion is induced by a small lesion. Biochemistry 43:13621–13627

    PubMed  CAS  Google Scholar 

  • Krushinskaya NP (1983) Radiation-induced chemical alterations in sugar moiety of DNA: Carboncarbon bond rupture. In: Dobo J, Hedvig P, Schiller R (eds) Proc. 5th Tihany Symp. Radiation Chemistry. Akedemiao Kiado, Budapest, pp 1061–1066

    Google Scholar 

  • Krushinskaya NP, Shalnov MI (1967) Nature of breaks in the DNA chain upon irradiation of aqueous solutions. Radiobiology 7:36–45

    Google Scholar 

  • Kuraoka I, Bender C, Romieu A, Cadet J, Wood RD, Lindahl T (2000) Removal of oxygen free-radical-induced 5′,8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells. Proc Nat Acad Sci USA 97:3823–3837

    Google Scholar 

  • Kuraoka I, Robins P, Matsutani C, Hanaoka F, Gasparutto D, Cadet J, Wood RD, Lindahl T (2001) Oxygen free radical damage to DNA. J Biol Chem 52:49283–49288

    Google Scholar 

  • La Vere T, Becker D, Sevilla MD (1996) Yields of OH in γ-irradiated DNA as a function of DNA hydration: Hole transfer vs OH formation. Radiat Res 145:673–680

    PubMed  Google Scholar 

  • Laderoute K, Wardman P, Rauth AM (1988) Molecular mechanism for hypoxia-dependent activation of 3-amino-1,2,4-benzotriazine-1,4-dioxide (SR 4233). Biochem Pharmacol 37:1487–1495

    Article  PubMed  CAS  Google Scholar 

  • Lafleur MVM, Loman H (1982) Influence of anoxic sensitizers on the radiation damage in biologically active DNA in aqueous solution. Int J Radiat Biol 41:295–302

    CAS  Google Scholar 

  • Le Sech C, Frohlich H, Saint-Marc C, Charlier M (1996) DNA breakage upon K-shell excitation of phosphorus as a model for direct effects in radiation biology. Radiat Res 145:632–635

    PubMed  Google Scholar 

  • Le XC, Xing JZ, Lee J, Leadon SA, Weinfeld M (1998) Inducible repair of thymine glycol detected by an ultrasensitive assay for DNA damage. Science 280:1066–1069

    Article  PubMed  CAS  Google Scholar 

  • Lett JT, Alexander P (1961) Crosslinking and degradation of deoxyribonucleic acid gels with varying water contents when irradiated with electrons. Radiat Res 15:159–173

    PubMed  CAS  Google Scholar 

  • Levin JR, Burkhoff AM, Tullius TD (1991) Using the chemistry of the hydroxyl radical to determine structural details about DNA and protein-DNA complexes. In: Saluz HP, Jost J-P (eds) A laboratory guide to in vitro studies of protein/DNA Interactions. Birkhäuser, Basel, pp 133–144

    Google Scholar 

  • Lewis FD, Letsinger RL (1998) Distance-dependent photoinduced electron transfer in synthetic single-strand and hair-pin DNA. J Biol Inorg Chem 3:221

    Google Scholar 

  • Lewis FD, Wu T, Zhang Y, Letsinger RL, Greenfield SR, Wasielewski MR (1997) Distance-dependent electron transfer in DNA hairpins. Science 277:673–676

    PubMed  CAS  Google Scholar 

  • Lewis FD, Zhang Y, Liu X, Xu N, Letsinger RL (1999a) Naphthalenedicarboxamides as fluorescent probes of inter-and intramolecular electron transfer in single strand, hairpin, and duplex DNA. J Phys Chem B 103:2570–2578

    Article  CAS  Google Scholar 

  • Lewis FD, Liu X, Wu Y, Miller SE, Wasielewski MR, Letsinger RL, Sanishvili R, Joachimiak A, Tereshko V, Egli M (1999b) Structure and photoinduced electron transfer in exceptionally stable synthetic DNA hairpins with stilbenediether linkers. J Am Chem Soc 121:9905–9906

    CAS  Google Scholar 

  • Lewis FD, Wu T, Liu X, Letsinger RL, Greenfield SR, Miller SE, Wasielewski MR (2000a) Dynamics of photoinduced charge separation and charge recombination in synthetic DNA hairpins with stilbenedicarboamide linkers. J Am Chem Soc 122:2889–2902

    CAS  Google Scholar 

  • Lewis FD, Liu X, Liu J, Miller SE, Hayes RT, Wasielewski MR (2000b) Direct measurement of hole transport dynamics in DNA. Nature 406:51–53

    Article  PubMed  CAS  Google Scholar 

  • Lewis FD, Letsinger RL, Wasielewski MR (2001) Dynamics of photoinduced charge transfer and hole transport in synthetic DNA hairpins. Acc Chem Res 34:159–170

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Cai Z, Sevilla MD (2001) Investigation of proton transfer within DNA base pair anion and cation radicals by density functional theory (DFT). J Phys Chem B 105:10115–10123

    CAS  Google Scholar 

  • Li Z, Cai Z, Sevilla MD (2002) DFT calculations on the electron affinities of nucleic acid bases: dealing with negative electron affinities. J Phys Chem A 106:1596–1603

    CAS  Google Scholar 

  • Lillicrap SC, Fielden EM (1969) Luminescence kinetics following pulse irradiation. II. DNA. J Chem Phys 51:3503–3511

    Article  PubMed  CAS  Google Scholar 

  • Ling CC, Michaels HB, Epp ER, Peterson EC (1978) Oxygen diffusion into mammalian cells following ultrahigh dose rate irradiation and lifetime estimates of oxygen-sensitive species. Radiat Res 76:522–532

    PubMed  CAS  Google Scholar 

  • Lipari F, Swarin SJ (1982) Determination of formaldehyde and other aldehydes in automobile exhaust with an improved 2,4-dinitrophenylhydrazine method. J Chromatogr 247:297–306

    Article  CAS  Google Scholar 

  • Liphard M, Bothe E, Schulte-Frohlinde D (1990) The influence of glutathione on single-strand breakage in single-stranded DNA irradiated in aqueous solution in the absence and presence of oxygen. Int J Radiat Biol 58:589–602

    PubMed  CAS  Google Scholar 

  • Liu C-S, Schuster GB (2003) Base sequence effects in radical cation migration in duplex DNA: support for the polaron-like hopping model. J Am Chem Soc 125:6098–6102

    PubMed  CAS  Google Scholar 

  • Llano J, Eriksson LA (2004) First principles electrochemical study of redox events in DNA bases and chemical repair in aqueous solution. Phys Chem Chem Phys 6:2426–2433

    CAS  Google Scholar 

  • Lloyd RV, Duling DR, Rumyantseva GV, Mason RP, Bridson PK (1991) Microsomal reduction of 3-amino-1,2,4-benzotriazine 1,4-dioxide to a free radical. Mol Pharmacol 40:440–445

    PubMed  CAS  Google Scholar 

  • Lomax ME, Cuniffe S, O’Neill P (2004) 8-OxoG retards the activity of the ligase III/XRCC1 complex during the repair of a single-strand break, when present within a clustered DNA damage site. DNA Repair 3:289–299

    Article  PubMed  CAS  Google Scholar 

  • Lown JW (1985) Molecular mechanisms of action of anticancer agents involving free radical intermediates. Adv Free Radical Biol Med 1:225–264

    CAS  Google Scholar 

  • Luxford C, Morin B, Dean RT, Davies MJ (1999) Histone H1-and other protein-and amino acid-hydroperoxides can give rise to free radicals which oxidize DNA. Biochem J 344:125–134

    Article  PubMed  CAS  Google Scholar 

  • Lücke-Huhle C, Jung H (1973) Energy requirements for damaging DNA molecules. I. Energy transfer from metastable states of excited gases. Int J Radiat Biol 24:221–228

    Google Scholar 

  • Lücke-Huhle C, Braun A, Hagen U (1970) Oxygen effect in γ-irradiated DNA. Z Naturforsch 25b:1264–1268

    Google Scholar 

  • Lücke-Huhle C, Pech M, Jung H (1974) Effect of alkali treatment on single-strand breaks in irradiated dry ΦX174 RF-DNA. Radiat Environ Biophys 11:165–170

    Article  PubMed  Google Scholar 

  • Ly D, Sanii L, Schuster GB (1999) Mechanism of charge transport in DNA: internally-linked anthraquinone conjugates support phonon-assisted polaron hopping. J Am Chem Soc 121:9400–9410

    Article  CAS  Google Scholar 

  • Lyubimova NV, Coultas PG, Yuen K, Martin RF (2001) In vivo radioprotection of mouse brain enthothelial cells by Hoechst 33332. Brit J Radiol 74:77–82

    PubMed  CAS  Google Scholar 

  • Maccubbin AE, Iijima H, Ersing N, Dawidzik JB, Patrzyc HB, Wallace JC, Budzinski EE, Freund HG, Box HC (2000) Double-base lesions are produced in DNA by free radicals. Arch Biochem Biophys 375:119–123

    Article  PubMed  CAS  Google Scholar 

  • Maccubin AE, Evans MS, Budzinski EE, Wallace JCB, Box HC (1992) Characterization of two radiationinduced lesions from DNA: studies using nuclease Pl. Int J Radiat Biol 61:729–736

    Google Scholar 

  • Makrigiorgos GM (1999) Detection of chromatin-associated hydroxyl radicals generated by DNAbound metal compounds and antitumor antibiotics. In: Siegel A, Siegel H (eds) Interrelations between free radicals and metal ions in life processes. Marcel Dekker, New York, pp 521–545

    Google Scholar 

  • Marietta C, Gulam H, Brooks PJ (2002) A single 8,5′-cyclo-2′-deoxyadenosine lesion in a TATA box prevents binding of the TATA binding protein and strongly reduces transcription in vivo. DNA Repair 1:967–975

    Article  PubMed  CAS  Google Scholar 

  • Mark F, Becker U, Herak. J.N., Schulte-Frohlinde D (1989) Radiolysis of DNA in aqueous solution in the presence of a scavenger: A kinetic model based on a nonhomogeneous reaction of OH radicals with DNA molecules of spherical or cylindrical shape. Radiat Environ Biophys 28:81–99

    Article  PubMed  CAS  Google Scholar 

  • Marquis RE, Sim J, Shin SY (1994) Molecular mechanisms of resistance to heat and oxidative damage. J Appl Bacteriol Symp Suppl 76:40S–48S

    Google Scholar 

  • Marshall LE, Reich KA, Graham DR, Sigman DS (1981a) DNA cleavage by 1,10-phenanthroline-cuprous complex. Product analysis. Fed Proc 40:1730–1730

    Google Scholar 

  • Marshall LE, Graham DR, Reich KA, Sigman DS (1981b) Cleavage of deoxyribonucleic acid by the 1,10-phenanthroline-cuprous complex. Hydrogen peroxide requirement and primary and secondary structure specificity. Biochemistry 20:244–250

    Article  PubMed  CAS  Google Scholar 

  • Martin-Bertram H (1981) S1-sensitive sites in DNA after γ-irradiation. Biochim Biophys Acta 652:261–265

    PubMed  CAS  Google Scholar 

  • Martin-Bertram H (1982) Heteroduplex DNA in bacteriophage T1 after ionizing radiation. In: Seeberg E, Kleppe K (eds) Chromosome Damage and Repair. Plenum, New York, pp 35–39

    Google Scholar 

  • Martin-Bertram H, Hagen U (1979) Genomic integrity of T1 DNA after γ-and ultraviolet irradiation. Biochim Biophys Acta 561:312–323

    PubMed  CAS  Google Scholar 

  • Martin-Bertram H, Rumpf E, Winkler C (1983) Evidence for radiation-induced bulky lesions in DNA. Radiat Environ Biophys 21:305–307

    Article  PubMed  CAS  Google Scholar 

  • Martin-Bertram H, Hartl P, Winkler C (1984) Unpaired bases in phage DNA after gamma-radiation in-situ and in-vitro. Radiat Environ Biophys 23:95–105

    Article  PubMed  CAS  Google Scholar 

  • Martin RF (1998) DNA-binding bibenzimidazoles as radioprotectors. In: Bump EA, Malaker K (eds) Radioprotectors. Chemical, biological, and clinical perspectives. CRC Press, Boca Raton, pp 151–166

    Google Scholar 

  • Martin RF, Anderson RF (1998) Pulse radiolysis studies indicate that electron transfer is involved in radioprotection by Hoechst 33342 and methylproamine. Int J Radiat Oncol Biol Phys 42:827–831

    Article  PubMed  CAS  Google Scholar 

  • Marton LJ, Pegg AE (1995) Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol 35:55–91

    Article  PubMed  CAS  Google Scholar 

  • Matray TJ, Greenberg MM (1994) Site-specific incorporation of the alkaline labile, oxidative stress product (5R)-5,6-dihydro-5-hydroxythymidine in an oligonucleotide. J Am Chem Soc 116:6931–6932

    Article  CAS  Google Scholar 

  • Matsufuji H, Shibamoto T (2004) The role of EDTA in malonaldehyde formation from DNA oxidized by Fenton reagent systems. J Agric Food Chem 52:3136–3140

    PubMed  CAS  Google Scholar 

  • Matsunga T, Hieda K, Nikaido O (1991) Wavelength dependent formation of thymine dimers and (6-4)photoproducts in DNA by monochromatic ultraviolet light ranging from 150 to 365 nm. Photochem Photobiol 54:403–410

    Google Scholar 

  • McClelland RA, Fuller JR, Seaman NE, Rauth AM, Battistella R (1984) 2-Hydroxylaminoimidazoles — unstable intermediates in the reduction of 2-nitroimidazoles. Biochem Pharmacol 33:303–309

    Article  PubMed  CAS  Google Scholar 

  • McGall GH, Rabow LE, Stubbe J, Kozarich JW (1987) Incorporation of 18O into glycolic acid obtained from the bleomycin-mediated degradation of DNA: Evidence for 4′-radical trapping by 18O2. J Am Chem Soc 109:2836–2837

    Article  CAS  Google Scholar 

  • McGall GH, Rabow LE, Ashley GW, Wu SH, Kozarich JW, Stubbe J (1992) New insight into the mechanism of base propenal formation during bleomycin-mediated DNA degradation. J Am Chem Soc 114:4958–4967

    Article  CAS  Google Scholar 

  • Meade TJ, Kayyem JF (1995) Electron-transfer through DNA-site-specific modification of duplex DNA with ruthenium donors and acceptors. Angew Chem Int Ed Engl 34:352–354

    Article  CAS  Google Scholar 

  • Mee LK, Adelstein SJ, Stein G (1978) Radiolysis of chromatin extracted from cultured mammalian cells: production of alkali-labile strand damage in DNA. Int J Radiat Biol 33:443–455

    CAS  Google Scholar 

  • Meggers E, Kusch D, Spichty M, Wille U, Giese B (1998a) Electron transfer through DNA in the course of radical-induced strand cleavage. Angew Chem Int Ed 37:460–462

    Article  CAS  Google Scholar 

  • Meggers E, Michel-Beyerle ME, Giese B (1998b) Sequence dependent long range hole transport in DNA. J Am Chem Soc 120:12950–12955

    Article  CAS  Google Scholar 

  • Meggers E, Dussy A, Schäfer T, Giese B (2000) Electron transfer in DNA from guanine and 8-oxoguanine to a radical cation of the carbohydrate backbone. Chem Eur J 6:485–492

    Article  CAS  Google Scholar 

  • Meijler MM, Zelenko O, Sigman DS (1997) Chemical mechanism of DNA scission by (1,10-phenanthroline)copper. Carbonyl oxygen of 5-methylenefuranone is derived from water. J Am Chem Soc 119:1135–1136

    Article  CAS  Google Scholar 

  • Melvin T, Botchway S, Parker AW, O’Neill P (1995a) Migration of photoinduced oxidative damage in models of DNA. J Chem Soc Chem Commun 653–654

    Google Scholar 

  • Melvin T, Plumb MA, Botchway SW, O’Neill P, Parker AW (1995b) 193 nm light induces single strand breakage of DNA predominantly at guanine. Photochem Photobiol 61:584–591

    PubMed  CAS  Google Scholar 

  • Melvin T, Cunniffe SMT, O’Neill P, Parker AW, Roldan-Arjona T (1998) Guanine is the target for direct ionisation damage in DNA, as detected using excision enzymes. Nucleic Acids Res 26:4935–4942

    Article  PubMed  CAS  Google Scholar 

  • Mertens R, von Sonntag C (1994) Determination of the kinetics of vinyl radical reactions by the characteristic visible absorption of vinyl peroxyl radicals. Angew Chem Int Ed Engl 33:1262–1264

    Google Scholar 

  • Mertens R, von Sonntag C, Lind J, Merényi G (1994) A kinetic study of the hydrolysis of phosgene in aqueous solution by pulse radiolysis. Angew Chem Int Ed Engl 33:1259–1261

    Google Scholar 

  • Meschwitz SM, Schultz RG, Ashley GW, Goldberg IH (1992) Selective abstraction of 2H from C-1′ of the C residue in AGCICT by the radical center at C-2 of activated neocarzinostatin chromophore: structure of the drug/DNA complex responsible for bistranded lesion formation. Biochemistry 31:9117–9121

    Article  PubMed  CAS  Google Scholar 

  • Messer A, Carpenter K, Forzley K, Buchanan J, Yang S, Razskazovskii Y, Cai Z, Sevilla MD (2000) Electron spin resonance study of electron transfer rates in DNA: determination of the tunneling constant β for single-step excess electron transfer. J Phys Chem B 104:1128–1136

    Article  CAS  Google Scholar 

  • Meunier B (1992) Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem Rev 92:1411–1456

    Article  CAS  Google Scholar 

  • Michael BD (1984) Kinetics and mechanisms of the oxygen effect in radiobiology. In: Breccia A, Greenstock CL, Tamba M (eds) Advances on oxygen radicals and radioprotectors. pp 53–63

    Google Scholar 

  • Michael BD, Adams GE, Hewitt HB, Jones WBG, Watts ME (1973) A posteffect of oxygen in irradiated bacteria: A submillisecond fast mixing study. Radiat Res 54:239–251

    PubMed  CAS  Google Scholar 

  • Michael BD, Harrop HA, Maughan RL (1979) Fast response methods in the radiation chemistry of lethal damage in intact cells. In: Okada S, Imamura M, Terashima T, Yamaguchi H (eds) Radiation Research. Proc. 6th Int. Congr. Radiat. Res. Japanese Ass. for Radiation Research (JARR), Tokyo, pp 288–296

    Google Scholar 

  • Michael BD, Harrop HA, Held KD (1981a) Photoreactivation of Escherichia coli after exposure to ionizing radiation: The role of U.V. damage by concomitant Cerenkov light. Int J Radiat Biol 39:577–583

    CAS  Google Scholar 

  • Michael BD, Harrop HA, Held KD (1981b) Timescale and mechanisms of the oxygen effect in irradiated bacteria. In: Rodgers MAJ, Powers EL (eds) Oxygen and oxy-radicals in chemistry and biology. Academic Press, New York, pp 285–292

    Google Scholar 

  • Michaels HB, Hunt JW (1973) Reactions of the hydroxyl radical with polynucleotides. Radiat Res 56:57–70

    PubMed  CAS  Google Scholar 

  • Michaels HB, Ling CC, Epp ER, Peterson EC (1981a) Interaction of nitroimidazole sensitizers and oxygen in the radiosensitization of mammalian cells at ultrahigh dose rates. Radiat Res 85:567–582

    PubMed  CAS  Google Scholar 

  • Michaels HB, Epp ER, Ling CC (1981b) Exploring the time scale of radiosensitization. In: Rodgers MAJ, Powers EL (eds) Oxygen and oxy-radicals in chemistry and biology. Academic Press, New York, pp 335–343

    Google Scholar 

  • Michalik V, Tartier L, Spotheim-Maurizot M, Charlier M (1995a) Reaction of hydroxyl radical with B-and Z-DNA. In: Fuciarelli AF, Zimbrick JD (eds) Radiation damage in DNA / function relationships in early times. Battelle Press, Columbus, Richland, pp 19–27

    Google Scholar 

  • Michalik V, Spotheim-Maurizot M, Charlier M (1995b) Calculation of hydroxyl radical attack on different forms of DNA. J Biomol Struc Dyn 13:565–575

    CAS  Google Scholar 

  • Michalik V, Spotheim-Maurizot M, Charlier M (1995c) Calculated radiosensitivities of different forms of DNA in solution. Nucl Instr Meth Phys Res B 105:328–331

    Article  CAS  Google Scholar 

  • Midander J, Deschavanne PJ, Debieu D, Malaise EP, Revesz L (1986) Reduced repair of potentially lethal radiation damage in glutathione synthetase-deficient human fibroblasts after X-irradiation. Int J Radiat Biol 49:403–413

    CAS  Google Scholar 

  • Milano MT, Hu GG, Williams LD, Bernhard WA (1998) Migration of electrons and holes in crystalline d(CGATCG)-anthracycline complexes X-irradiated at 4 K. Radiat Res 150:101–114

    PubMed  CAS  Google Scholar 

  • Millar BC, Scott OCA (1981) The mechanisms of the oxygen effect. Stud Biophys 86:15–16

    CAS  Google Scholar 

  • Millar BC, Fielden EM, Steele JJ (1979) A biphasic radiation survival response of mammalian cells to molecular oxygen. Int J Radiat Biol 36:177–180

    CAS  Google Scholar 

  • Millar BC, Sapora O, Fielden EM, Loverock PS (1981) The application of rapid-lysis techniques in radiobiology. IV. The effect of glycerol and DMSO on Chinese hamster cell survival and DNA single-strand break production. Radiat Res 86:506–514

    PubMed  CAS  Google Scholar 

  • Milligan JR, Ward JF (1994) Yield of single-strand breaks due to attack on DNA by scavenger-derived radicals. Radiat Res 137:295–299

    PubMed  CAS  Google Scholar 

  • Milligan JR, Arnold AD, Ward JF (1992) The effect of superhelical density on the yield of singlestrand breaks in γ-irradiated plasmid DNA. Radiat Res 132:69–73

    PubMed  CAS  Google Scholar 

  • Milligan JR, Aguilera JA, Ward JF (1993a) Variation of single-strand break yield with scavenger concentration for the SV40 minichromosome irradiated in aqueous solution. Radiat Res 133:158–162

    PubMed  CAS  Google Scholar 

  • Milligan JR, Aguilera JA, Ward JF (1993b) Variation of single-strand break yield with scavenger concentration for plasmid DNA irradiated in aqueous solution. Radiat Res 133:151–157

    PubMed  CAS  Google Scholar 

  • Milligan JR, Ng JYY, Wu CCL, Aguilera JA, Ward JF, Kow YW, Wallace SS, Cunninghan RP (1996) Methylperoxyl radicals as intermediates in the damage to DNA irradiated in aqueous dimethyl sulfoxide with gamma rays. Radiat Res 146:436–443

    PubMed  CAS  Google Scholar 

  • Milligan JR, Aguilera JA, Ward JF (2001a) Redox equilibrium between guanyl radicals and thiocyanate influences base damage yields in gamma irradiated plasmid DNA. Estimation of the reduction potential of guanyl radicals in plasmid DNA in aqueous solution at physiological ionic strength. Int J Radiat Biol 77:1195–1205

    PubMed  CAS  Google Scholar 

  • Milligan JR, Aguilera J, Nguyen JV (2001b) Redox reactivity of guanyl radicals in plasmid DNA. Int J Radiat Biol 77:281–293

    PubMed  CAS  Google Scholar 

  • Milligan JR, Aguilera JA, Ly A, Tran NQ, Hoang O, Ward JF (2003) Repair of oxidative DNA damage by amino acids. Nucleic Acids Res 31:6258–6263

    Article  PubMed  CAS  Google Scholar 

  • Milligan JR, Aguilera JA, Hoang O, Ly A, Tran NQ, Ward JF (2004) Repair of guanyl radicals in plasmid DNA by electron transfer coupled to proton transfer. J Am Chem Soc 126:1682–1687

    PubMed  CAS  Google Scholar 

  • Misiaszek R, Crean C, Joffe A, Geacintov NE, Shafirovich V (2004) Oxidative DNA damage associated with combination of guanine and superoxide radicals and repair mechanisms via radical trapping. J Biol Chem 279:32106–32115

    Article  PubMed  CAS  Google Scholar 

  • Misiaszek R, Uvaydoc Y, Crean C, Geacintov NE, Shafirovich V (2005) Combination reactions of superoxide with 8-oxo-7,8-dihydroguanine radicals in DNA: kinetics and end-products. J Biol Chem 280:6293–6300

    Article  PubMed  CAS  Google Scholar 

  • Morgan TL, Redpath JL, Ward JF (1984a) Induction of lethal damage in E. coli by Cerenkov emission associated with high-energy X-rays: the effect of bromouracil substitution. Int J Radiat Biol 45:217–226

    CAS  Google Scholar 

  • Morgan TL, Redpath JL, Ward JF (1984b) Pyrimidine dimer induction in E. coli DNA by Cerenkov emission associated with high energy X-irradiation. Int J Radiat Biol 46:443–449

    CAS  Google Scholar 

  • Mori T, Hori Y, Dizdaroglu M (1993) DNA base damage generated in vivo in hepatic chromatin of mice upon whole body γ-irradiation. Int J Radiat Biol 64:645–650

    PubMed  CAS  Google Scholar 

  • Morin B, Cadet J (1994) Benzophenone photosensitization of 2−-deoxyguanosine: characterization of the 2R and 2S diastereoisomes of 1(2-deoxy-β-D-erythro-pentofuranosyl)-2-methoxy-4,5-imidazolidinedione. A model system for the investigation of photosensitized formation of DNA-protein crosslinks. Photochem Photobiol 60:102–109

    PubMed  CAS  Google Scholar 

  • Morin B, Cadet J (1995a) Chemical aspects of the benzophenone-photosensitized formation of two lysine — 2−-deoxyguanosine cross-links. J Am Chem Soc 117:12408–12415

    Article  CAS  Google Scholar 

  • Morin B, Cadet J (1995b) Type I benzophenone-mediated nucleophilic reaction of 5−-amino-2−,5−-dideoxyguanosine. A model system for the investigation of photosensitized formation of DNAprotein cross links. Chem Res Toxicol 8:792–799

    Article  PubMed  CAS  Google Scholar 

  • Morozov II, Myasnik MN (1980) The relationship between the phenomenon of photoreactivation in Escherichia coli following ionizing radiation and Cerenkov emission. Radiat Res 82:336–341

    PubMed  CAS  Google Scholar 

  • Moss SH, Smith KC (1980) Cerenkov ultraviolet radiation (137Cs γ-rays) and direct excitation (137Cs γ-rays and 50 kVp X-rays) produce photoreactivable damage in Escherichia coli. Int J Radiat Biol 38:323–334

    CAS  Google Scholar 

  • Mouret JF, Odin F, Polverelli M, Cadet J (1990) 32P-postlabeling measurement of adenine-N-1-oxide in cellular DNA exposed to hydrogen peroxide. Chem Res Toxicol 3:102–110

    Article  PubMed  CAS  Google Scholar 

  • Mroczka N, Bernhard WA (1993) Hydration effects on free radical yields in DNA X-irradiated at 4 K. Radiat Res 135:155–159

    PubMed  CAS  Google Scholar 

  • Muindi JRF, Sinha BK, Gianni L, Myers CE (1984) Hydroxyl radical production and DNA damage induced by anthracycline-iron complex. FEBS Lett 172:226–230

    Article  PubMed  CAS  Google Scholar 

  • Mujica V, Nitzan A, Mao Y, Davis W, Kemp M, Roitberg A, Ratner MA (1999) Electron transfer in molecules and molecular wires: geometry dependence, coherent transfer, and control. In: Jortner J, Bixon M (eds) Electron transfer: From isolated molecules to biomolecules. Part Two, Advances in Chemical Physics Series, Vol 107. Wiley, New York, pp 403–428

    Google Scholar 

  • Mullenger L, Ormerod MG (1969) The radiosensitization of Micrococcus sodonensis by N-ethyl maleimide. Int J Radiat Biol 15:259–269

    CAS  Google Scholar 

  • Munro TR (1970) The relative radiosensitivity of the nucleus and cytoplasm of Chinese hamster fibroblasts. Radiat Res 42:451–470

    PubMed  CAS  Google Scholar 

  • Murata-Kamiya N, Kamiya H, Muraoka M, Kaji H, Kasai H (1998) Comparison of oxidation products from DNA components by γ-irradiation and Fenton-type reactions. J Radiat Res 38:121–131

    Google Scholar 

  • Murphy CJ, Arkin MR, Jenkins Y, Ghatlia ND, Bossmann SH, Turro NJ, Barton JK (1993) Long-range photoinduced electron transfer through a DNA helix. Science 262:1025–1029

    PubMed  CAS  Google Scholar 

  • Murray V, Martin RF (1989) The degree of ultraviolet damage to DNA containing iododeoxyuridine or bromodeoxyuridine is dependent on the DNA sequence. Nucleic Acids Res 17:2675–2691

    PubMed  CAS  Google Scholar 

  • Murray D, Milas L, Meyn RE (1988a) Radioprotection of mouse jejunum by WR-2721 and WR-1O65: Effects on DNA strand-break induction and rejoining. Radiat Res 114:268–280

    PubMed  CAS  Google Scholar 

  • Murray D, Van Ankeren SC, Milas L, Meyn RE (1988b) Radioprotective action of WR-1065 on radiationinduced DNA strand breaks in cultured Chinese hamster ovary cells. Radiat Res 113:155–170

    PubMed  CAS  Google Scholar 

  • Murray D, Prager A, Vanankeren CC, Altschulter EM, Kerr MS, Terry NHA, Milas L (1990) Comparative effect of the thiols dithiothreitol, cysteamine and WR-151326 on survival and on the induction of DNA damage in cultured Chinese hamster ovary cells exposed to γ-radiation. Int J Radiat Biol 58:71–91

    PubMed  CAS  Google Scholar 

  • Müller WEG, Yamazaki Z-I, Breter HJ, Zahn RK (1972) Action of bleomycin on DNA and RNA. Eur J Biochem 31:518–525

    PubMed  Google Scholar 

  • Myasnik MN, Morozov II (1977) The phenomenon of photoreactivation in bacteria E. coli irradiated by ionizing radiation. Int J Radiat Biol 31:95–98

    CAS  Google Scholar 

  • Myasnik MN, Morozov II, Petin VG (1980) The value of the photoreactivable component in E. coli BS-1 cells exposed to densely and sparsely ionizing radiations. Int J Radiat Biol 37:81–84

    CAS  Google Scholar 

  • Nackerdien Z, Kasprzak KS, Rao G, Halliwell B, Dizdaroglu M (1991) Nickel(II)-and cobalt(II)-dependent damage by hydrogen peroxide to the DNA bases in isolated human chromatin. Cancer Res 51:5837–5842

    PubMed  CAS  Google Scholar 

  • Nakatani K, Dohno C, Saito I (1999) Chemistry of sequence-dependent remote guanine oxidation: photoreaction of duplex DNA containing cyanobenzophenone-substituted uridine. J Am Chem Soc 121:10854–10855

    CAS  Google Scholar 

  • Nakatani K, Dohno C, Saito I (2001) Design of a hole-trapping nucleobase: termination of DNA-mediated hole transport at N 2-cyclopropyldeoxyguanosine. J Am Chem Soc 123:9681–9682

    PubMed  CAS  Google Scholar 

  • Nakatani K, Dohno C, Saito I (2002a) N2-phenyldeoxyguanosine: modulation of the chemical properties of deoxyguanosine toward one-electron oxidation of DNA. J Am Chem Soc 124:6802–6803

    PubMed  CAS  Google Scholar 

  • Nakatani K, Dohno C, Ogawa A, Saito I (2002b) Suppression of DNA-mediated charge transport by BamHI binding. Chem Biol 9:361–366

    Article  PubMed  CAS  Google Scholar 

  • Nakatani K, Saito I (2004) Charge transport in duplex DNA containing modified nucleotide bases. Top Curr Chem 236:163–186

    CAS  Google Scholar 

  • Natrajan A, Hecht SM (1994) Bleomycins: mechanism of polynucleotide recognition and oxydative degradation. In: Neidle S, Waring M (eds) Molecular aspects of anticancer drug-DNA interactions. MacMillan, London, pp 197–242

    Google Scholar 

  • Naylor MA, Stephens MA, Stratford IJ, Keohane A, O’Neill P, Threadgill MD, Webb P, Fielden EM, Adams GE (1991) Aziridinyl nitropyrroles and nitropyrazoles as hypoxia-selective cytotoxins and radiosensitizers. Anti-Cancer Drug Design 6:151–167

    PubMed  CAS  Google Scholar 

  • Neese F, Zaleski JM, Zaleski KL, Solomon EI (2000) Electronic structure of activated bleomycin: oxygen intermediates in heme versus non-heme iron. J Am Chem Soc 122:11703–11724

    Article  CAS  Google Scholar 

  • Newton GL, Aguilera JA, Ward JF, Fahey RC (1996) Polyamine-induced compaction and aggregation of DNA — a major factor in radioprotection of chromatin under physiological conditions. Radiat Res 145:776–780

    PubMed  CAS  Google Scholar 

  • Neyhart GA, Cheng C-C, Thorp HH (1995) Kinetics and mechanism of the oxidation of sugars and nucleotides by oxoruthenium(IV): model studies for predicting cleavage patterns in polymeric DNA and RNA. J Am Chem Soc 117:1463–1471

    Article  CAS  Google Scholar 

  • Nguyen KL, Steryo M, Kurbanyan K, Nowitzki KM, Butterfield SM, Ward SR, Stemp EDA (2000) DNAprotein cross-linking from oxidation of guanine via the flash-quench technique. J Am Chem Soc 122:3585–3594

    Article  CAS  Google Scholar 

  • Nicolaou KC, Dai W-M (1991) Chemie und Biologie von Endiin-Cytostatica/Antibiotica. Angew Chem 103:1453–1481

    CAS  Google Scholar 

  • Nielsen PE, Jeppesen C, Buchardt O (1988) Uranyl salts as photochemical agents for cleavage of DNA and probing of protein-DNA contacts. FEBS Lett 235:122–124

    Article  PubMed  CAS  Google Scholar 

  • Nocek JM, Zhou JS, de Forest S, Priyadarshy S, Beratan DN, Onuchic JN, Hoffman BM (1996) Theory and practice of electron transfer within protein-protein complexes: application to the multidomain binding of cytochrome c by cytochrome c peroxidase. Chem Rev 96:2459–2489

    Article  PubMed  CAS  Google Scholar 

  • Nunez ME, Hall DB, Barton JK (1999) Long-range oxidative damage to DNA: effects of distance and sequence. Chem Biol 6:85–97

    Article  PubMed  CAS  Google Scholar 

  • O’Neill MA, Barton JK (2004) DNA-mediated charge transport chemistry and biology. Top Curr Chem 236:67–115

    CAS  Google Scholar 

  • O’Neill P (1989) Pulse radiolysis of DNA-effects of environment. Free Radical Res Commun 6:153–154

    CAS  Google Scholar 

  • O’Neill P, Al-Kazwini AT, Land EJ, Fielden EM (1989) Diffuse reflectance pulse radiolysis of solid DNA: the effect of hydration. Int J Radiat Biol 55:531–537

    PubMed  CAS  Google Scholar 

  • O’Neill P, Parker AW, Plumb MA, Siebbeles LDA (2001) Guanine modifications following ionization of DNA occurs predominantly via intra-and not interstrand charge migration: an experimental and theoretical study. J Phys Chem B 105:5283–5290

    CAS  Google Scholar 

  • Offer T, Samuni A (2002) Nitroxides inhibit peroxyl radical-mediated DNA scission and enzyme inactivation. Free Radical Biol Med 34:672–881

    Google Scholar 

  • Ogata R, Gilbert W (1977) Contacts between the lac repressor and thymines in the lac operator. Proc Nat Acad Sci USA 74:4973–4976

    PubMed  CAS  Google Scholar 

  • Ohshima H, Iida Y, Matsuda A, Kuwabara M (1996) Damage induced by hydroxyl radicals generated in the hydration layer of γ-irradiated aqueous solution of DNA. J Radiat Res 37:199–207

    PubMed  CAS  Google Scholar 

  • Okahata Y, Kobayashi T, Tanaka K, Shimomura M (1998) Anisotropic electric conductivity in an aligned DNA cast film. J Am Chem Soc 120:6165–6166

    Article  CAS  Google Scholar 

  • Oleinick NL, Chiu S-M, Friedman LR, Xue L-Y, Ramakrishnan N (1986) DNA-protein cross-links: new insights into their formation and repair in irradiated mammalian cells. In: Simic MG, Grossman L, Upton AC (eds) Mechanisms of DNA damage and repair: Implications for carcinogenesis and risk assessment. Basic life sciences, Vol. 38. Plenum Press, New York, pp 181–192

    Google Scholar 

  • Olive PL (1980) Mechanisms of the in vitro toxicity of nitroheterocycles, including Flagyl and misonidazole. In: Brady LW (ed) Radiation sensitizers. Masson Publishers, New York, pp 39–44

    Google Scholar 

  • Olofsson J, Larsson S (2001) Electron hole transport in DNA. J Phys Chem B 105:10389–10406

    Article  Google Scholar 

  • Ormerod MG, Alexander P (1963) On the mechanism of radiation protection by cysteamine: An investigation by means of electron spin resonance. Radiat Res 18:495–509

    PubMed  CAS  Google Scholar 

  • Oudet P, Weiss E, Regnier E (1989) Preparation of simian virus 40 minichromosomes. Meth Enzymol 170:14–25

    PubMed  CAS  Google Scholar 

  • Owa T, Sugiyama T, Otsuka M, Ohno M (1990) A model study on the mechanism of the autoxidation of bleomycin. Tetrahedron Lett 31:6063–6066

    Article  CAS  Google Scholar 

  • Oya Y, Yamamoto K, Tonomura A (1986) The biological activity of hydrogen peroxide I. Induction of chromosome-type aberrations susceptible to inhibition by scavengers of hydroxyl radicals in human embryonic fibroblasts. Mutation Res 172:245–253

    PubMed  CAS  Google Scholar 

  • Oyoshi T, Sugiyama H (2000) Mechanism of DNA strand scission induced by (1,10-phenathroline)copper complex: major direct DNA cleavage is not through 1−,2−-dehydronucleotide intermediate nor β-elimination of forming ribonolactone. J Am Chem Soc 122:6313–6314

    Article  CAS  Google Scholar 

  • Pal SK, Zewail AH (2004) Dynamics of water in biological recognition. Chem Rev 104:2099–2123

    Article  PubMed  CAS  Google Scholar 

  • Pan CQ, Johnson RC, Sigman DS (1996) Identification of new Fis binding sites by DNA scission with Fis-1,10-phenanthroline-copper(I) chimeras. Biochemistry 35:4326–4333

    PubMed  CAS  Google Scholar 

  • Patterson LH, Taiwo FA (2000) Electron paramagnetic resonance spectrometry evidence for bioreduction of tirapazamine to oxidising free radicals under anaerobic conditions. Biochem Pharmacol 60:1933–1935

    Article  PubMed  CAS  Google Scholar 

  • Pearson CG, Shikazono N, Thacker J, O’Neill P (2004) Enhanced mutagenic potential of 8-oxo-7,8-dihydroguanine when present within clustered DNA damage site. Nucleic Acids Res 32:263–270

    Article  PubMed  CAS  Google Scholar 

  • Phillips TL (1980) Rationale for initial clinical trials and future development of radioprotectors. Cancer Clin Trials 3:165–173

    PubMed  CAS  Google Scholar 

  • Pitié M, Bernadou J, Meunier B (1995) Oxidation at carbon-1− of DNA deoxyriboses by the Mn-TMPyP/KHSO5 system results from a cytochrome P-450-type hydroxylation reaction. J Am Chem Soc 117:2935–2936

    Google Scholar 

  • Pjura PE, Grzeskowiak K, Dickerson RE (1987) Binding of Hoechst 33258 to the minor groove of BDNA. Mol Biol 197:257–271

    CAS  Google Scholar 

  • Pogozelski WK, Tullius TD (1998) Oxidative strand scission of nucleic acids: Routes initiated by hydrogen abstraction from the sugar moiety. Chem Rev 98:1089–1107

    Article  PubMed  CAS  Google Scholar 

  • Poole JS, Hadad CM, Platz MJ, Fredin ZP, Pickard L, Guerrero EL, Kesser M, Chowdhury G, Kotandeniya D, Gates KS (2002) Photochemical electron transfer reactions of tirapazamine. Photochem Photobiol 75:339–345

    Article  PubMed  CAS  Google Scholar 

  • Porath D, Bezryadin A, de Vries S, Dekker C (2001) Direct measurement of electrical transport through DNA molecules. Nature 403:635–637

    Google Scholar 

  • Porschen W, Bosiljanoff P, Gewehr K, Mühlensiepen H, Weber HJ, Dietzel F, Feinendegen LE (1977) In vivo assay of the radiation sensitivity of hypoxic tumour cells. Influence of radiation quality and hypoxic sensitization. In: Radiobiological research and radiotherapy, Vol. 1. International Atomic Agency, Vienna, pp 181–194

    Google Scholar 

  • Pouget J-P, Frelon S, Ravanat J-L, Testard I, Odin F, Cadet J (2002) Formation of modified DNA bases in cells exposed to either gamma radiation or to high-LET particles. Radiat Res 157:589–595

    PubMed  CAS  Google Scholar 

  • Povirk LF (1983) Bleomycin. In: Neidle S, Waring MJ (eds) Molecular aspects of anti-cancer drug action. Verlag Chemie, Weinheim, pp 157–181

    Google Scholar 

  • Povirk LF, Goldberg IH (1982) Covalent adducts of DNA and the nonprotein chromophore of neocarzinostatin contain a modified deoxyribose. Proc Natl Acad Sci USA 79:369–373

    PubMed  CAS  Google Scholar 

  • Povirk LF, Goldberg IH (1983) Stoichiometric uptake of molecular oxygen and consumption of sulfhydryl groups by neocarzinostatin chromophore bound to DNA. J Biol Chem 258:11763–11767

    PubMed  CAS  Google Scholar 

  • Povirk LF, Goldberg IH (1984) Competition between anaerobic covalent linkage of neocarzinostatin chromophore to deoxyribose in DNA and oxygen-dependent strand breakage and base release. Biochemistry 23:6304–6311

    Article  PubMed  CAS  Google Scholar 

  • Povirk LF, Goldberg IH (1985a) Detection of neocarzinostatin chromophore-deoxyribose adducts as exonuclease-resistant sites in defined-sequence DNA. Biochemistry 24:4035–4040

    Article  PubMed  CAS  Google Scholar 

  • Povirk LF, Goldberg IH (1985b) Endonuclease-resistant apyrimidinic sites formed by neocarzinostatin at cytosine residues in DNA: evidence for a possible role in mutagenesis. Proc Natl Acad Sci USA 82:3182–3186

    PubMed  CAS  Google Scholar 

  • Povirk LF, Goldberg IH (1986) Base substitution mutations induced in the cI gene of lambda phage by neocarzinostatin chromophore: correlation with depyrimidination hotspots at the sequence AGC. Nucleic Acids Res 14:1417–1426

    PubMed  CAS  Google Scholar 

  • Povirk LF, Wübker W, Köhnlein W, Hutchinson F (1977) DNA double-strand breaks and alkali-labile bonds by bleomycin. Nucleic Acids Res 4:3573–3580

    PubMed  CAS  Google Scholar 

  • Povirk LF, Köhnlein W, Hutchinson F (1978) Specificity of DNA base release by bleomycin. Biochim Biophys Acta 521:126–133

    PubMed  CAS  Google Scholar 

  • Povirk LF, Hogan M, Dattagupta N (1979) Binding of bleomycin to DNA: intercalation of the bithiazole rings. Biochemistry 18:96–101

    PubMed  CAS  Google Scholar 

  • Povirk LF, Dattagupta N, Warf BC, Goldberg IH (1981) Neocarzinostatin chromophore binds to deoxyribonucleic acid by intercalation. Biochemistry 20:4007–4014

    PubMed  CAS  Google Scholar 

  • Powers EL, Gampel-Jobbagy Z (1972) Water-derived radicals and radiation sensitivity of bacteriophage T7. Int J Radiat Biol 21:353–359

    CAS  Google Scholar 

  • Prakash Rao PJ, Bothe E, Schulte-Frohlinde D (1992) Reaction of dithiothreitol and para-nitroacetophenone with different radical precursors of OH radical-induced strand break formation of single-stranded DNA in anoxic aqueous solution. Int J Radiat Biol 61:577–591

    Google Scholar 

  • Prat F, Houk KN, Foote CS (1998) Effect of guanine stacking on the oxidation of 8-oxoguanine in BDNA. J Am Chem Soc 120:845–846

    Article  CAS  Google Scholar 

  • Pratviel G, Pitié M, Bernadou J, Meunier B (1991) Furfural als Indikator einer DNA-Spaltung durch Hydroxylierung des C5−-Kohlenstoffatoms von Desoxyribose. Angew Chem 103:718–720

    CAS  Google Scholar 

  • Pratviel G, Bernadou J, Meunier B (1995) Carbon-hydrogen bonds of DNA sugar units as targets for chemical nucleases and drugs. Angew Chem Int Ed Engl 34:746–769

    Article  CAS  Google Scholar 

  • Price MA, Tullius TD (1992) Using hydroxyl radical to probe DNA structure. Meth Enzymol 212:194–219

    PubMed  CAS  Google Scholar 

  • Prise KM, Davies S, Michael BD (1989) Cell killing and DNA damage in Chinese hamster V79 cells treated with hydrogen peroxide. Int J Radiat Biol 55:583–592

    PubMed  CAS  Google Scholar 

  • Prise KM, Davies S, Michael BD (1992) A comparison of the chemical repair rates of free radical precursors of DNA damage and cell killing in Chinese hamster V79 cells. Int J Radiat Biol 61:721–728

    PubMed  CAS  Google Scholar 

  • Prise KM, Davies S, Michael BD (1993) Evidence for induction of DNA double-strand breaks at paired radical sites. Radiat Res 134:102–106

    PubMed  CAS  Google Scholar 

  • Prise KM, Gillies NE, Whelan A, Newton GL, Fahey RC, Michael BD (1995) Role of charge in the radioprotection of E. coli by thiols. Int J Radiat Biol 67:393–401

    PubMed  CAS  Google Scholar 

  • Prise KM, Gillies NE, Michael BD (1998) Evidence for a hypoxic fixation reaction leading to the induction of ssb and dsb in irradiated DNA. Int J Radiat Biol 74:53–59

    PubMed  CAS  Google Scholar 

  • Prise KM, Gillies NE, Michael BD (1999) Further evidence for double-strand breaks originating from a paired radical precursor from studies of oxygen fixation processes. Radiat Res 151:635–641

    PubMed  CAS  Google Scholar 

  • Prise KM, Folkard M, Michael BD, Hopkirk A, Munro IH (2000) Critical energies for SSB and DSB induction in plasmid DNA by low-energy photons: action spectra for strand-break induction in plasmid DNA irradiated in vacuum. Int J Radiat Biol 76:881–890

    PubMed  CAS  Google Scholar 

  • Priyadarshy S, Risser SM, Beratan DN (1996) DNA is not a molecular wire: Protein-like electron-transfer predicted for extended π-electron system. J Phys Chem 100:17678–17682

    Article  CAS  Google Scholar 

  • Purdie JW (1980) Dephosphorylation of WR-2721 to WR-1065 in vitro and effect of WR-1065 and misonidazole in combination in irradiated cells. In: Brady LW (ed) Radiation Sensitizers. pp 330–333

    Google Scholar 

  • Que BG, Downey KM, So AG (1980) Degradation of deoxyribonucleic acid by a 1,10-phenanthrolinecopper complex: the role of hydroxyl radicals. Biochemistry 19:5987–5991

    PubMed  CAS  Google Scholar 

  • Quintiliani M (1983) Cellular thiols and radiation response. In: Balzani V (ed) Baxendale Memorial Symposium. Lo Scarabeo, Bologna, pp 81–108

    Google Scholar 

  • Raaphorst GP, Azzam EI (1981) Fixation of potentially lethal radiation damage in Chinese hamster cells by anisotonic solutions, polyamines, and DMSO. Radiat Res 86:52–66

    PubMed  CAS  Google Scholar 

  • Rabow L, Stubbe J, Kozarich JW, Gerlt JA (1986) Identification of the alkaline-labile product accompanying cytosine release during bleomycin-mediated degradation of d(CGCGCG). J Am Chem Soc 108:7130–7131

    Article  CAS  Google Scholar 

  • Rabow LE, Stubbe J, Kozarich JW (1990) Identification and quantitation of the lesion accompanying base release in bleomycin-mediated DNA degradation. J Am Chem Soc 112:3196–3203

    CAS  Google Scholar 

  • Raleigh JA, Blackburn BJ (1978) Substrate conformation in 5′-AMP-utilizing enzymes: 8,5′-cycloadenosin 5′-monophosphate. Biochem Biophys Res Commun 83:1061–1066

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishnan N, Clay ME, Xue L-Y, Evans HH, Rodriguez-Antunez A, Oleinick NL (1988) Induction of DNA-protein cross-links in Chinese hamster cells by photodynamic action of chloroaluminium phthalocyanine and visible light. Photochem Photobiol 48:297–303

    PubMed  CAS  Google Scholar 

  • Ramakrishnan N, Chiu S-M, Oleinick NL (2003) Yield of DNA-protein cross-links in γ-irradiated Chinese hamster cells. Cancer Res 47:2032–2035

    Google Scholar 

  • Randerath K, Zhou G-D, Sommers RL, Robbins JH, Brooks PJ (2001) A 32P-postlabelling assay for the oxidative DNA lesion 8,5′-cyclo-2′-deoxyadenosine in mammalian tissues. J Biol Chem 276:36051–36057

    Article  PubMed  CAS  Google Scholar 

  • Rashid R, Langfinger D, Wagner R, Schuchmann H-P, von Sonntag C (1999) Bleomycin vs. OH-radical-induced malonaldehydic-product formation in DNA. Int J Radiat Biol 75:110–109

    Article  Google Scholar 

  • Razskazovskiy Y (2003) Radiation-activated nuclease activity of o, o′-diphenyleneiodonium cations (DPI): a reductively initiated chain reaction involving the C1′ chemistry. Radiat Res 159:543–549

    PubMed  CAS  Google Scholar 

  • Razskazovskii Y, Swarts SG, Falcone JM, Taylor C, Sevilla MD (1997) Competitive electron scavenging by chemically modified pyrimidine bases in bromine-doped DNA: Relative efficiencies and relevance to intrastrand electron migration distances. J Phys Chem B 101:1460–1467

    Article  CAS  Google Scholar 

  • Razskazovskii Y, Roginskaya M, Sevilla MD (1998) Modification of the reductive pathway in gamma-irradiated DNA by electron scavengers: Targeting the sugar-phosphate backbone. Radiat Res 149:422–432

    PubMed  CAS  Google Scholar 

  • Razskazovskiy Y, Debije MG, Bernhard AW (2003a) Strand breaks produced in X-irradiated crystalline DNA: influence on base sequence. Radiat Res 159:663–669

    PubMed  CAS  Google Scholar 

  • Razskazovskiy Y, Debije MG, Howerton SB, Williams LD, Bernhard AW (2003b) Strand breaks in X-irradiated crystalline DNA: alternating CG oligomers. Radiat Res 160:334–339

    PubMed  CAS  Google Scholar 

  • Redpath JL, Zabilansky E (1979) Photoreactivation of ionizing-radiation-induced damage in E. coli. Influence of chemical and physical factors. Int J Radiat Biol 35:473–476

    CAS  Google Scholar 

  • Redpath JL, Zabilansky E, Morgan T, Ward JF (1981) Cerenkov light and the production of photoreactivatable damage in X-irradiated E. coli. Int J Radiat Biol 39:569–575

    CAS  Google Scholar 

  • Reich KA, Marshall LE, Graham DR, Sigman DS (1981) Cleavage of DNA by 1,10-phenanthroline-copper ion complex. Superoxide mediates the reaction dependent on NADH and hydrogen peroxide. J Am Chem Soc 103:3582–3584

    CAS  Google Scholar 

  • Reuvers AP, Greenstock CL, Borsa J, Chapman JD (1973) Studies on the mechanism of chemical radioprotection by dimethyl sulphoxide. Int J Radiat Biol 24:533–536

    CAS  Google Scholar 

  • Revesz L (1985) The role of endogenous thiols in intrinsic radioprotection. Int J Radiat Biol 47:361–368

    CAS  Google Scholar 

  • Reynisson J, Steenken S (2002a) DNA-base radicals. Their base pairing abilities as calculated by DFT. Phys Chem Chem Phys 4:5346–5352

    CAS  Google Scholar 

  • Reynisson J, Steenken S (2002b) DFT studies on the base pairing abilities of the one-electron reduced or oxidizes adenine-thymine base pair. Phys Chem Chem Phys 4:5353–5358

    CAS  Google Scholar 

  • Rhaese H-J (1968) Chemical analysis of DNA alterations III. Isolation and characterization of adenine oxidation products obtained from oligo-and monodeoxyadenylic acids treated with hydroxyl radicals. Biochim Biophys Acta 166:311–326

    PubMed  CAS  Google Scholar 

  • Richmond RC, Simic MG (1978) Effect of radiation on cis-dichlorodiammineplatinum(II) and DNA in aqueous solution. Br J Cancer 37,Suppl. III:20–23

    CAS  Google Scholar 

  • Richmond RC, Zimbrick JD (1975) In vivo radiation-induced thymine residue release from E. coli DNA. Biochem Biophys Res Commun 64:391–398

    Article  PubMed  CAS  Google Scholar 

  • Richmond RC, Zimbrick JD (1981) Base residue release from 3H-thymine labeled DNA in irradiated E. coli under conditions of enzyme inhibition. In: Rodgers MAJ, Powers EL (eds) Oxygen and oxyradicals in chemistry and biology. Academic Press, New York, pp 708–710

    Google Scholar 

  • Rodriguez LO, Hecht SM (1982) Iron(II)-bleomycin. Biochemical and spectral properties in the presence of radical scavengers. Biochem Biophys Res Commun 104:1470–1476

    Article  PubMed  CAS  Google Scholar 

  • Roginskaya M, Bernhard AW, Marion RT, Razskazovskiy Y (2005) The release of 5-methylene-2-furanone from irradiated DNA catalyzed by cationic polyaminies and divalent metal cations. Radiat Res 163:85–89

    PubMed  CAS  Google Scholar 

  • Romero FJ, Sies H (1984) Subcellular glutathione contents in isolated hepatocytes treated with L-buthionine sulfoximine. Biochem Biophys Res Commun 123:1116–1121

    Article  PubMed  CAS  Google Scholar 

  • Romieu A, Gasparutto D, Cadet J (1999a) Synthesis and characterization of oligonucleotides containing 5′,8-cyclopurine 2′-deoxyribonucleosides: (5′R)-5′,8-cyclo-2′-deoxyadenosine, (5′S)-5′,8-cyclo-2′-deoxyguanosine and (5′R)-5′,8-cyclo-2′-deoxyguanosine. Chem Res Toxicol 12:412–421

    Article  PubMed  CAS  Google Scholar 

  • Romieu A, Gasparutto D, Molko D, Cadet J (1999b) Site-specific introduction of (5′S)-5′,8-cyclo-2 deoxyadenosine into oligodeoxyribonucleotides. J Org Chem 63:5245–5249

    Google Scholar 

  • Roots R, Okada S (1972) Protection of DNA molecules of cultured mammalian cells from radiation-induced single-strand scissions by various alcohols and SH compounds. Int J Radiat Biol 21:329–342

    CAS  Google Scholar 

  • Roots R, Chatterjee A, Blakely E, Chang P, Smith K, Tobias C (1982) Radiation responses in air-, nitrous oxide-, and nitrogen-saturated mammalian cells. Radiat Res 92:245–254

    PubMed  CAS  Google Scholar 

  • Roots R, Chatterjee A, Chang P, Lommel L, Blakely EA (1985) Characterization on hydroxyl radical-induced damage after sparsely and densely ionizing irradiation. Int J Radiat Biol 47:157–166

    CAS  Google Scholar 

  • Roti Roti JL, Cerutti PA (1974) Gamma-ray induced thymine damage in mammalian cells. Int J Radiat Biol 25:413–417

    CAS  Google Scholar 

  • Roupioz Y, Lhomme J, Kotera M (2002) Chemistry of the 2′deoxyribonolactone lesion in oligonucleotides: cleavage kinetics and product analysis. J Am Chem Soc 124:9129–9135

    Article  PubMed  CAS  Google Scholar 

  • Russo A, Mitchell JB, Finkelstein E, DeGraff WG, Spiro IJ, Gamson J (1985) The effects of cellular glutathione elevation on the oxygen enhancement ratio. Radiat Res 103:232–239

    PubMed  CAS  Google Scholar 

  • Saito I, Kawabata H, Fujiwara T, Sugiyama H, Matsuura T (1989) A novel ribose C-4′ hydroxylation pathway in neocarzinostatin-mediated degradation of oligonucleotides. J Am Chem Soc 11:8302–8303

    Google Scholar 

  • Saito I, Nakamura T, Nakatani K, Yoshioka Y, Yamaguchi K, Sugiyama H (1998) Mapping of the hot spots for DNA damage by one-electron oxidation: Efficacy of GG doublets and GGG triplets as a trap in long-range hole migration. J Am Chem Soc 120:12868–12687

    Google Scholar 

  • Sam JW, Tang X-J, Peisach J (1994) Electrospray mass spectrometry of iron bleomycin: demonstration that activated bleomycin is a ferric peroxide complex. J Am Chem Soc 116:5250–5256

    Article  CAS  Google Scholar 

  • Samuni A, Chevion M, Czapski G (1984) Roles of copper and O2. in the radiation-induced inactivation of T 7 bacteriophage. Radiat Res 99:562–572

    PubMed  CAS  Google Scholar 

  • Sanii L, Schuster GB (2000) Long-distance charge transport in DNA: sequence-dependent radical cation injection efficiency. J Am Chem Soc 122:11545–11546

    Article  CAS  Google Scholar 

  • Saran M, Bertram H, Bors W, Czapski G (1993) On the cytotoxcity of irradiated media. To what extent are stable products of radical chain reactions in physiological saline responsible for cell death? Int J Radiat Biol 64:311–318

    PubMed  CAS  Google Scholar 

  • Saran M, Winkler K, Fellerhoff B (1997) Hydrogen peroxide protects yeast cells from inactivation by ionizing radiation: a radiobiological paradox. Int J Radiat Biol 72:745–750

    PubMed  CAS  Google Scholar 

  • Sasaki H, Lin L-R, Yokoyama T, Sevilla MD, Reddy VN, Giblin FJ (1998) TEMPOL protects against lens DNA strand breaks and cataract in the X-rayed rabbit. Invest Ophthalmol Vis Sci 39:544–552

    PubMed  CAS  Google Scholar 

  • Sato M, Bremner I (1993) Oxygen free radicals and metallothioneins. Free Radical Biol Med 14:325–337

    Article  CAS  Google Scholar 

  • Savoye C, Sabattier R, Charlier M, Spotheim-Maurizot M (1996) Sequence-modulated radiosensitizatiion of DNA by copper ions. Int J Radiat Biol 70:189–198

    Article  PubMed  CAS  Google Scholar 

  • Savoye C, Swenberg C, Hugot S, Sy D, Sabattier R, Charlier M, Spotheim-Maurizot M (1997) Thiol WR-1065 and disulfide WR-33278, two metabolites of the drug ethyol (WR-2721), protect DNA against fast neutron-induced strand breakage. Int J Radiat Biol 71:193–202

    PubMed  CAS  Google Scholar 

  • Schiemann O, Turro NJ, Barton JK (2000) EPR detection of guanine radicals in a DNA duplex under biological conditions: selective base oxidation by Ru(phen)2dppz+3 using the flash-quench technique. J Phys Chem B 104:7214–7220

    Article  CAS  Google Scholar 

  • Schlag EW, Yang D-Y, Sheu S-Y, Selzle HL, Rentzepis PM (2000) Dynamic principles in biological processes: a model of charge migration in proteins and DNA. Proc Nat Acad Sci USA 97:9849–9854

    PubMed  CAS  Google Scholar 

  • Scholes G, Weiss J (1952) Chemical action of X-rays on nucleic acids and related substances in aqueous systems. Exptl Cell Res Suppl. 2:219–244

    CAS  Google Scholar 

  • Schuchmann MN, von Sonntag C (1984) Radiolysis of di-and trimethylphosphates in oxygenated aqueous solution: a model system for DNA strand breakage. J Chem Soc Perkin Trans 2 699–704

    Google Scholar 

  • Schuchmann MN, von Sonntag C, Tsay YH, Krüger C (1981) Crystal structure and the radiation-induced free radical chain-reaction of 2-deoxy-β-D-erythro-pentopyranose in the solid state. Z Naturforsch 36b:726–731

    CAS  Google Scholar 

  • Schuchmann MN, Schuchmann H-P, Knolle W, von Sonntag J, Naumov S, Wang W-F, von Sonntag C (2000) Free-radical chemistry of thiourea in aqueous solution, induced by OH radical, H atom, α-hydroxyalkyl radicals, photoexcited maleimide, and the solvated electron. Nukleonika 45:55–62

    CAS  Google Scholar 

  • Schuessler H, Schmerler-Dremel G, Danzer J, Jung-Körner E (1992) Ethanol radical-induced protein-DNA crosslinking. A radiolysis study. Int J Radiat Biol 62:517–526

    PubMed  CAS  Google Scholar 

  • Schuessler H, Distel L, Sieber R (1997) Radiolysis of DNA in the presence of a protein studied by HPL-gel chromatography. Int J Radiat Biol 71:543–553

    PubMed  CAS  Google Scholar 

  • Schulte-Frohlinde D (1986) Comparison of mechanisms for DNA strand break formation by the direct and indirect effect of radiation. In: Simic MG, Grossman L, Upton AD (eds) Mechanisms of DNA damage and repair; basic life science Vol 38. Plenum Press, New York, pp 19–27

    Google Scholar 

  • Schulte-Frohlinde D, Bothe E (1990) Determination of the constants of the Alper formula for single-strand breaks from kinetic measurements on DNA in aqueous solution and comparison with data from cells. Int J Radiat Biol 58:603–611

    PubMed  CAS  Google Scholar 

  • Schuster GB (2000) Long-range charge transfer in DNA: transient structural distortions control the distance dependence. Acc Chem Res 33:253–260

    Article  PubMed  CAS  Google Scholar 

  • Schuster GB, Landman U (2004) The mechanism of long-distance radical cation transport in duplex DNA: Ion-gated hopping of polaron-like distortions. Top Curr Chem 236:139–161

    CAS  Google Scholar 

  • Schüssler H, Jung E (1989) Protein-DNA crosslinks induced by primary and secondary radicals. Int J Radiat Biol 56:423–435

    Google Scholar 

  • Schwarz G (1909) Über Desensibilisierung gegen Röntgen-und Radiumstrahlen. Münchner Medizinische Wochenschrift 56:1217–1218

    Google Scholar 

  • Schwarz HA, Dodson RW (1984) Equilibrium between hydroxyl radicals and thallium(II) and the oxidation potential of OH(aq). J Phys Chem 88:3643–3647

    Article  CAS  Google Scholar 

  • Schwögler A, Burgdorf LT, Carrel T (2000) Self-repairing DNA based on a reductive electron transfer through the base stack. Angew Chem Int Ed 39:3918–3920

    Article  Google Scholar 

  • Scott OCA (1986) Oxygen as a radiosensitizer: methods of analysis. Int J Radiat Biol 49:165–167

    CAS  Google Scholar 

  • Seidel CAM, Schulz A, Sauer MHM (1996) Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. J Phys Chem 100:5541–5553

    CAS  Google Scholar 

  • Senthilkumar K, Grozema FC, Guerra CF, Bickelhaupt FM, Siebbeles LDA (2003) Mapping the sites for selective oxidation of guanines in DNA. J Am Chem Soc 125:13658–13659

    Article  PubMed  CAS  Google Scholar 

  • Setlow B, Setlow P (1993) Binding of small, acid-soluble spore proteins to DNA plays a significant role in the resistance of Bacillus subtilis spores to hydrogen peroxide. Appl Environ Microbiol 59:3418–3423

    PubMed  CAS  Google Scholar 

  • Setlow P (1994) Mechanisms which contribute to the long-term survival of spores of Bacillus species. J Appl Bacteriol Suppl 76:49S–60S

    Google Scholar 

  • Setlow P (1995) Mechanisms for the prevention of damage to DNA in spores of bacillus species. Annu Rev Microbiol 49:29–54

    Article  PubMed  CAS  Google Scholar 

  • Sevilla MD, Becker D, Yan M, Summerfield SR (1991) Relative abundances of primary ion radicals in γ-irradiated DNA: cytosine vs thymine anions and guanine vs adenine cations. J Phys Chem 95:3409–3415

    Article  CAS  Google Scholar 

  • Sevilla MD, Carpenter K, Becker D (2000) Chemical modification of DNA due to charged-particle tracks: relationship between radiation quality and radical formation. In: Moriarty M, Mothersill C, Seymour C, Edington M, Ward JF, Fry RJM (eds) Radiation research Vol. 2, Congress Proceedings, 11th Int. Congr. Radiat. Res., Dublin July 18–23, 1999. Allen Press, Lawrence, pp 107–110

    Google Scholar 

  • Shaffer JJ, Jacobsen LM, Schrader JO, Lee KW, Martin EL, Kokjohn TA (1999) Characterization of Pseudomonas aeruginosa bacteriophage UNL-1, a bacterial virus with a novel UV-A-inducible DNA damage reactivation phenotype. Appl Environ Microbiol 65:2606–2613

    PubMed  CAS  Google Scholar 

  • Shafirovich VY, Dourandin A, Luneva NP, Geacintov NE (1997) Migration and trapping of photoin-jected excess electrons in double-stranded B-form DNA but not in single-stranded DNA. J Phys Chem B 101:5863–5868

    Article  CAS  Google Scholar 

  • Shafirovich V, Cadet J, Gasparutto D, Dourandin A, Huang W, Geacintov NE (2001) Direct spectroscopic observation of 8-oxo-7,8-dihydro-2′-deoxyguanosine radicals in double-stranded DNA generated by one-electron oxidation at a distance by 2-aminopurine radicals. J Phys Chem B 105:586–592

    CAS  Google Scholar 

  • Shafirovich V, Dourandin A, Huang W, Geacintov NE (2004) The carbonate radical is a site-selective oxidizing agent of guanine in double-stranded oligonucleotides. J Biol Chem 276:24621–24626

    Google Scholar 

  • Shao C, Folkard M, Michael BD, Prise KM (2004) Targeted cytoplasmic irradiation induces bystander responses. Proc Nat Acad Sci USA 101:13495–13500

    PubMed  CAS  Google Scholar 

  • Shenoy MA, Singh BB (1985) Non-nitro radiation sensitizers. Int J Radiat Biol 48:315–326

    CAS  Google Scholar 

  • Shenoy MA, Asquith JA, Adams GE, Michael BD, Watts ME (1975) Time-resolved oxygen effects in irradiated bacteria and mammalian cells: A rapid-mix study. Radiat Res 62:498–512

    PubMed  CAS  Google Scholar 

  • Shinde SS, Anderson RF, Hay MP, Gamage SA, Denny WA (2004) Oxidation of 2-deoxyribose by benzotriazyl radicals of antitumor 3-amino-1,2,4-benzotriazine 1,4-dioxides. J Am Chem Soc 125:7865–7874

    Google Scholar 

  • Shukla LI, Adhikary A, Pazdro R, Sevilla MD (2004) Formation of 8-oxo-guanine radicals in γ-irradiated DNA: Evidence for multiple one-electron oxidations by long range hole transfer. Nucleic Acids Res 32:6565–6574

    Article  PubMed  CAS  Google Scholar 

  • Siddiqi MA, Bothe E (1987) Single-and double-strand break formation in DNA irradiated in aqueous solution: Dependence on dose and OH radical scavenger concentration. Radiat Res 112:449–463

    PubMed  CAS  Google Scholar 

  • Sigman DS (1986) Nuclease activity of 1,10-phenanthroline-copper ion. Acc Chem Res 19:180–186

    Article  CAS  Google Scholar 

  • Sigman DS (1990) Chemical nucleases. Biochemistry 29:9097–9105

    Article  PubMed  CAS  Google Scholar 

  • Sigman DS, Chen CC (1990) Chemical nucleases: new reagents in molecular biology. Annu Rev Biochem 59:207–236

    Article  PubMed  CAS  Google Scholar 

  • Sigman DS, Graham DR, D’Aurora V, Stern AM (1979) Oxygen-dependent cleavage of DNA by 1,10-phenanthroline cuprous complex. Inhibition of Escherichia coli DNA polymerase I. J Biol Chem 254:12269–12272

    PubMed  CAS  Google Scholar 

  • Sigman DS, Mazumder A, Perrin DM (1993a) Chemical nucleases. Chem Rev 93:2295–2316

    Article  CAS  Google Scholar 

  • Sigman DS, Bruice TW, Mazumder A, Sutton CL (1993b) Targeted chemical nucleases. Acc Chem Res 26:98–194

    Article  CAS  Google Scholar 

  • Sigman DS, Landgraf R, Perrin DM, Pearson L (1996) Nucleic acid chemistry of the cuprous complexes of 1,10-phenanthroline and derivatives. In: Sigel A, Siegel H (eds) Probing of nucleic acids by metal ion complexes; metal ions in biological systems Vol. 33. Marcel Dekker, New York, pp 485–513

    Google Scholar 

  • Signorini N, Molko D, Cadet J (1998) Polyclonal antibodies to adenine N1-oxide: characterization and use for the measurement of DNA damage. Chem Res Toxicol 11:1169–1175

    Article  PubMed  CAS  Google Scholar 

  • Simic M, Hayon E (1971) Radical reactions of N-ethyl maleimide in radiation sensitization. Int J Radiat Biol 20:589–592

    CAS  Google Scholar 

  • Simic M, Powers EL (1974) Correlation of the efficiencies of some radiation sensitizers and their redox potentials. Int J Radiat Biol 26:87–90

    CAS  Google Scholar 

  • Simpson JA, Narita S, Gieseg S, Gebicki S, Gebicki JM (1992) Long-lived reactive species on free-radical-damaged proteins. Biochem J 282:621–624

    PubMed  CAS  Google Scholar 

  • Skov KA (1984) The contribution of hydroxyl radical to radiosensitization: A study of DNA damage. Radiat Res 99:502–510

    PubMed  CAS  Google Scholar 

  • Skvortzov VG, Myasnik MN, Sokolov VA, Morozov II (1981) Action spectrum for photoreactivation of Escherichia coli BS-1 after γ-irradiation. Photochem Photobiol 33:187–190

    PubMed  CAS  Google Scholar 

  • Smith GJ (1979) The triplet-state charge-transfer reaction between p-nitroacetophenone and guanosine monophosphate. A possible mechanism for electron-affinic radiosensitization. Int J Radiat Biol 35:265–271

    CAS  Google Scholar 

  • Smoluk GD, Fahey RC, Ward JF (1986) Equilibrium dialysis studies of the binding of radioprotector compounds to DNA. Radiat Res 107:194–204

    PubMed  CAS  Google Scholar 

  • Smoluk GD, Fahey RC, Calabro-Jones PM, Aguilera JA, Ward JF (1988a) Radioprotection of cells in culture by WR-2721 and derivatives: form of the drug responsible for protection. Cancer Res 48:3641–3647

    PubMed  CAS  Google Scholar 

  • Smoluk GD, Fahey RC, Ward JF (1988b) Interaction of glutathione and other low-molecular-weight thiols with DNA: Evidence for counterion condensation and coion depletion near DNA. Radiat Res 114:3–10

    PubMed  CAS  Google Scholar 

  • Sommer R, Pribil W, Appelt S, Gehringer P, Eschweiler H, Leth H, Cabaj A, Haider T (2001) Inactivation of bacteriophages in water by means of non-ionizing (UV-253.7 nm) and ionizing (gamma) radiation: a comparative approach. Water Res 35:3109–3116

    Article  PubMed  CAS  Google Scholar 

  • Spotheim-Maurizot M, Ruiz S, Sabattier R, Charlier M (1995a) Radioprotection of DNA by polyamines. Int J Radiat Biol 68:571–577

    PubMed  CAS  Google Scholar 

  • Spotheim-Maurizot M, Franchet-Beuzit J, Isabelle V, Tartier L, Charlier M (1995b) DNA radiolysis. Mapping of the gene regulation domains. Nucl Instr Meth Phys Res B 105:308–131

    Article  CAS  Google Scholar 

  • Spotheim-Maurizot M, Begusova M, Charlier M (2003) Dégradation de l’ADN par les rayonnement ionisants. Influence de la structure et de l’environnement. L’actualité chim 91–96

    Google Scholar 

  • Srinivasan V, Schnitzlein WM, Tripathy DN (2001) Fowlpox virus encodes a novel DNA repair enzyme, CPD-photolyase, that restores infectivity of UV light-damaged virus. J Virol 75:1681–1688

    Article  PubMed  CAS  Google Scholar 

  • Steenken S (1997) Electron transfer in DNA? Competition by ultra-fast proton transfer. Biol Chem 378:1293–1297

    PubMed  CAS  Google Scholar 

  • Steenken S, Jovanovic SV, Bietti M, Bernhard K (2000) The trap depth (in DNA) of 8-oxo-7,8-dihydro-2′-deoxyguanosine as derived from electron-transfer equilibria in aqueous solution. J Am Chem Soc 122:2373–2384

    Article  CAS  Google Scholar 

  • Steighner RJ, Povirk LF (1990) Bleomycin-induced DNA lesions at mutational hot spots: Implications for the mechanism of double-strand cleavage. Proc Natl Acad Sci 87:8350–8354

    PubMed  CAS  Google Scholar 

  • Stemp EDA, Arkin MR, Barton JK (1997) Oxidation of guanine in DNA by Ru(phen)2(dppz)3+ using the flash-quench technique. J Am Chem Soc 119:2921–2925

    Article  CAS  Google Scholar 

  • Stemp EDA, Holmlin RE, Barton JK (2000) Electron transfer between metal complexes bound to DNA: variations in sequence, donor, and metal binding mode. Inorg Chim Acta 297:88–97

    Article  CAS  Google Scholar 

  • Stevenson KE, Shafer BD (1983) Bacterial spore resistance to hydrogen peroxide. Food Technol 111–114

    Google Scholar 

  • Stillman MJ, Shaw CF III, Suzuki KT (1992) Metallothioneins. Synthesis, structure, and properties of metallothioneins, phytochelatins and metal-thiolate complexes. VCH Publishers, New York

    Google Scholar 

  • Stratford IJ, Hoe S, Adams GE, Hardy C, Williamson C (1983) Abnormal radiosensitizing and cytotoxic properties of ortho-substituted nitroimidazoles. Int J Radiat Biol 43:31–43

    CAS  Google Scholar 

  • Stubbe J, Kozarich JW (1987) Mechanisms of bleomycin-induced DNA degradation. Chem Rev 87:1107–1136

    Article  CAS  Google Scholar 

  • Stubbe J, Kozarich JW, Wu W, Vanderwall DE (1996) Bleomycins: a structural model for specificity, binding, and double strand cleavage. Acc Chem Res 29:322–330

    Article  CAS  Google Scholar 

  • Sugiyama H, Saito I (1996) Theoretical studies of GG-specific photocleavage of DNA via electron transfer: Significant lowering of ionization potential and 5′-localization of HOMO of stacked GG bases in B-form DNA. J Am Chem Soc 118:7063–7068

    CAS  Google Scholar 

  • Sugiyama H, Xu C, Murugesan N, Hecht SM (1985a) Structure of the alkali-labile product formed during iron(II)-bleomycin-mediated DNA strand scission. J Am Chem Soc 107:4104–4105

    CAS  Google Scholar 

  • Sugiyama H, Kilkuskie RE, Hecht SM (1985b) An efficient, site-specific DNA target for bleomycin. J Am Chem Soc 107:7765–7767

    CAS  Google Scholar 

  • Sugiyama H, Tsutsumi Y, Saito I (1990) Highly sequence-selective photoreaction of 5-bromouracil-containing deoxyhexanucleotides. J Am Chem Soc 112:6720–6721

    CAS  Google Scholar 

  • Sugiyama H, Tsutsumi Y, Fujimoto K, Saito I (1993) Photoinduced deoxyribose C2′ oxidation in DNA. Alkali-dependent cleavage of erythrose-containing sites via a retroaldol reaction. J Am Chem Soc 115:4443–4448

    CAS  Google Scholar 

  • Sugiyama H, Fujimoto K, Saito I, Kawashima E, Sekine T, Ishido Y (1996) Evidence for intrastrand C2′ hydrogen abstraction in photoirradiation of 5-halouracil-containing oligonucleotides by using stereospecifically C2′-deuterated deoxyadenosine. Tetrahedron Lett 37:1808

    Google Scholar 

  • Sugiyama H, Fujimoto K, Saito I (1997) Preferential C1′ hydrogen abstraction by a uracilyl radical in a DNA-RNA hybrid. Tetrahedron Lett 38:8057–8060

    Article  CAS  Google Scholar 

  • Sutherland BM, Bennett PV, Sidorkina O, Laval J (2000) Clustered DNA damages induced in isolated DNA and human cells by low doses of ionizing radiation. Proc Natl Acad Sci USA 97:–103

    Google Scholar 

  • Sutton CL, Mazumder A, Chen C-HB, Sigman DS (1993) Transforming the Escherichia coli Trp repressor into a site-specific nuclease. Biochemistry 32:4225–4230

    Article  PubMed  CAS  Google Scholar 

  • Suzuki KT, Maitani T (1983) Comparison of properties of two isometallothioneins in oxidation and metal substitution reactions. Chem Pharm Bull 31:4469–4475

    CAS  Google Scholar 

  • Suzuki KT, Imura N, Kimura M (1993) Metallothionein III. Birkhäuser, Basel

    Google Scholar 

  • Swartling P, Lindgren B (1997) The sterilizing effect against Bacillus subtilis spores of hydrogen peroxide at different temperatures and concentrations. J Dairy Res 35:423–428

    Google Scholar 

  • Swarts SG, Sevilla MD, Becker D, Tokar CJ, Wheeler KT (1992) Radiation-induced DNA damage as a function of hydration I. Release of unaltered bases. Radiat Res 129:333–344

    PubMed  CAS  Google Scholar 

  • Swarts SG, Becker D, Sevilla MD, Wheeler KT (1996) Radiation-induced DNA damage as a function of hydration. II. Base damage from electron-loss centers. Radiat Res 145:304–314

    PubMed  CAS  Google Scholar 

  • Swinehart JL, Cerutti PA (1975) Gamma-ray-induced thymine damage in the DNA in coliphage ΦX174 and in E. coli. Int J Radiat Biol 27:83–94

    CAS  Google Scholar 

  • Sy D, Savoye C, Begusova M, Michalik V, Charlier M, Spotheim-Maurizot M (1997) Sequence-dependent variations of DNA structure modulate radiation-induced strand breakage. Int J Radiat Biol 72:147–155

    PubMed  CAS  Google Scholar 

  • Sy D, Flouzat C, Eon S, Charlier M, Spotheim-Maurizot M (2001) Modelling radiation-induced damage in the lac operator-lac repressor complex. DNA damage: 8-oxoguanine. Theor Chem Acc 106:137–145

    CAS  Google Scholar 

  • Symons MCR (1997) Electron movement through proteins and DNA. Free Radical Biol Med 22:1271–1276

    Article  CAS  Google Scholar 

  • Symons MCR (1999) Mechanism of radiation damage to proteins and DNA — an EPR perspective. Progr Reaction Kinet Mechanism 24:139–164

    CAS  Google Scholar 

  • Szabo C, Ohshima H (1997) DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide Biol Chem 1:373–385

    CAS  Google Scholar 

  • Szmigiero L, Studzian K (1988) H2O2 as DNA fragmenting agent in the alkaline elution interstrand crosslinking and DNA-protein crosslinking assays. Anal Biochem 168:88–93

    Article  PubMed  CAS  Google Scholar 

  • Takada T, Kawai K, Tojo S, Majima T (2003a) Hole transfer in DNA: DNA as scaffold for hole transfer between two organic molecules. Tetrahedron Lett 44:3851–3854

    Article  CAS  Google Scholar 

  • Takada T, Kawai K, Tojo S, Majima T (2003b) Kinetics of multistep hole transfer in DNA by monitoring the transient absorption of the pyrene radical cation. J Phys Chem B 107:14052–14057

    Article  CAS  Google Scholar 

  • Takeshita M, Kappen LS, Grollman AP, Eisenberg M, Goldberg IH (1981) Strand scission of deoxyribonucleic acid by neocarzinostatin, auromomycin, and bleomycin: studies on base release and nucleotide sequence specificity. Biochemistry 20:7599–7606

    Article  PubMed  CAS  Google Scholar 

  • Tallentire A, Jones AB, Jacobs GP (1972) The radiosensitizing actions of ketonic agents and oxygen in bacterial spores suspended in aqueous and non-aqueous milieux. Isr J Chem 10:1185–1197

    CAS  Google Scholar 

  • Tartier L, Michalik V, Spotheim-Maurizot M, Rahmouni AR, Sabattier R, Charlier M (1994) Radiolytic signature of Z-DNA. Nucleic Acids Res 22:5565–5570

    PubMed  CAS  Google Scholar 

  • Tartier L, Spotheim-Maurizot M, Charlier M (1998) Radiosensitivity as support for the structure of a unimolecular DNA quadruplex. Int J Radiat Biol 73:45–51

    PubMed  CAS  Google Scholar 

  • Tashiro T, Sugiyama H (2003) Unique charge transfer properties of the four-base π-stacks in Z-DNA. J Am Chem Soc 125:1582–1583

    Article  Google Scholar 

  • Thacker J (1975) Inactivation and mutation of yeast cells by hydrogen peroxide. Mutation Res 33:147–156

    PubMed  CAS  Google Scholar 

  • Thacker J, Parker WF (1976) The induction of mutation in yeast by hydrogen peroxide. Mutation Res 38:43–52

    PubMed  CAS  Google Scholar 

  • Thornalley PJ, Vasak M (1985) Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta 827:36–44

    PubMed  CAS  Google Scholar 

  • Tilby MJ, Loverock PS (1983) Measurements of DNA double-strand break yields in E. coli after rapid irradiation and cell inactivation: The effects of inactivation. Technique and anoxic radiosensitizers. Radiat Res 96:309–321

    PubMed  CAS  Google Scholar 

  • Toledo RT, Escher FE, Ayres JC (1998) Sporocidal properties of hydrogen peroxide against food spoilage organisms. Appl Microbiol 26:592–597

    Google Scholar 

  • Treadway CR, Hill MG, Barton JK (2002) Charge transport through a molecular π-stack: double helical DNA. Chem Phys 281:409–428

    Article  CAS  Google Scholar 

  • Tronche C, Goodman BK, Greenberg MM (1998) DNA damage induced via independent generation of the radical resulting from formal hydrogen atom abstraction from the C1′-position of a nucleotide. Chem Biol 5:263–271

    Article  CAS  Google Scholar 

  • Tsunoo H, Kino K, Nakajima H, Hata A, Huang I-Y, Yoshida A (1978) Mouse liver metallothioneins. J Biol Chem 1978:4172–4174

    Google Scholar 

  • Tullius TD (1991) DNA footprinting with the hydroxyl radical. Free Radical Res Commun 12–13:521–529

    Google Scholar 

  • Tullius TD (1996) Footprinting of nucleic acids by iron-based reagents. In: Suslick KS (ed) Comprehensive supramolecular chemistry. Pergamon, Oxford, pp 317–343

    Google Scholar 

  • Tullius TD, Burkhoff AM (1988) Using the chemistry of the hydroxyl radical to determine structural details of bent DNA. In: Olson WK, Sarma HM, Sarma RH, Sundaralingam M (eds) Structure and expression, Vol. 3: DNA bending and curvature. Adenine Press, New York, pp 77–85

    Google Scholar 

  • Tullius TD, Dombroski BA, Churchill MEA, Kam L (1987) Hydroxyl radical footprinting: A high-resolution method for mapping protein-DNA contacts. Meth Enzymol 115:537–558

    Google Scholar 

  • Turro NJ, Barton JK (1998) Paradigms, supermolecules, electron transfer and chemistry at a distance. What’s the problem-The science or the paradigm-J Biol Inorg Chem 3:201–209

    CAS  Google Scholar 

  • Udovicic L, Mark F, Bothe E, Schulte-Frohlinde D (1991a) Non-homogeneous kinetics in the competition of single-stranded calf-thymus DNA and low-molecular weight scavengers for OH radicals: a comparison of experimental data and theoretical models. Int J Radiat Biol 59:677–697

    PubMed  CAS  Google Scholar 

  • Udovicic L, Bothe E, Mark F, Schulte-Frohlinde D (1991b) The yield of single-strand breaks in double-stranded calf-thymus DNA as a function of OH scavenger concentration: Comparison of experimental data and theoretical results based on nonhomogeneous reaction kinetics. Period Biol 93:339–340

    Google Scholar 

  • Udovicic L, Mark F, Bothe E (1994) Single-strand breakage in double-stranded calf-thymus DNA irradiated in aqueous solution in the presence of oxygen and scavengers. Radiat Res 140:166–171

    PubMed  CAS  Google Scholar 

  • Uesugi S, Shida T, Ikehara M, Kobayashi Y, Kyogoku Y (1982) Identification of degradation products of d(C-G) by a 1,10-phenanthroline-copper ion complex. J Am Chem Soc 104:5494–5495

    CAS  Google Scholar 

  • Ullrich M, Hagen U (1971) Base liberation and concomitant reactions in irradiated DNA solutions. Int J Radiat Biol 19:507–517

    CAS  Google Scholar 

  • Uppu RM, Cueto R, Squadrito GL, Salgo MS, Pryor WA (1996) Competitive reactions of peroxynitrite with 2′-deoxyguanosine and 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxodG): Relevance to the formation of 8-oxodG in DNA exposed to peroxynitrite. Free Radical Biol Med 21:407–411

    Article  CAS  Google Scholar 

  • van Lith D, de Haas MP, Warman JM, Hummel A (1983) Highly mobile charge carriers in hydrated DNA and collagen formed by pulsed ionization. Biopolymers 22:807–810

    PubMed  Google Scholar 

  • van Lith D, Warman JM, de Haas MP, Hummel A (1986a) Electron migration in hydrated DNA and collagen at low temperatures. 1. The effect of water concentration. J Chem Soc Faraday Trans 1 82:2933–2943

    Google Scholar 

  • van Lith D, Eden J, Warman JM, Hummel A (1986b) Electron migration in hydrated DNA and collagen at low temperatures. 2. The effect of additives. J Chem Soc Faraday Trans 1 82:2945–2950

    Google Scholar 

  • van Rijn K, Mayer T, Blok J, Verberne JB, Loman H (1985) Reaction rate of OH radicals with ΦX174 DNA: influence of salt and scavenger. Int J Radiat Biol 47:309–317

    Google Scholar 

  • Villanueva A, Cañete M, Trigueros C, Rodriguez-Borlado L, Juarranz A (1993) Photodynamic induction of DNA-protein cross-linking in solution by several sensitizers and visible light. Biopolymers 33:239–244

    Article  PubMed  CAS  Google Scholar 

  • Vinicombe DA, Moss SH, Davies DJG (1978) Photo-reactivation of γ-radiation damage in Escherichia coli as evidence for the nature of the oxygen-enhancement effect. Int J Radiat Biol 33:483–492

    CAS  Google Scholar 

  • Voityuk AA, Jortner J, Bixon M, Rösch N (2000) Energetics of hole transfer in DNA. Chem Phys Lett 324:430–434

    Article  CAS  Google Scholar 

  • Voityuk AA, Michel-Beyerle M-E, Rösch N (2001) Energetics of excess electron transfer in DNA. Chem Phys Lett 342:231–238

    Article  CAS  Google Scholar 

  • von Sonntag C (1987) The chemical basis of radiation biology. Taylor and Francis, London

    Google Scholar 

  • von Sonntag C, Schuchmann H-P (2001) Carbohydrates. In: Jonah CD, Rao BSM (eds) Radiation chemistry: Present status and future trends. Elsevier, Amsterdam, pp 481–511

    Google Scholar 

  • von Sonntag C, Hagen U, Schön-Bopp A, Schulte-Frohlinde D (1981) Radiation-induced strand breaks in DNA: Chemical and enzymatic analysis of end groups and mechanistic aspects. Adv Radiat Biol 9:109–142

    Google Scholar 

  • von Sonntag C, Kolch A, Gebel J, Oguma K, Sommer R (2004a) The photochemical basis of UV-disinfection. Heering W, Hoyer O, Maier D, Jockenhöfer R, Maier M. Paper 6.1, pp. 1–17. 2004. Aye, ON (Canada), IUVA. Proceedings of the European Conference on UV Radiation — Effects and Technologies, Karlsruhe (2004).

    Google Scholar 

  • von Sonntag J, Mvula E, Hildenbrand K, von Sonntag C (2004b) Photohydroxylation of 1,4-benzoquinone in aqueous solution revisited. Chem Eur J 10:440–451

    Google Scholar 

  • Wagenknecht H-A (2003) Reductive electron transfer and transport of excess electrons in DNA. Angew Chem Int Ed 42:2454–2460

    CAS  Google Scholar 

  • Wagenknecht H-A, Stemp EDA, Barton JK (2000) DNA-bound peptide radicals generated through DNA-mediated electron transport. Biochemistry 39:5483–5491

    Article  PubMed  CAS  Google Scholar 

  • Wagenknecht H-A, Rajski SR, Pascaly M, Stemp EDA, Barton JK (2001) Direct observation of radical intermediates in protein-dependent DNA charge transport. J Am Chem Soc 123:4400–4407

    Article  PubMed  CAS  Google Scholar 

  • Wagner JR, Hu C-C, Ames BN (2004) Endogeneous oxidative damage of deoxycytidine in DNA. Proc Nat Acad Sci USA 89:3380–3384

    Google Scholar 

  • Wallace SS (2002) Biological consequences of free radical-damaged DNA bases. Free Radical Biol Med 33:1–14

    Article  CAS  Google Scholar 

  • Walton MI, Wolf CR, Workman P (1992) The role of cytochrome P450 and cytochrome P450 reductase in the reductive bioactivation of the novel benzotriazine di-N-oxide hypoxid cytotoxin 3-amino-1,2,4-benzotriazine-1,4-dioxide (SR 4233, WIN 59075) by mouse liver. Biochim Pharmacol 44:251–259

    CAS  Google Scholar 

  • Wan C, Fiebig T, Schiemann O, Barton JK, Zewail AH (2000) Femtosecond direct observation of charge transfer between bases in DNA. Proc Nat Acad Sci USA 97:14052–14055

    PubMed  CAS  Google Scholar 

  • Wang J, Biedermann KA, Wolf CR, Brown JM (1993) Metabolism of the bioreductive cytotoxin SR 4233 by tumour cells: enzymatic studies. Br J Cancer 67:321–325

    PubMed  CAS  Google Scholar 

  • Wang W-F, Schuchmann MN, Schuchmann H-P, Knolle W, von Sonntag J, von Sonntag C (1999) Radical cations in the OH-radical-induced oxidation of thiourea and tetramethylthiourea in aqueous solutions. J Am Chem Soc 121:238–245

    CAS  Google Scholar 

  • Wang W, Becker D, Sevilla MD (1993) The influence of hydration on the absolute yields of primary ionic free radicals in γ-irradiated DNA at 77 K. Radiat Res 136:146–154

    Google Scholar 

  • Wang W, Yan M, Becker D, Sevilla MD (1994) The influence of hydration on the absolute yields of primary free radicals in gamma-irradiated DNA at 77 K. II. Individual radical yields. Radiat Res 137:2–10

    PubMed  CAS  Google Scholar 

  • Ward JF (1981) Some biochemical consequences of the spatial distribution of ionizing radiation-produced free radicals. Radiat Res 86:185–195

    PubMed  CAS  Google Scholar 

  • Ward JF (1985) Biochemistry of DNA lesions. Radiat Res 104:103–111

    Google Scholar 

  • Ward JF (1988) DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and repairability. Progr Nucleic Acid Res Mol Biol 35:95–125

    CAS  Google Scholar 

  • Ward JF, Kuo I (1976) Strand breaks, base release and postirradiation changes in DNA γ-irradiated in dilute O2-saturated aqueous solution. Radiat Res 66:485–498

    PubMed  CAS  Google Scholar 

  • Ward JF, Mora-Arellano VO (1984) Pulse radiolysis studies of WR-1065. Int J Radiat Onc Biol Phys 10:1533–1536

    CAS  Google Scholar 

  • Ward JF, Blakely WF, Joner EI (1985) Mammalian cells are not killed by DNA single-strand breaks caused by hydroxyl radicals from hydrogen peroxide. Radiat Res 103:383–392

    PubMed  CAS  Google Scholar 

  • Ward JF, Webb CF, Limoli CL, Milligan JR (1990) DNA lesions produced by ionizing radiation: Locally multiply damaged sites. In: Wallace SS, Painter RB (eds) Ionizing radiation damage to DNA: Molecular aspects. Wiley-Liss, New York, pp 43–50

    Google Scholar 

  • Ward RL (1980) Mechanisms of poliovirus inactivation by the direct and indirect effects of ionizing radiation. Radiat Res 83:330–344

    PubMed  CAS  Google Scholar 

  • Wardman P (1977) The use of nitroaromatic compounds as hypoxic cell radiosensitizers. Curr Top Radiat Res Q 11:347–398

    PubMed  CAS  Google Scholar 

  • Wardman P (1982) The kinetics of the reaction of ‚anomalous ‘4-nitroimidazole radiosensitizers with thiols. Int J Radiat Biol 41:231–235

    CAS  Google Scholar 

  • Wardman P (1984) Radiation chemistry in the clinic: Hypoxic cell radiosensitizers for radiotherapy. Radiat Phys Chem 24:293–305

    CAS  Google Scholar 

  • Wardman P (1987) The mechanism of radiosensitization by electron-affinic compounds. Radiat Phys Chem 30:423–432

    CAS  Google Scholar 

  • Wardman P (1995) Reactions of thiyl radicals. In: Packer L, Cadenas E (eds) Biothiols in health and disease. Marcel Decker, New York, pp 1–19

    Google Scholar 

  • Wardman P (1998) Evaluation of the „radical sink“ hypothesis from a chemical-kinetic viewpoint. J Radioanal Nucl Chem 232:23–27

    CAS  Google Scholar 

  • Wardman P (2001) Electron transfer and oxidative stress as key factors in the design of drugs selectively active in hypoxia. Curr Medic Chem 8:739–761

    CAS  Google Scholar 

  • Wardman P, Clarke ED (1985) Electron transfer and radical-addition in the radiosensitization and chemotherapy of hypoxic cells. In: Breccia A, Fowler JF (eds) New Chemo and Radiosensitizing Drugs. Lo Scarabeo, Bologna, pp 21–38

    Google Scholar 

  • Wardman P, von Sonntag C (1995) Kinetic factors that control the fate of thiyl radicals in cells. Meth Enzymol 251:31–45

    PubMed  CAS  Google Scholar 

  • Wardman P, Middleton RW, Monney H, Parrick J, Watts ME (1973) Unexpected reactivity of some nitroaryl compounds with thiols: Implications in their use as radiosensitizers and probes for hypoxia. In: Broerse JJ, Barendsen GW, Kal HB, van der Kogel AJ (eds) Proc. 7th Int. Conf. Radiat. Res. Martinus Nijhoff, Amsterdam, pp A4–35

    Google Scholar 

  • Wardman P, Dennis MF, Everett SA, Patel KB, Stratford MRL, Tracy M (2003) Radicals from one-electron reduction of nitro compounds, aromatic N-oxides and quinones: the kinetic basis for hypoxia-selective, bioreductive drugs. Biochem Soc Symp 61:171–194

    Google Scholar 

  • Warman JM, de Haas MP, Hummel A, van Lith D, Verberne JB, Loman H (1980) A pulse radiolysis conductivity study of frozen aqueous solutions of DNA. Int J Radiat Biol 38:459–459

    CAS  Google Scholar 

  • Warman JM, de Haas MP, Rupprecht A (1996) DNA: a molecular wire? Chem Phys Lett 249:319–322

    Article  CAS  Google Scholar 

  • Warters RL, Lyons BW (1992) Variation in radiation-induced formation of DNA double-strand breaks as a function of chromatin structure. Radiat Res 130:309–318

    PubMed  CAS  Google Scholar 

  • Warters RL, Hofer KG, Harris CR, Smith JM (1977) Radionuclide toxicity in cultured mammalian cells: Elucidation of the primary site of radiation damage. Curr Top Radiat Res Q 12:389–407

    Google Scholar 

  • Weiland B, Hüttermann J (1998) Free radicals from X-irradiated ‚dry ‘and hydrated lyophilized DNA as studies by electron spin resonance spectroscopy: analysis of spectral components between 77 K and room temperature. Int J Radiat Biol 74:341–358

    PubMed  CAS  Google Scholar 

  • Weinfeld M, Soderlind K-JM (1991) 32P-Postlabeling detection of radiation-induced DNA-damage: identification and estimation of thymine glycols and phosphoglycolate termini. Biochemistry 30:1091–1097

    Article  PubMed  CAS  Google Scholar 

  • Weinfeld M, Liuzzi M, Paterson MC (1990) Response of phage T4 polynucleotide kinase toward dinucleotides containing apurinic sites: design of a 32P-postlabeling assay for apurinic sites in DNA. Biochemistry 29:1737–1743

    Article  PubMed  CAS  Google Scholar 

  • Whillans DW, Hunt JW (1978) Rapid-mixing studies of the mechanisms of chemical radiosensitization and protection in mammalian cells. Br J Cancer 37:38–41

    CAS  Google Scholar 

  • Whillans DW, Hunt JW (1982) A rapid-mixing comparison of the mechanisms of radiosensitization by oxygen and misonidazole in CHO cells. Radiat Res 90:126–141

    PubMed  CAS  Google Scholar 

  • Whillans DW, Adams GE, Neta P (1975) Electron-affinic sensitization. VI. Pulse radiolysis and ESR comparison of some 2-and 5-nitroimidazoles. Radiat Res 62:407–421

    PubMed  CAS  Google Scholar 

  • Wilkinson F, Helman WP, Ross AB (1995) Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J Phys Chem Ref Data 24:663–1021

    CAS  Google Scholar 

  • Willson RL, Cramp WA, Ings RMI (1974) Metronidazole (‘Flagyl’): Mechanisms of radiosensitization. Int J Radiat Biol 26:557–569

    CAS  Google Scholar 

  • Winters TA, Weinfeld M, Jorgensen TJ (1992) Human HeLa cell enzymes that remove phosphoglycolate 3′-end groups from DNA. Nucleic Acids Res 20:2573–2580

    PubMed  CAS  Google Scholar 

  • Wirths A, Jung H (1972) Single-strand breaks induced in DNA by vacuum-ultraviolet radiation. Photochem Photobiol 15:325–330

    PubMed  CAS  Google Scholar 

  • Wojcik A, Bochenek A, Lankoff A, Risowska A, Padjas A, von Sonntag C, Obe G (2005) DNA interstrand crosslinks are induced in cells prelabelled with 5-bromo-2′-deoxyuridine and exposed to UVC radiation, in preparation

    Google Scholar 

  • Wojcik A, Opalka B, Obe G (1999) Analysis of inversions and sister chromatide exchanges in chromosome 3 of human lymphocytes exposed to X-rays. Mutagenesis 14:633–637

    PubMed  CAS  Google Scholar 

  • Wojcik A, von Sonntag C, Obe G (2003) Application of the biotin-dUTP chromosome-labelling technique to study the role of 5-bromo-2′-deoxyuridine in the formation of UV-induced sister chromatid exchanges in CHO cells. J Photochem Photobiol B: Biol 69:139–144

    CAS  Google Scholar 

  • Wu JC, Kozarich JW, Stubbe J (1983) The mechanism of free base formation from DNA by bleomycin. J Biol Chem 258:4694–4697

    PubMed  CAS  Google Scholar 

  • Wu JC, Kozarich JW, Stubbe J (1985a) Mechanism of bleomycin: evidence for a rate-determining 4′-hydrogen abstraction from poly(dA-dU) association with the formation of both free base and base propenal. Biochemistry 24:7562–7568

    PubMed  CAS  Google Scholar 

  • Wu JC, Stubbe J, Kozarich JW (1985b) Mechanism of bleomycin: evidence for 4′-ketone formation in poly(dA-dU) associated exclusively with base release. Biochemistry 24:7569–7573

    PubMed  CAS  Google Scholar 

  • Wu LJ, Randers-Pehrson G, Xu A, Waldren CA, Yu Z, Yu Z, Hei TK (1999) Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells. Proc Nat Acad Sci USA 96:4959–4964

    PubMed  CAS  Google Scholar 

  • Wyard SJ, Elliott JP (1973) ESR studies of radiation damage in nucleic acids, bases, nucleosides and nucleotides. Ann N Y Acad Sci 222:628–639

    PubMed  CAS  Google Scholar 

  • Wyszko E, Barciszewska MZ, Markiewicz M, Szymanski M, Markiewicz WT, Clark BC, Barciszewski J (2003) “Action-at-a-distance” of a new DNA oxidative damage product 6-furfuryl-adenine (kinetin) on template properties of modified DNA. Biochim Biophys Acta 1625:239–245

    PubMed  CAS  Google Scholar 

  • Xapsos MA, Pogozelsky WK (1996) Modeling the yield of double-strand breaks due to formation of multiply damaged sites in irradiated plasmid DNA. Radiat Res 146:668–672

    PubMed  CAS  Google Scholar 

  • Xu Y, Xi Z, Zhen J, Goldberg IH (1997) Mechanism of formation of novel covalent drug. DNA interstrand cross-links and monoadducts by enediyne antitumor antibiotics. Biochemistry 36:14975–14984

    PubMed  CAS  Google Scholar 

  • Yamada H, Hieda K (1992) Wavelength dependence (150–290 nm) of the formation of the cyclobutane dimer and the (6–4) photoproduct of thymine. Photochem Photobiol 55:541–548

    PubMed  CAS  Google Scholar 

  • Yan M, Becker D, Summerfield S, Renke P, Sevilla MD (1992) Relative abundance and reactivity of primary ion radicals in γ-irradiated DNA at low temperatures. 2. Single-vs double-stranded DNA. J Phys Chem 96:1983–1989

    CAS  Google Scholar 

  • Yasuda S, Sekiguchi M (1970) T4 endonuclease involved in repair of DNA. Proc Nat Acad Sci USA 67:1839–1845

    PubMed  CAS  Google Scholar 

  • Yatvin MB (1976) Evidence that survival of γ-irradiated Escherichia coli is influenced by membrane fluidity. Int J Radiat Biol 30:571–575

    CAS  Google Scholar 

  • Yatvin MB, Grummer MA (1987) Membrane structure and radiation and hyperthermic damage. Radiat Phys Chem 30:351–364

    CAS  Google Scholar 

  • Yatvin MB, Wood PG, Brown SM (1972) ‚Repair ‘of plasma membrane injury and DNA single strand breaks in γ-irradiated Escherichia coli B/r and BS-1. Biochim Biophys Acta 287:390–403

    PubMed  CAS  Google Scholar 

  • Yatvin MB, Gipp JJ, Dennis WH (1979) Influence of unsaturated fatty acids, membrane fluidity and oxygenation on the survival of an E. coli fatty acid auxotroph following γ-irradiation. Int J Radiat Biol 35:539–548

    CAS  Google Scholar 

  • Yatvin MB, Gipp JJ, Werts ED, Tamba M, Simone G (1984) Membrane aspects of radiation biology. In: Bors W, Saran M, Tait D (eds) Oxygen radicals in chemistry and biology. Walter de Gruyter, Berlin, pp 563–579

    Google Scholar 

  • Yatvin MB, Cramp WA, Edwards JC, George AM, Chapman D (1987) The effects of ionizing radiation on biological membranes. Nucl Instr Meth Phys Res A255:306–316

    Google Scholar 

  • Ye Y-J, Chen R-S, Martinez A, Otto P, Ladik J (1999) Calculation of hopping conductivity in aperiodic nucleobase stacks. Solid State Commun 112:139–144

    Article  CAS  Google Scholar 

  • Yermilov V, Rubio J, Ohshima H (1995) Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. FEBS Lett 376:207–210

    Article  PubMed  CAS  Google Scholar 

  • Yermilov V, Yoshie Y, Rubio J, Oshima H (1996) Effects of carbon dioxide/bicarbonate on induction of DNA single-strand breaks and formation of 8-nitroguanine, 8-oxoguanine and base-propenal mediated by peroxynitrite. FEBS Lett 399:67–70

    Article  PubMed  CAS  Google Scholar 

  • Yokoya A, Cunniffe SMT, O’Neill P (2002) Effect of hydration on the induction of strand breaks and base lesions in plasmid DNA films by γ-radiation. J Am Chem Soc 124:8859–8866

    Article  PubMed  CAS  Google Scholar 

  • Yokoya A, Cunniffe SMT, Stevens DL, O’Neill P (2003) Effect of hydration on the induction of strand breaks, base lesions and clustered damage in DNA films by γ-radiation. J Phys Chem B 107:832–837

    Article  CAS  Google Scholar 

  • Yoo J, Delaney S, Stemp EDA, Barton JK (2003) Rapid radical formation by DNA charge transport through sequences lacking intervening guanines. J Am Chem Soc 125:6640–6641

    PubMed  CAS  Google Scholar 

  • Yoshioka Y, Kitagawa Y, Takano Y, Yamaguchi K, Nakamura T, Saito I (1999) Experimental and theoretical studies on the selectivity of GGG triplets toward one-electron oxidation in B-form DNA. J Am Chem Soc 121:8712–8719

    Article  CAS  Google Scholar 

  • Yu L, Golik J, Harrison R, Dedon P (1994) The deoxyfucose-anthranilate of esperamicin A1 confers intercalative DNA binding and causes a switch in the chemistry of bistranded DNA lesions. J Am Chem Soc 116:9733–9738

    CAS  Google Scholar 

  • Yuhas JM (1982) Protective drugs in cancer therapy: optimal clinical testing and future development. Int J Oncol Biol Phys 8:513-fehlt

    CAS  Google Scholar 

  • Yurkova IL, Schuchmann H-P, von Sonntag C (1999) Production of OH radicals in the autoxidation of the Fe(II)-EDTA system. J Chem Soc Perkin Trans 2 2049–2052

    Google Scholar 

  • Zareie MH, Sahin FI, Ergün AE, Kocum C, Menevse S, Menevse A, Piskin E (1998) Interactions of DNA with fluorescent dyes: by scanning tunneling microscopy. Int J Biol Macromol 23:7–10

    Article  PubMed  CAS  Google Scholar 

  • Zastawny TH, Altman SA, Randers-Eichhorn L, Madurawe R, Lumpkin JA, Dizdaroglu M, Rao G (1995) DNA base modifications and membrane damage in cultured mammalian cells with iron ions. Free Radical Biol Med 18:1013–1022

    Article  CAS  Google Scholar 

  • Zheng S, Newton GL, Gonick G, Fahey RC, Ward JF (1988) Radioprotection of DNA by thiols: Relationship between the net charge on a thiol and its ability to protect DNA. Radiat Res 114:11–27

    PubMed  CAS  Google Scholar 

  • Zheng Y, Cloutier P, Hunting D, Wagner JR, Sanche L (2004) Glycosidic bond cleavage of thymidine by low-energy electrons. J Am Chem Soc 126:1002–1003

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). DNA and Double-Stranded Oligonucleotides. In: Free-Radical-Induced DNA Damage and Its Repair. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30592-0_12

Download citation

Publish with us

Policies and ethics