Skip to main content
  • 2300 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams GE, Cooke MS, Michael BD (1968) Rapid mixing in radiobiology. Nature 219:1368–1369

    CAS  PubMed  Google Scholar 

  • Al-Sheikhly MI, Hissung A, Schuchmann H-P, Schuchmann MN, von Sonntag C, Garner A, Scholes G (1984) Radiolysis of dihydrouracil and dihydrothymine in aqueous solutions containing oxygen; first-and second-order reactions of the organic peroxyl radicals; the role of isopyrimidines as intermediates. J Chem Soc Perkin Trans 2 601–608

    Google Scholar 

  • Allen AO, Hochanadel CJ, Ghormley JA, Davis TW (1952) Decomposition of water and aqueous solutions under mixed fast neutron and gamma radiation. J Phys Chem 56:575–586

    Article  Google Scholar 

  • Anand R, Southern EM (1990) Pulsed field gel electrophoresis. In: Rickwood D, Hames BD (eds) Gel electrophoresis of nucleic acids: a practical approach. IRL Press at Oxford University Press, New York, pp 101–123

    Google Scholar 

  • Asmus K-D (1984) Pulse radiolysis methodology. Methods Enzymol 105:167–178

    CAS  PubMed  Google Scholar 

  • Asmus K-D, Janata E (1982a) Polarography monitoring techniques. In: Baxendale JH, Busi F (eds) The study of fast processes and transient species by electron pulse radiolysis. Reidel, Dordrecht, pp 115–128

    Google Scholar 

  • Asmus K-D, Janata E (1982b) Conductivity monitoring techniques. In: Baxendale JH, Busi F (eds) The study of fast processes and transient species by electron pulse radiolysis. Reidel, Dordrecht, pp 91–113

    Google Scholar 

  • Barker GC, Fowles P, Sammon DC, Stringer B (1970) Pulse radiolytic induced transient electrical conductance in liquid solutions, part 1. Technique and the radiolysis of water. Trans Faraday Soc 66:1498–1508

    CAS  Google Scholar 

  • Bartolini WP, Johnston MV (2000) Characterizing DNA photo-oxidation reactions by high-resolution mass measurements with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 35:408–416

    Article  CAS  PubMed  Google Scholar 

  • Beckman KB, Saljoughi S, Mashiyama ST, Ames BN (2000) A simpler, more robust method for the analysis of 8-oxoguanine in DNA. Free Rad Biol Med 29:357–367

    Article  CAS  PubMed  Google Scholar 

  • Beesk F, Dizdaroglu M, Schulte-Frohlinde D, von Sonntag C (1979) Radiation-induced DNA strand breaks in deoxygenated aqueous solution. The formation of altered sugars as end groups. Int J Radiat Biol 36:565–576

    CAS  Google Scholar 

  • Bensasson RV, Land EJ, Truscott TG (1983) Flash photolysis and pulse radiolysis. Contributions to the chemistry of biology and medicin. Pergamon Press, Oxford

    Google Scholar 

  • Berger M, Anselmino C, Mouret J-F, Cadet J (1990) High performance liquid chromatography-electrochemical assay for monitoring the formation of 8-oxo-7,8-dihydroadenine and its related 2′deoxyribonucleoside. J Liquid Chromatogr 13:929–940

    CAS  Google Scholar 

  • Bianchini F, Hall J, Donato F, Cadet J (1996) Monitoring urinary excretion of 5-hydroxymethyluracil for assessment of oxidative DNA damage and repair. Biomarkers 1:178–184

    CAS  Google Scholar 

  • Bielski BHJ, Richter HW (1977) A study of the superoxide radical chemistry by stopped-flow radiolysis and radiation induced oxygen consumption. J Am Chem Soc 99:3019–3023

    CAS  Google Scholar 

  • Bothe E, Janata E (1994) Instrumentation of kinetic spectroscopy — 13. a.c.-Conductivity measurements at different frequencies in kinetic experiments. Radiat Phys Chem 44:455–458

    Article  CAS  Google Scholar 

  • Bresler SE, Noskin LA, Kuzovleva NA, Noskina IG (1979) The nature of the damage to Escherichia coli DNA induced by γ-irradiation. Int J Radiat Biol 36:289–300

    CAS  Google Scholar 

  • Brooks PJ, Wise DS, Berry DA, Kosmoski JV, Smerdon MJ, Somers RL, Mackie H, Spoonde AY, Ackerman EJ, Coleman K, Tarone RE, Robbins JH (2000) The oxidative DNA lesion 8,5′-(S)-cyclo-2′-deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells. J Biol Chem 275:22355–22362

    CAS  PubMed  Google Scholar 

  • Butler J, Land EJ (1996) Pulse radiolysis. In: Punchard NA, Kelly FJ (eds) Free radicals, a practical approach. IRL Press at Oxford University Press, Oxford, pp 48–61

    Google Scholar 

  • Buxton GV, Stuart CR (1995) Re-evaluation of the thiocyanate dosimeter for pulse radiolysis. J Chem Soc Faraday Trans 91:279–281

    Article  CAS  Google Scholar 

  • Cadet J, Weinfeld M (1993) Detecting DNA damage. Anal Chem 65:675A–662A

    CAS  PubMed  Google Scholar 

  • Cadet J, Berger M, Voituriez L (1982) Separation of radiation and photo-induced 5,6-dihydrothymine derivatives by reversed-phase high-performance liquid chromatography. J Chromatogr 238:488–494

    Article  CAS  Google Scholar 

  • Cadet J, Voituriez L, Berger M (1983) Separation of nucleic acid components and their radiation-induced degradation products on chemically bonded C12 reversed-phase thin-layer plates. J Chromatogr 259:111–119

    Article  CAS  Google Scholar 

  • Cadet J, Douki T, Ravanat J-L (1997a) Artifacts associated with the measurement of oxidized DNA bases. Environ Health Perspect 105:1034–1039 2811–2816

    CAS  PubMed  Google Scholar 

  • Cadet J, Berger M, Douki T, Ravanat J-L (1997b) Oxidative damage to DNA: formation, measurement, and biological significance. Rev Physiol Biochem Pharmacol 131:1–87

    CAS  PubMed  Google Scholar 

  • Cadet J, Bianchini F, Girault I, Molko D, Polverelli M, Ravanat J-L, Sauvaigo S, Signorini N, Tuce Z (1998) Measurement of oxidative base damage to DNA: HPLC/32P-postlabeling, imunological and non invasive assays. In: Aruoma OI, Halliwell B (eds) DNA and free radicals: techniques, mechanisms and applications. OICA International, London

    Google Scholar 

  • Cadet J, D’Ham C, Douki T, Pouget J-P, Ravanat J-L, Sauvaigo S (1999a) Facts and artifacts in the measurement of oxidative base damage to DNA. Free Rad Res 29:541–550

    Google Scholar 

  • Cadet J, Delatour T, Douki T, Gasparutto D, Pouget J-P, Ravanat J-L, Sauvaigo S (1999b) Hydroxyl radicals and DNA base damage. Mutat Res 424:9–21

    CAS  PubMed  Google Scholar 

  • Cadet J, Douki T, Frelon S, Sauvaigo S, Pouget J-P, Ravanat J-L (2002) Assessment of oxidative base damage to isolated and cellular DNA by HPLC-MS/MS measurement. Free Rad Biol Med 33:441–449

    Article  CAS  PubMed  Google Scholar 

  • Carnelley TJ, Barker S, Wang H, Tan WG, Weinfeld M, Le XC (2001) Synthesis, characterization, and applications of a fluorescent probe of DNA damage. Chem Res Toxicol 14:1513–1522

    Article  CAS  PubMed  Google Scholar 

  • Cathcart R, Schwiers E, Saul RL, Ames BN (1984) Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage. Proc Natl Acad Sci USA 81:5633–5637

    CAS  PubMed  Google Scholar 

  • Claycamp HG, Ho K-K (1993) Background and radiation-induced 8-hydroxy-2′-deoxyguanosine in γ-irradiated Escherichia coli. Int J Radiat Biol 63:597–607

    CAS  PubMed  Google Scholar 

  • Collins AR, Dobson VL, Dusinska M, Kennedy G, Stetina R (1997) The comet assay: what can it really tell us? Mutat Res 375:183–193

    CAS  PubMed  Google Scholar 

  • Czapski G, Ozeri Y, Goldstein S (2005) Pitfalls and artifacts in measuring absorption spectra and kinetics: the effect of stray light in the UV and red regions. Radiat Phys Chem 72:229–234

    Article  CAS  Google Scholar 

  • Dany AL, Triantaphylidès C, Cadet J, Douki T (1999) Optimisation of arabidopsis thaliana DNA extraction for the analysis of 8-oxo-7,8-dihydro-2′-deoxyguanosine formation after gamma irradiation. J Chim Phys 96:152–161

    Article  CAS  Google Scholar 

  • Das S, Schuchmann MN, Schuchmann H-P, von Sonntag C (1987) The production of the superoxide radical anion by the OH radical-induced oxidation of trimethylamine in oxygenated aqueous solution. The kinetics of the hydrolysis of (hydroxymethyl)dimethylamine. Chem Ber 120:319–323

    CAS  Google Scholar 

  • D’Ham C, Ravanat J-L, Cadet J (1998) Gas chromatography-mass spectrometry with high-performance liquid chromatography purification for monitoring the endonuclease III-mediated excision of 5-hydroxy-5,6-dihydrothymine and 5,6-dihydrothymine from γ-irradiated DNA. J Chromatogr B 710:67–74

    CAS  Google Scholar 

  • Dizdaroglu M (1985) Application of capillary gas chromatography-mass spectrometry to chemical characterization of radiation-induced base damage of DNA: implications for assessing DNA repair processes. Anal Biochem 144:593–603

    Article  CAS  PubMed  Google Scholar 

  • Dizdaroglu M (1990) Gas chromatography-mass spectrometry of free radical-induced products of pyrimidines and purines in DNA. Methods Enzymol 193:842–857

    CAS  PubMed  Google Scholar 

  • Dizdaroglu M (1991) Chemical determination of free radical-induced damage to DNA. Free Rad Biol Med 10:225–242

    Article  CAS  PubMed  Google Scholar 

  • Dizdaroglu M (1992) Measurement of radiation-induced damage to DNA at the molecular level. Int J Radiat Biol 61:175–183

    CAS  PubMed  Google Scholar 

  • Dizdaroglu M (1998) Facts about the artifacts in the measurement of oxidative DNA base damage by gas chromatography-mass spectrometry. Free Rad Res 29:551–563

    CAS  Google Scholar 

  • Dizdaroglu M, Bergtold DS (1986) Characterization of free radical-induced base damage in DNA at biologically relevant levels. Anal Biochem 156:182–188

    Article  CAS  PubMed  Google Scholar 

  • Dizdaroglu M, Gajewski E (1990) Selected-ion mass spectrometry: assays of oxidative DNA damage. Meth Enzymol 530–544

    Google Scholar 

  • Dizdaroglu M, Henneberg D, von Sonntag C (1974) The mass spectra of TMS-ethers of deuterated polyalcohols. A contribution to the structural investigation of sugars. Org Mass Spectrom 8:335–345

    Article  CAS  Google Scholar 

  • Dizdaroglu M, Henneberg D, von Sonntag C, Schuchmann MN (1977) Mass spectra of trimethylsilyl di-O-methyloximes of adosuloses and dialdoses. Org Mass Spectrom 12:772–776

    Article  Google Scholar 

  • Dizdaroglu M, Hermes W, Schulte-Frohlinde D, von Sonntag C (1978) Enzymatic digestion of DNA γ-irradiated in aqueous solution. Separation of the digest by ion-exchange chromatography. Int J Radiat Biol 33:563–569

    CAS  Google Scholar 

  • Dizdaroglu M, Holwitt E, Hagan MP, Blakely WF (1986) Formation of cytosine glycol and 5,6-dihydroxycytosine in deoxyribonucleic acid on treatment with osmium tetroxide. Biochem J 235:531–536

    CAS  PubMed  Google Scholar 

  • Dodson ML, Lloyd RS (2002) Mechanistic comparisons among base excision repair glycosylases. Free Rad Biol Med 32:678–682

    Article  CAS  PubMed  Google Scholar 

  • Douki T, Delatour T, Paganon F, Cadet J (1996) Measurement of oxidative damage at pyrimidine bases in γ-irradiated DNA. Chem Res Toxicol 9:1145–1151

    CAS  PubMed  Google Scholar 

  • Douki T, Martini R, Ravanat J-L, Turesky RJ, Cadet J (1997) Measurement of 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 8-oxo-7,8-dihydroguanine in isolated DNA exposed to gamma radiation in aqueous solution. Carcinogenesis 18:2385–2391

    Article  CAS  PubMed  Google Scholar 

  • Dowideit P, von Sonntag C (1998) The reaction of ozone with ethene and its methyl-and chlorine-substituted derivatives in aqueous solution. Environ Sci Technol 32:1112–1119

    Article  CAS  Google Scholar 

  • Eggset G, Volden G, Krokan H (1987) Characterization of antibodies specific for UV-damaged DNA by ELISA. Photochem Photobiol 45:485–491

    CAS  PubMed  Google Scholar 

  • Epe B, Hegler J (1994) Oxidative DNA damage: endonulease fingerprinting. Methods Enzymol 234:122–131

    CAS  PubMed  Google Scholar 

  • ESCODD (2003) Measurement of DNA oxidation in human calls by chromatographic and enzymic methods. Free Rad Biol Med 34:1089–1099

    Google Scholar 

  • Floyd RA, Watson JJ, Wong PK, Altmiller DH, Rickard RC (1986) Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanisms of formation. Free Rad Res Commun 1:163–172

    CAS  Google Scholar 

  • Flyunt R, Leitzke A, von Sonntag C (2003) Characterisation and quantitative determination of (hydro)peroxides formed in the radiolysis of dioxygen-containing systems and upon ozonolysis. Radiat Phys Chem 67:469–473

    Article  CAS  Google Scholar 

  • Folkard M, Vojnovic B, Prise KM, Bowey AG, Locke RJ, Schettino G, Michael BD (1997a) A charged-particle microbeam. I. Development of an experimental system for targeting cells individually with counted particles. Int J Radiat Biol 72:375–385

    CAS  PubMed  Google Scholar 

  • Folkhard M, Vojnovic B, Hollis KJ, Bowey AG, Watts SJ, Schettino G, Prise KM, Michael BD (1997b) A charged-particle microbeam. II. A single-particle micro-collimation and detection system. Int J Radiat Biol 72:387–395

    Google Scholar 

  • Fox RA, Fielden EM, Sapora O (1976) Yield of single-strand breaks in the DNA of E. coli 10 msec after irradiation. Int J Radiat Biol 29:391–394

    CAS  Google Scholar 

  • Frelon S, Douki T, Ravanat J-L, Pouget J-P, Tornabene C, Cadet J (2000) High-performance liquid chromatography-tandem mass spectrometry measurement of radiation-induced base damage to isolated and cellular DNA. Chem Res Toxicol 13:1002–1010

    Article  CAS  PubMed  Google Scholar 

  • Frenkel K, Goldstein MS, Teebor GW (1981) Identification of the cis-thymine glycol moiety in chemically oxidized and γ-irradiated deoxyribonucleic acid by high-pressure liquid chromatography. Biochemistry 20:7566–7571

    CAS  PubMed  Google Scholar 

  • Frenkel K, Cummings A, Solomon J, Cadet J, Steinberg JJ, Teebor GW (1985) Quantitative determination of the 5-(hydroxymethyl)uracil moiety in the DNA of γ-irradiated cells. Biochemistry 24:4527–4533

    Article  CAS  PubMed  Google Scholar 

  • Fuciarelli AF, Miller GG, Raleigh JA (1985) An immunochemical probe for 8,5′-cycloadenosine-5′-monophosphate and its deoxy analog in irradiated nucleic acid. Radiat Res 104:272–283

    CAS  PubMed  Google Scholar 

  • Fuciarelli AF, Shum FY, Raleigh JA (1987) Intramolecular cyclization in irradiated nucleic acids: Correlation between high-performance liquid chromatography and an immunochemical assay for 8,5′-cycloadenosine in irradiated poly(A). Radiat Res 110:35–44

    CAS  PubMed  Google Scholar 

  • Fuciarelli AF, Wegher BJ, Gajewski E, Dizdaroglu M, Blakely WF (1989) Quantitative measurement of radiation-induced base products in DNA using gas chromatography-mass spectroscopy. Radiat Res 119:219–231

    CAS  PubMed  Google Scholar 

  • Girard PM, D’Ham C, Cadet J, Boiteux S (1998) Opposite base-dependent excision of 7,8-dihydro-8-oxo-adenine by the Ogg1 protein of Saccharomyces cerevisiae. Carcinogenesis 19:1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Greenberg MM, Matray TJ (1997) Inhibition of Klenow fragment (exo-) catalyzed DNA polymerization by (5R)-5,6-dihydro-5-hydroxythymidine and structural analogue 5,6-dihydro-5-methylthymidine. Biochemistry 36:14071–14079

    Article  CAS  PubMed  Google Scholar 

  • Hegi ME, Sagelsdorff P, Lutz WK (1989) Detection by 32P-postlabeling of thymidine glycol in γ-irradiated DNA. Carcinogenesis 10:43–47

    CAS  PubMed  Google Scholar 

  • Hollstein MC, Brooks P, Linn S, Ames BN (1984) Hydroxymethyluracil DNA glycosylase in mammalian cells. Proc Natl Acad Sci USA 81:4003–4007

    CAS  PubMed  Google Scholar 

  • Huang X, Powell J, Mooney LA, Li C, Frenkel K (2001) Importance of complete DNA digestion in minimizing variability of 8-oxo-dG analyses. Free Rad Biol Med 31:1341–1351

    CAS  PubMed  Google Scholar 

  • Janata E (1982) Pulse radiolysis conductivity measurements in aqueous solutions with nanosecond time resolution. Radiat Phys Chem 19:17–21

    CAS  Google Scholar 

  • Janata E (1992a) Instrumentation of kinetic spectroscopy. 9. Use of a computer for automatic performance of start-up procedures on a 4 MeV Van de Graaff electron accelerator. Radiat Phys Chem 40:217–223

    CAS  Google Scholar 

  • Janata E (1992b) Instrumentation of kinetic spectroscopy. 10. A modular data acquisition system for laser flash photolysis and pulse radiolysis experiments. Radiat Phys Chem 40:437–443

    CAS  Google Scholar 

  • Janata E, Lilie J, Martin M (1993) Instrumentation of kinetic spectroscopy. 11. An apparatus for AC-conductivity measurements in laser flash photolysis and pulse radiolysis experiments. Radiat Phys Chem 43:353–356

    Google Scholar 

  • Jaruga P, Rodriguez H, Dizdaroglu M (2001) Measurement of 8-hydroxy-2′-deoxyadenosine in DNA by liquid chromatography/mass spectrometry. Free Rad Biol Med 31:336–344

    Article  CAS  PubMed  Google Scholar 

  • Johansen I, Boye E (1975) Radiation-induced DNA strand breaks in E. coli measured within a fraction of a second. Nature 255:740–742

    Article  CAS  Google Scholar 

  • Johansen I, Brustad T, Rupp WD (1975) DNA strand break measured within 100 milliseconds of irradiation of Escherichia coli by 4MeV electrons. Proc Natl Acad Sci USA

    Google Scholar 

  • Joshi RR, Ganesh KN (1994) Metallodesferals as a new class of DNA cleavers: Specificity, mechanism and targetting of DNA scission reactions. Proc Indian Acad Sci (Chem Sci ) 106:1089–1108

    CAS  Google Scholar 

  • Jurado J, Saparbaev M, Matray TJ, Greenberg MM, Laval J (1998) The ring fragmentation product of thymidine C5-hydrate when present in DNA is repaired by Escherichia coli Fpg and Nth proteins. Biochemistry 37:7757–7763

    Article  CAS  PubMed  Google Scholar 

  • Kasai H, Nishimura S (1986) Hydroxylation of guanine in nucleosides and DNA at the C-8 position by heated glucose and oxygen radical-forming. Environ Health Perspect 67:111–116

    CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kubo H, Kinoshita T (1987) Fluorometric determination of guanidino compounds by new postcolumn derivatization system using reversed-phase ion-pair high-performance liquid chromatography. Anal Biochem 160:392–398

    Article  CAS  PubMed  Google Scholar 

  • Krokan HE, Standal RSG (1997) DNA glycosylases in the base excision repair of DNA. Biochem J 325:1–16

    CAS  PubMed  Google Scholar 

  • Krushinskaya NP (1983) Radiation-induced chemical alterations in sugar moiety of DNA: Carboncarbon bond rupture. In: Dobo J, Hedvig P, Schiller R (eds) Proceedings of the 5th Tihany symposium on radiation chemistry. Akedemiao Kiado, Budapest, pp 1061–1066

    Google Scholar 

  • Krushinskaya NP, Shalnov MI (1967) Nature of breaks in the DNA chain upon irradiation of aqueous solutions. Radiobiology 7:36–45

    Google Scholar 

  • Langfinger D, von Sonntag C (1985) γ-Radiolysis of 2′-deoxyguanosine. The structure of the malondialdehyde-like product. Z Naturforsch 40c:446–448

    CAS  Google Scholar 

  • Le XC, Xing JZ, Lee J, Leadon SA, Weinfeld M (1998) Inducible repair of thymine glycol detected by an ultrasensitive assay for DNA damage. Science 280:1066–1069

    Article  CAS  PubMed  Google Scholar 

  • Lewis HL, Ward JF (1978) Serologic assay of DNA base damage. In: Hanawalt PC, Friedberg EC, Fox CF (eds) DNA repair mechanisms. Academic Press, New York, pp 35–38

    Google Scholar 

  • Lewis HL, Muhleman DR, Ward JF (1978) Serologic assay of DNA base damage. I. 5-hydroxymethyldeoxyuridine, a radiation product of thymidine. Radiat Res 75:305–316

    CAS  PubMed  Google Scholar 

  • Loft S, Thorling EB, Poulsen HE (1998) High fat diet induced oxidative DNA damage estimated by 8-oxo-7,8-dihydro-2′-deoxyguanosine excretion in rats. Free Rad Res 29:595–600

    CAS  Google Scholar 

  • Maccubbin A, Evans M, Paul CR, Budzinski EE, Przybyszewski J, Box HC (1991) Enzymatic excision of radiation-induced lesions from DNA model compounds. Radiat Res 126:21–26

    CAS  PubMed  Google Scholar 

  • Maccubbin AE, Evans MS, Budzinski EE, Wallace JC, Box HC (1992) Characterization of two radiation-induced lesions from DNA: Studies using nuclease P1. Int J Radiat Biol 61:729–736

    CAS  PubMed  Google Scholar 

  • Matray TJ, Haxton KJ, Greenberg MM (1995) The effects of the ring fragmentation product of thymidine C5-hydrate on phosphodiesterases and Klenow (exo-) fragment. Nucleic Acids Res 23:4642–4648

    CAS  PubMed  Google Scholar 

  • Matsufuji H, Shibamoto T (2004) The role of EDTA in malonaldehyde formation from DNA oxidized by Fenton reagent systems. J Agric Food Chem 52:3136–3140

    CAS  PubMed  Google Scholar 

  • McConlogue LC, Ward JF, Lewis HL, Norman A (1982) Radioimmune assay of induction and removal of UV lesions in total and staphylococcal nuclease-resistant DNA of mammalian chromatin. Radiat Res 89:381–395

    CAS  PubMed  Google Scholar 

  • Mei N, Tamae K, Kunugita N, Hirano T, Kasai H (2003) Analysis of 8-hydroxydeoxguanosine 5′-monophosphate (8-OH-dGMP) as a reliable marker of cellular oxidative DNA damage after γ-irradiation. Environ Mol Mutagen 41:332–338

    Article  CAS  PubMed  Google Scholar 

  • Michael BD, Adams GE, Hewitt HB, Jones WBG, Watts ME (1973) A posteffect of oxygen in irradiated bacteria: A submillisecond fast mixing study. Radiat Res 54:239–251

    CAS  PubMed  Google Scholar 

  • Mihaljevic B, Katusin-Razem B, Razem D (1996) The reevaluation of the ferric thiocyanate assay for lipid hydroperoxides with special considerations of the mechanistic aspects of the response. Free Rad Biol Med 21:53–63

    Article  CAS  PubMed  Google Scholar 

  • Millar BC, Fielden EM, Steele JJ (1980) Effect of oxygen-radiosensitizer mixtures on the radiation response of Chinese hamster cells, line V-79-753B, in vitro. II. Determination of the initial yield of single-strand breaks in the cellular DNA using a rapid lysis technique. Radiat Res 83:57–65

    CAS  PubMed  Google Scholar 

  • Mouret JF, Odin F, Polverelli M, Cadet J (1990) 32P-postlabeling measurement of adenine-N-1-oxide in cellular DNA exposed to hydrogen peroxide. Chem Res Toxicol 3:102–110

    Article  CAS  PubMed  Google Scholar 

  • Möller L, Hofer T, Zeisig M (1998) Methodological considerations and factors affecting 8-hydroxy-2′-deoxyguanosine analysis. Free Rad Res 29:511–524

    Google Scholar 

  • Müller R, Adamkiewicz J, Rajewsky MF (1982) Immunological detection and quantification of carcinogen-modified DNA components. In: Armstrong B, Bartsch H (eds) Host factors in human carcinogenesis. IARC Scientific Publications, Lyon, pp 463–479

    Google Scholar 

  • Nishimura S (2002) Involvement of mammalian OGG1(MMH) in excision of the 8-hydroxyguanine residue in DNA. Free Rad Biol Med 32:813–821

    Article  CAS  PubMed  Google Scholar 

  • O’Neill P, Al-Kazwini AT, Land EJ, Fielden EM (1989) Diffuse reflectance pulse radiolysis of solid DNA: the effect of hydration. Int J Radiat Biol 55:531–537

    CAS  PubMed  Google Scholar 

  • Ostling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123:291–298

    CAS  PubMed  Google Scholar 

  • Östling O, Johanson KJ (1987) Bleomycin, in contrast to gamma irradiation, induces extreme variation of DNA strand breakage from cell to cell. Int J Radiat Biol 52:683–691

    Google Scholar 

  • Pang D, Popescu G, Rodgers J, Berman BL, Dritschilo A (1996) Atomic force microscopy investigation of radiation-induced DNA double strand breaks. Scann Microsc 10:1105–1110

    CAS  Google Scholar 

  • Pang D, Berman BL, Chasovskikh S, Rodgers JE, Dritschilo A (1997) Investigation of neutron-induced damage in DNA by atomic force microscopy: experimental evidence of clustered DNA lesions. Radiat Res 150:612–618

    Google Scholar 

  • Park J-W, Cundy KC, Ames BN (1989) Detection of DNA adducts by high-performance liquid chromatography with electrochemical detection. Carcinogenesis 10:827–832

    CAS  PubMed  Google Scholar 

  • Patterson LK (1987) Instrumentation for measurement of transient behavior in radiation chemistry. In: Farhataziz, Rodgers MAJ (eds) Radiation chemistry. Principles and applications. Verlag Chemie, Weinheim, pp 65–96

    Google Scholar 

  • Pouget J-P, Ravanat J-L, Douki T, Richard M-J, Cadet J (1999) Use of the comet assay to measure DNA damage in cells exposed to photosensitizers and gamma radiation. J Chim Phys 96:143–146

    Article  CAS  Google Scholar 

  • Rajagopalan R, Melamede RJ, Laspia MF, Erlanger BF, Wallace SS (1984) Properties of antibodies to thymine glycol, a product of the radiolysis of DNA. Radiat Res 97:499–510

    CAS  PubMed  Google Scholar 

  • Randerath K, Zhou G-D, Sommers RL, Robbins JH, Brooks PJ (2001) A 32P-postlabelling assay for the oxidative DNA lesion 8,5′-cyclo-2′-deoxyadenosine in mammalian tissues. J Biol Chem 276:36051–36057

    Article  CAS  PubMed  Google Scholar 

  • Rashid R, Langfinger D, Wagner R, Schuchmann H-P, von Sonntag C (1999) Bleomycin vs. OH-radical-induced malonaldehydic-product formation in DNA. Int J Radiat Biol 75:110–109

    Article  Google Scholar 

  • Rothkamm K, Löbrich M (2003) Evidence for the lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Nat Acad Sci USA 100:5057–5082

    Article  CAS  PubMed  Google Scholar 

  • Sapora O, Fielden EM, Loverock PS (1975) The application of rapid lysis techniques in radiobiology. I. The effect of oxygen and radiosensitizers on DNA strand break production and repair in E. coli B/r. Radiat Res 64:431–442

    CAS  PubMed  Google Scholar 

  • Sapora O, Fielden EM, Loverock PS (1977) The application of rapid lysis techniques in radiobiology. II. The time course of the repair of DNA fixed damage and single-strand breaks in Escherichia coli mutants. Radiat Res 72:308–316

    CAS  PubMed  Google Scholar 

  • Sauvaigo S, Serres C, Signorini N, Emonet N, Richard M-J, Cadet J (1998) Use of the single-cell gel electrophoresis assay for the immonofluorescent detection of specific DNA damage. Anal Biochem 259:1–7

    Article  CAS  PubMed  Google Scholar 

  • Sauvaigo S, Petec-Calin C, Caillat S, Odin F, Cadet J (2002) Comet assay couple to repair enzymes for the detection of oxidative damage to DNA induced by low doses of γ-radiation: use of YOYO-1, low-background slides, and optimized electrophoresis conditions. Anal Biochem 303:107–109

    Article  CAS  PubMed  Google Scholar 

  • Schnabel W (1986) Pulse radiolysis studies concerning oxidative degradation processes in linear polymers. Radiat Phys Chem 28:303–313

    CAS  Google Scholar 

  • Schuchmann H-P, Deeble DJ, Phillips GO, von Sonntag C (1991) Pulse radiolysis with conductometric detection: two approaches to absolute dosimetry. Radiat Phys Chem 37:157–160

    CAS  Google Scholar 

  • Schuchmann MN, Schuchmann H-P, von Sonntag C (1989) The pKa value of the •O2CH2CO2H radical: the Taft σ* constant of the-CH2O2• group. J Phys Chem 93:5320–5323

    Article  CAS  Google Scholar 

  • Schuler RH, Hartzell AL, Behar B (1981) Track effects in radiation chemistry. Concentration dependence for the scavenging of OH by ferrocyanide in N2O-saturated solutions. J Phys Chem 85:192–199

    Article  CAS  Google Scholar 

  • Scoble HA, Brown PR (1983) Reversed-phase chromatography of nucleic acid fragments. High-Performance Liquid Chromatogr 3:1–47

    CAS  Google Scholar 

  • Shigenaga MK, Gimeno CJ, Ames BN (1989) Urinary 8-hydroxy-2′-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proc Natl Acad Sci USA 86:9697–9701

    CAS  PubMed  Google Scholar 

  • Shigenaga MK, Park J-W, Cundy KC, Gimeno CJ, Ames BN (1990) In vivo oxidative DNA damage: measurement of 8-hydroxy-2′-deoxyguanosine in DNA and urine by high-performance liquid chromatography with electrochemical detection. Methods Enzymol 186:521–530

    CAS  PubMed  Google Scholar 

  • Signorini N, Molko D, Cadet J (1998) Polyclonal antibodies to adenine N1-oxide: characterization and use for the measurement of DNA damage. Chem Res Toxicol 11:1169–1175

    Article  CAS  PubMed  Google Scholar 

  • Sutherland BM, Bennett PV, Sidorkina O, Laval J (2000) Clustered DNA damages induced in isolated DNA and human cells by low doses of ionizing radiation. Proc Natl Acad Sci USA 97:103

    Article  CAS  PubMed  Google Scholar 

  • Tabata Y, Kobayashi H, Washio M, Tagawa S, Yoshida Y (1985) Pulse radiolysis with picosecond time resolution. Radiat Phys Chem 26:473–479

    CAS  Google Scholar 

  • Teebor GW, Frenkel K, Goldstein MS (1984) Ionizing radiation and tritium transmutation both cause formation of 5-hydroxymethyl-2′-deoxyuridine in cellular DNA. Proc Natl Acad Sci USA 81:318–321

    CAS  PubMed  Google Scholar 

  • Ãœndeger Ãœ, Zorlu AF, Basaran N (1999) Use of the alkaline comet assay to monitor DNA damage in technicians exposed to low-dose radiation. J Occup Environ Med 41:693–698

    PubMed  Google Scholar 

  • Valenzuela MT, Núñez MI, Guerrero M, Villalobos M, de Almodóvar JMR (2000) Capillary electrophoresis of DNA damage after irradiation: apoptosis and necrosis. J Chromatogr A, 871:321–330

    CAS  PubMed  Google Scholar 

  • van Eldik R, Meyerstein D (2000) High-pressure radiolysis as a tool in the study of transition metal reaction mechanisms. Acc Chem Res 33:207–214

    PubMed  Google Scholar 

  • van Lith D, de Haas MP, Warman JM, Hummel A (1983) Highly mobile charge carriers in hydrated DNA and collagen formed by pulsed ionization. Biopolymers 22:807–810

    PubMed  Google Scholar 

  • Veltwisch D, Janata E, Asmus K-D (1980) Primary processes in the reactions of OH• radicals with sulphoxides. J Chem Soc Perkin Trans 2 146–153

    Google Scholar 

  • von Sonntag C (1989) Pulse radiolysis, a method of choice for the fast kineticist-past, present and future. Anonymous new trends and developments in radiation chemistry. International Atomic Energy Agency, Vienna, pp 13–21

    Google Scholar 

  • von Sonntag C (1994) Topics in free-radical-mediated DNA damage: purines and damage amplification — superoxide reactions-bleomycin, the incomplete radiomimetic. Int J Radiat Biol 66:485–490

    Google Scholar 

  • von Sonntag J (1999) The influence of solute absorbance in laser flash photolysis — actinometry in experiment and theory at non-vanishing absorbance. J Photochem Photobiol A: Chem 126:1–5

    Article  Google Scholar 

  • von Sonntag C, Schuchmann H-P (1994) Pulse radiolysis. Methods Enzymol 233:3–20

    Google Scholar 

  • Wagner JR, Berger M, Cadet J, van Lier JE (1990) Analysis of thymidine hydroperoxides by post-column reaction high-performance liquid chromatography. J Chromatogr 504:191–196

    Article  CAS  Google Scholar 

  • Wagner JR, Hu C-C, Ames BN (2004) Endogeneous oxidative damage of deoxycytidine in DNA. Proc Nat Acad Sci USA 89:3380–3384

    Google Scholar 

  • Waller H, Friess E, Kiefer J (1981) On the immunological detection of X-ray induced DNA damage. Radiat Environ Biophys 19:259–264

    Article  CAS  PubMed  Google Scholar 

  • Warman JM, de Haas MP, Hummel A, van Lith D, Verberne JB, Loman H (1980) A pulse radiolysis conductivity study of frozen aqueous solutions of DNA. Int J Radiat Biol 38:459–459

    CAS  Google Scholar 

  • Weinfeld M, Soderlind K-JM (1991) 32P-postlabeling detection of radiation-induced DNA-damage: Identification and estimation of thymine glycols and phosphoglycolate termini. Biochemistry 30:1091–1097

    Article  CAS  PubMed  Google Scholar 

  • Whillans DW (1982) A rapid mixing system for radiobiological studies using mammalian cells. Radiat Res 90:109–125

    CAS  PubMed  Google Scholar 

  • Whillans DW, Hunt JW (1982) A rapid-mixing comparison of the mechanisms of radiosensitization by oxygen and misonidazole in CHO cells. Radiat Res 90:126–141

    CAS  PubMed  Google Scholar 

  • Wilkinson F, Willsher CJ, Warwick P, Land EJ, Rushton FAP (1984) Diffuse reflectance pulse radiolysis of opaque samples. Nature 311:40–42

    Google Scholar 

  • Yin B, Whyatt RM, Perera FP, Randall MC, Cooper TB, Santella RM (1995) Determination of 8-hydroxyguanosine by an immunoaffinity chromatography-monoclonal antibody-base ELISA. Free Rad Biol Med 18:1023–1032

    Article  CAS  PubMed  Google Scholar 

  • Zakaria M, Brown PR (1981) High-performance liquid column chromatography of nucleotides, nucleosides and bases. J Chromatogr 226:267–290

    CAS  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Methods. In: Free-Radical-Induced DNA Damage and Its Repair. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30592-0_13

Download citation

Publish with us

Policies and ethics