Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acworth IN, Bogdanov MB, McCabe DR, Beal MF (1999) Estimation of hydroxyl free radical levels in vivo based on liquid chromatography with electrochemical detection. Methods Enzymol 300:297–313

    CAS  PubMed  Google Scholar 

  • Akhlaq MS, von Sonntag C (1987) Intermolecular H-abstraction of thiyl radicals from thiols and the intramolecular complexing of the thiyl radical with the thiol group in 1,4-dithiothreitol. A pulse radiolysis study. Z Naturforsch 42c:134–140

    Google Scholar 

  • Ames BN, Shigenaga MK (1992) Curr Comm Cell Molec Biol 5:1–22

    CAS  Google Scholar 

  • Anbar M, Meyerstein D, Neta P (1966a) The reactivity of aromatic compounds toward hydroxyl radicals. J Phys Chem 70:2660–2662

    CAS  Google Scholar 

  • Anbar M, Meyerstein D, Neta P (1966b) Reactivity of aliphatic compounds towards hydroxyl radicals. J Chem Soc Perkin Trans 2 742–747

    Google Scholar 

  • Armstrong WA, Facey RA, Grant DW, Humphreys WG (1963) A tissue-equivalent chemical dosimeter sensitive to 1 rad. Can J Chem 41:1575–1577

    CAS  Google Scholar 

  • Aruoma OI (1994) Deoxyribose assay for detecting hydroxyl radicals. Methods Enzymol 233:57–66

    CAS  Google Scholar 

  • Ashton L, Buxton GV, Stuart CR (1995) Temperature dependence of the rate of reaction of OH with some aromatic compounds in aqueous solution. J Chem Soc Faraday Trans 91:1631–1633

    Article  CAS  Google Scholar 

  • Asmus K-D, Möckel H, Henglein A (1973) Pulse radiolytic study of the site of OH• radical attack on aliphatic alcohols in aqueous solution. J Phys Chem 77:1218–1221

    Article  CAS  Google Scholar 

  • Asmus K-D, Bonifacic M, Toffel P, O’Neill P, Schulte-Frohlinde D, Steenken S (1978) On the hydrolysis of AgII, TlII, SnIII and CuIII. J Chem Soc Faraday Trans 174:1820–1826

    Google Scholar 

  • Babbs CF, Gale Steiner M (1990) Detection and quantitation of hydroxyl radical using dimethyl sulfoxide as a molecular probe. Methods Enzymol 186:137–147

    CAS  PubMed  Google Scholar 

  • Backa S, Jansbo K, Reitberger T (1997) Detection of hydroxyl radicals by a chemiluminescence method-a critical review. Holzforschung 51:557–564

    CAS  Google Scholar 

  • Bailey SM, Fauconnet A-L, Reinke LA (1997) Comparison of salicylate and d-phenylalanine for detection hydroxyl radicals in chemical and biological reactions. Redox Rep 3:17–22

    CAS  Google Scholar 

  • Balasubramanian B, Pogozelski WK, Tullius TD (1998) DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc Natl Acad Sci USA 95:9738–9743

    Article  CAS  PubMed  Google Scholar 

  • Barker GC, Fowles P (1970) Pulse radiolytic induced transient electrical conductance in liquid solutions, part 3. Radiolysis of aqueous solutions of some inorganic systems. Trans Faraday Soc 66:1661–1669

    CAS  Google Scholar 

  • Bausch R, Schuchmann H-P, von Sonntag C, Benn R, Dreeskamp H (1976) CIDNP detection of the transient 4-benzyl-cyclohexa-2,5-dienone in the photorearrangement of benzyl phenyl ether. J Chem Soc Chem Commun 418–419

    Google Scholar 

  • Beauchamp C, Fridovich I (1970) A mechanism for the production of ethylene from methional. J Biol Chem 245:4641–4646

    CAS  PubMed  Google Scholar 

  • Belkin S, Mehlhorn RJ, Hideg K, Hankovsky O, Packer L (1987) Reduction and destruction rates of nitroxide spin probes. Arch Biochem Biophys 256:232–243

    CAS  PubMed  Google Scholar 

  • Berdnikov VM, Bazhin NM, Fedorov VK, Polyakov OV (1972) Isomerization of the ethoxyl radical to the α-hydroxyethyl radical in aqueous solution. Kinet Catal (English translation) 13:986–987

    Google Scholar 

  • Berkowitz J, Ellison GB, Gutman D (1994) Three methods to measure RH bond energies. J Phys Chem 98:2744–2765

    Article  CAS  Google Scholar 

  • Bhatia K, Schuler RH (1974) Oxidation of hydroxy cyclohexadienyl radical by metal ions. J Phys Chem 78:2335–2338

    CAS  Google Scholar 

  • Biaglow JE, Manevich Y, Uckun F, Held KD (1997) Quantitation of hydroxyl radicals produced by radiation and copper-linked oxidation of ascorbate by 2-deoxy-D-ribose method. Free Rad Biol Med 22:1129–1138

    Article  CAS  PubMed  Google Scholar 

  • Blackburn AC, Doe WF, Buffinton GD (1998) Salicylate hydroxylation as an indicator of OH radical generation in dextran sulfate-induced colitis. Free Rad Biol Med 25:305–313

    Article  CAS  PubMed  Google Scholar 

  • Bonifacic M, Stefanic I, Hug GL, Armstrong DA, Asmus K-D (1998) Glycine decarboxylation: The free radical mechanism. J Am Chem Soc 120:9930–9940

    Article  CAS  Google Scholar 

  • Bonifacic M, Armstrong DA, Stefanic I, Asmus K-D (2003) Kinetic isotope effect for hydrogen abstraction by •OH radicals from normal and carbon-deuterated ethyl alcohol in aqueous solution. J Phys Chem B 107:7268–7276

    Article  CAS  Google Scholar 

  • Boveris A, Cadenas E (1997) Cellular sources and steady-state levels of reactive oxygen species. In: Biadasz Clerch L, Massaro DJ (eds) Oxygen, gene expression, and cellular function. Dekker, New York, pp 1–25

    Google Scholar 

  • Brocks JJ, Beckhaus H-D, Beckwith ALJ, Rüchardt C (1998) Estimation of bond dissociation energies and radical stabilization energies by ESR spectroscopy. J Org Chem 63:1935–1943

    Article  CAS  Google Scholar 

  • Buxton GV, Langan JR, Lindsay Smith JR (1986) Aromatic hydroxylation. 8. A radiation chemical study of the oxidation of hydroxycyclohexadienyl radicals. J Phys Chem 90:6309–6313

    Article  CAS  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/O•−) in aqueous solution. J Phys Chem Ref Data 17:513–886

    CAS  Google Scholar 

  • Capelle S, Planckaert B, Cotelle P, Catteau JP (1992) Hydroxyl radical scavenging activity of salicylic acid and its hydroxylated metabolites. An ESR study. J Chim Phys 89:561–566

    CAS  Google Scholar 

  • Castro GD, Delgado del Layno AMA, Castro JA (1997) Hydroxyl and 1-hydroxyethyl free radical detection using spin traps followed by derivatization and gas chromatography-mass spectrometry. Redox Rep 3:343–347

    CAS  PubMed  Google Scholar 

  • Cercek B, Ebert M (1968) Radiolytic transients from p-nitrophenol and their inter-and intramolecular reactions. Adv Chem Ser 81:210–221

    Google Scholar 

  • Chakrabarti S, Makrigiorgos GM, O’Brien PJ, Bump E, Kassis AI (1996) Measurement of hydroxyl radicals catalyzed in the immediate vicinity of DNA by metal-bleomycin complexes. Free Rad Biol Med 20:777–783

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti S, Kassis AI, Slayter HS, Bump EA, Sahu SK, Makrigiorgos GM (1998) Continuous detection of radiation or metal generated hydroxyl radicals within core chromatin particles. Int J Radiat Biol 73:53–63

    CAS  PubMed  Google Scholar 

  • Ching T-L, van der Hee RM, Bhoelan NM, Blauw J, Menge WMPB, de Jong J, Bast A (1995) Histamine as a marker for OH radicals. Mediators Inflamm 4:339–343

    CAS  Google Scholar 

  • Christensen HC, Sehested K, Hart EJ (1973) Formation of benzyl radicals by pulse radiolysis of toluene in aqueous solutions. J Phys Chem 77:983–987

    Article  CAS  Google Scholar 

  • Cohen H, van Eldik R, Masarwa M, Meyerstein D (1990) Mechanism of oxidation of aquated copper(II) ions by hydroxyl free radicals. A high-pressure pulse-radiolysis experiment. Inorg Chim Acta 177:31–34

    Article  CAS  Google Scholar 

  • Coolen SAJ, Everaerts FM, Huf FA (1997) Characterization of 60Co γ-radiation induced radical products of antipyrine by means of high-performance liquid chromatography, mass spectrometry, capillary zone electrophoresis, micellar electrokinetic capillary chromatography and nuclear magnetic resonance spectrometry. J Chromatogr A 788:95–103

    Article  CAS  Google Scholar 

  • Coolen SAJ, Huf FA, Reijenga JC (1998) Determination of free radical reaction products and metabolites of salicylic acid using capillary electrophoresis and micellar electrokinetic chromatography. J Chromatogr B 717:119–124

    CAS  Google Scholar 

  • Coudray C, Talla M, Martin S, Fatome M, Favier A (1995) HPLC-electrochemical determination of salicylate hydroxylation products as an in vivo marker of oxidative stress. Anal Biochem 227:101–111

    Article  CAS  PubMed  Google Scholar 

  • Czapski G, Bielski BHJ (1993) Absorption spectra of the •OH and O•− radicals in aqueous solutions. Radiat Phys Chem 41:503–505

    Article  CAS  Google Scholar 

  • Das DK, George A, Liu X, Rao PS (1989) Detection of hydroxyl radical in the mitochondria of ischemic reperfused myocardium by trapping with salicylate. Biochem Biophys Res Commun 165:1004–1009

    CAS  PubMed  Google Scholar 

  • Das S, von Sonntag C (1986) Oxidation of trimethylamine by OH radicals in aqueous solution, as studied by pulse radiolysis, ESR and product analysis. The reactions of the alkylamine radical cation, the aminoalkyl radical and the protonated aminoalkyl radical. Z Naturforsch 41b:505–513

    CAS  Google Scholar 

  • Dixon WT, Norman ROC, Buley AL (1964) Electron spin resonance studies of oxidation. Part II. Aliphatic acids and substituted acids. J Chem Soc 3625–3634

    Google Scholar 

  • Draper HH, Squires EJ, Mahmoodi H, Wu J, Agarwal S, Hadley M (1993) A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Rad Biol Med 15:353–363

    Article  CAS  PubMed  Google Scholar 

  • Elliot AJ, McCracken DR (1989) Effect of temperature on O•− reactions and equilibria: a pulse radiolysis study. Radiat Phys Chem 33:69–74

    CAS  Google Scholar 

  • Fang X, Mark G, von Sonntag C (1996) OH-Radical formation by ultrasound in aqueous solutions, part I. The chemistry underlying the terephthalate dosimeter. Ultrason Sonochem 3:57–63

    CAS  Google Scholar 

  • Fang X, Schuchmann H-P, von Sonntag C (2000) The reaction of the OH radical with pentafluoro-, pentachloro-, pentabromo-and 2,4,6-triiodophenol in water: electron transfer vs. addition to the ring. J Chem Soc Perkin Trans 2 1391–1398

    Google Scholar 

  • Feng J, Aki SNVK, Chateauneuf JE, Brenneke JF (2003) Abstraction of hydrogen from methanol by hydroxyl radical in subcritical and supercritical water. J Phys Chem A 107:11043–11048

    CAS  Google Scholar 

  • Floyd RA, Lewis CA, Wong PK (1984) High pressure liquid chromatography-electrochemical detection of oxygen free radicals. Methods Enzymol 105:231–237

    CAS  PubMed  Google Scholar 

  • Flyunt R, Makogon O, Schuchmann MN, Asmus K-D, von Sonntag C (2001) The OH-radical-induced oxidation of methanesulfinic acid. The reactions of the methylsulfonyl radical in the absence and presence of dioxygen. J Chem Soc Perkin Trans 2 787–792

    Google Scholar 

  • Fukui S, Hanasaki Y, Ogawa S (1993) High-performance liquid chromatographic determination of methanesulfinic acid as a method for the determination of hydroxyl radicals. J Chromatogr 630:187–193

    Article  CAS  PubMed  Google Scholar 

  • Ghiselli A, Laurenti O, de Mattia G, Maiani G, Ferro-Luzzi A (1992) Salicylate hydroxylation as an early marker of in vivo oxidative stress in diabetic patients. Free Rad Biol Med 13:621–626

    Article  CAS  PubMed  Google Scholar 

  • Gilbert BC, Holmes RGG, Laue HAH, Norman ROC (1976) Electron spin resonance studies, part L. Reactions of alkoxyl radicals generated from alkylhydroperoxides and titanium (III) ion in aqueous solution. J Chem Soc Perkin Trans 2 1047–1052

    Google Scholar 

  • Grinstead RR (1960) Oxidation of salicylate by the model peroxidase catalyst iron-ethylenediaminetetraacetato-iron(III) acid. J Am Chem Soc 82:3472–3476

    CAS  Google Scholar 

  • Grootveld M, Halliwell B (1987) Measurement of allantoin and uric acid in human body fluids. Biochem J 243:803–808

    CAS  PubMed  Google Scholar 

  • Grootveld M, Halliwell B (1988) 2,3-Dihydroxybenzoic acid is a product of human aspirin metabolism. Biochem Pharmacol 37:271–280

    Article  CAS  PubMed  Google Scholar 

  • Gutteridge JMC (1986) Aspects to consider when detecting and measuring lipid peroxidation. Free Rad Res Commun 1:173–184

    CAS  Google Scholar 

  • Hageman J, Bast A, Vermeulen NPE (1992) Monitoring of oxidative free radical damage in vivo: analytical aspects. Chem Biol Interact 82:243–293

    CAS  PubMed  Google Scholar 

  • Halliwell B (1990) How to characterize a biological antioxidant. Free Rad Biol Med 9:1–32

    Article  CAS  Google Scholar 

  • Halliwell B, Grootveld M (1987) The measurement of free radical reactions in humans. Some thoughts for future experimentation. FEBS Lett 213:9–14

    CAS  PubMed  Google Scholar 

  • Halliwell B, Grootveld M, Kaur H, Fagerheim I (1988) Aromatic hydroxylation and uric acid degradation as methods for detecting and measuring oxygen radicals in vitro and in vivo. In: Rice-Evans C, Halliwell B (eds) Free radicals: methodology and concepts. Richelieu Press, London, pp 33–59

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Henglein A (1980) Energetics of reactions of Oaq− and of O−-transfer reactions between radicals. Radiat Phys Chem 15:151–158

    CAS  Google Scholar 

  • Hirayama O, Yida M (1997) Evaluation of hydroxyl-radical scavenging ability by chemiluminescence. Anal Biochem 251:297–299

    Article  CAS  PubMed  Google Scholar 

  • Höbel B, von Sonntag C (1998) OH-radical induced degradation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution: a pulse radiolysis study. J Chem Soc Perkin Trans 2 509–513

    Google Scholar 

  • Hug GL (1981) Optical spectra of non metallic transient species in aqueous solution. Natl Stand Ref Data Ser NBS 69

    Google Scholar 

  • Ingelmann-Sundberg M, Kaur H, Terelius Y, Persson J-O, Halliwell B (1991) Hydroxylation of salicylate by microsomal fractions and cytochrome P-450. Biochem J 276:753–757

    Google Scholar 

  • Isobe T, Naiki M, Handa S, Taki T (1996) Anal Biochem 236:35–40

    Article  CAS  PubMed  Google Scholar 

  • Jonsson M, Lind J, Reitberger T, Eriksen TE, Merényi G (1993) Free radical combination reactions involving phenoxyl radicals. J Phys Chem 97:8229–8233

    CAS  Google Scholar 

  • Kalyanaraman B, Ramanujam S, Singh RJ, Joseph J, Feix JB (1993) Formation of 2,5-dihydroxybenzoic acid during the reaction between 1O2 and salicylic acid: analysis by ESR oximetry and HPLC with electrochemical detection. J Am Chem Soc 115:4007–4012

    Article  CAS  Google Scholar 

  • Karam LR, Simic MG (1988a) Ortho tyrosine as a marker in post irradiation dosimetry (PID) of chicken. In: Bögl KW, Regulla DF, Suess MJ (eds) Health impact, identification and dosimetry of irradiated foods. ISH-Heft 125, Institut für Strahlenhygiene, Neuherberg, pp 297–304

    Google Scholar 

  • Karam LR, Simic MG (1988b) Detecting irradiated foods: use of hydroxyl radical biomarkers. Anal Chem 60:1117A–1119A

    CAS  PubMed  Google Scholar 

  • Karam LR, Dizdaroglu M, Simic MG (1984) OH radical-induced products of tyrosine peptides. Int J Radiat Biol 46:715–724

    CAS  Google Scholar 

  • Kaur H, Halliwell B (1994) Detection of OH radicals by aromatic hydroxylation. Methods Enzymol 233:67–82

    CAS  PubMed  Google Scholar 

  • Kaur H, Halliwell B (1996) Salicylic acid and phenylalanine as probes to detect hydroxyl radicals. In: Punchard NA, Kelly FJ (eds) Free radicals, a practical approach. IRL Press at Oxford University Press, Oxford, pp 101–116

    Google Scholar 

  • Kaur H, Fagerheim I, Grootveld M, Puppo A, Halliwell B (1988) Aromatic hydroxylation of phenylalanine as an assay for hydroxyl radicals: application to activated human neutrophils and to the heme protein leghemoglobin. Anal Biochem 172:360–367

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Whiteman M, Halliwell B (1997) Peroxynitrite-dependent aromatic hydroxylation and nitration of salicylate and phenylalanine. Is OH radical involved? Free Rad Res 26:71–82

    CAS  Google Scholar 

  • Kläning UK, Sehested K, Holcman J (1985) Standard Gibbs energy of formation of the hydroxyl radical in aqueous solution. Rate constants for reaction ClO2− + O3 <=> O3− + ClO2. J Phys Chem 89:760–763

    Google Scholar 

  • Klein GW, Bhatia K, Madhavan V, Schuler RH (1975) Reaction of •OH with benzoic acid. Isomer distribution in the radical intermediates. J Phys Chem 79:1767–1774

    CAS  Google Scholar 

  • Klein SM, Cohen G, Cederbaum AI (1981) Production of formaldehyde during metabolism of dimethyl sulfoxide by hydroxyl radical generating systems. Biochemistry 20:6006–6012

    CAS  PubMed  Google Scholar 

  • Kumarathasan P, Vincent R, Goegan P, Potvin M, Guenette J (2001) Hydroxyl radical adduct of 5-aminosalicylic acid: a potential marker of ozone-induced oxidative stress. Biochem Cell Biol 79:33–42

    Article  CAS  PubMed  Google Scholar 

  • Lamrini R, Crouzet JR, Francina A, Guilluy R, Steghens JP, Brazier JL (1994) Evaluation of OH radical production using 13CO2 gas chromatography-isotope ratio mass spectrometry. Anal Biochem 220:129–136

    Article  CAS  PubMed  Google Scholar 

  • Land EJ, Ebert M (1967) Pulse radiolysis studies of aqueous phenol. Water elimination from dihydroxycyclohexadienyl radicals to form phenoxyl. Trans Faraday Soc 63:1181–1190

    Article  CAS  Google Scholar 

  • Lind J, Shen X, Eriksen TE, Merényi G (1990) The one-electron reduction potential of 4-substituted phenoxyl radicals in water. J Am Chem Soc 112:479–482

    Article  CAS  Google Scholar 

  • Loft S, Poulsen HE (1999) Markers of oxidative damage to DNA: antioxidants and molecular damage. Methods Enzymol 300:166–184

    CAS  PubMed  Google Scholar 

  • Lundqvist MJ, Eriksson LA (2000) Hydroxyl radical reactions with phenol as a model for generation of biologically reactive tyrosyl radicals. J Phys Chem B 104:848–855

    Article  CAS  Google Scholar 

  • Madhavan V, Schuler RH (1980) A radiation chemical study of the oxidation of hydroxycyclohexadienyl radical by ferricyanide. Radiat Phys Chem 16:139–143

    CAS  Google Scholar 

  • Makrigiorgos G (1999) Detection of chromatin-associated hydroxyl radicals generated by DNA-bound metal compounds and antitumor antibiotics. In: Siegel A, Siegel H (eds) Interrelations between free radicals and metal ions in life processes. Dekker, New York, pp 521–545

    Google Scholar 

  • Makrigiorgos G, Baranowska-Kortylewicz J, Bump E, Sahu SK, Berman RM, Kassis AI (1993) A method for detection of hydroxyl radicals in the vicinity of biomolecules using radiation-induced fluorescence of coumarin. Int J Radiat Biol 63:445–458

    CAS  PubMed  Google Scholar 

  • Makrigiorgos G, Bump E, Huang C, Baranowska-Kortylewicz J, Kassis AI (1995) A fluorometric method for the detection of copper-mediated hydroxyl free radicals in the immediate proximity of DNA. Free Rad Biol Med 18:669–678

    Article  CAS  PubMed  Google Scholar 

  • Manevich Y, Held KD, Biaglow JE (1997) Coumarin-3-carboxylic acid as a detector for hydroxyl radicals generated chemically and by gamma radiation. Radiat Res 148:580–591

    CAS  PubMed  Google Scholar 

  • Maples KR, Johnson NF (1992) Fiber-induced hydroxyl radical formation: correlation with mesothelioma induction on rats and humans. Carcinogenesis 13:2035–2039

    CAS  PubMed  Google Scholar 

  • Mark G, Korth H-G, Schuchmann H-P, von Sonntag C (1996) The photochemistry of aqueous nitrate revisited. J Photochem Photobiol A Chem 101:89–103

    Article  CAS  Google Scholar 

  • Maskos Z, Rush JD, Koppenol WH (1990) The hydroxylation of the salicylate anion by a Fenton reaction and γ-radiolysis: a consideration of the respective mechanisms. Free Rad Biol Med 8:153–162

    Article  CAS  PubMed  Google Scholar 

  • Maskos Z, Rush JD, Koppenol WH (1992) The hydroxylation of phenylalanine and tyrosine: A comparison with salicylate and tryptophan. Arch Biochem Biophys 296:521–529

    CAS  PubMed  Google Scholar 

  • Mason RP, Knecht KT (1994) In vivo detection of radical adducts by ESR. Methods Enzymol 233:112–117

    CAS  PubMed  Google Scholar 

  • Matthews RW (1980) The radiation chemistry of the terephthalate dosimeter. Radiat Res 83:27–41

    CAS  PubMed  Google Scholar 

  • Merga G, Schuchmann H-P, Rao BSM, von Sonntag C (1996) OH-Radical-induced oxidation of chlorobenzene in aqueous solution in the absence and presence of oxygen. J Chem Soc Perkin Trans 2 1097–1103

    Google Scholar 

  • Meyerstein D (1971) Trivalent Copper. I. A pulse radiolytic study of the chemical properties of the aquo complex. Inorg Chem 10:638–641

    CAS  Google Scholar 

  • Mieden OJ, von Sonntag C (1989) Peptide free-radicals: the reactions of OH radicals with glycine anhydride and its methyl derivatives sarcosine and alanine anhydride. A pulse radiolysis and product study. Z Naturforsch 44b:959–974

    Google Scholar 

  • Mvula E, Schuchmann MN, von Sonntag C (2001) Reactions of phenol-OH-adduct radicals. Phenoxyl radical formation by water elimination vs. oxidation by dioxygen. J Chem Soc Perkin Trans 2 264–268

    Google Scholar 

  • Norman ROC, Gilbert BC (1967) Electron-spin resonance studies of short-lived organic radicals. Adv Phys Org Chem 5:53–119

    CAS  Google Scholar 

  • O’Neill P, Schulte-Frohlinde D (1975) Evidence for formation of a (TlOH)+ complex. J Chem Soc Chem Commun 387–388

    Google Scholar 

  • Owen RW, Wimonwatwatee T, Spiegelhalder B, Bartsch H (1996) A high performance liquid chromatography system for quantification of hydroxyl radical formation by determination of dihydroxy benzoic acids. Eur J Cancer Prevention 5:233–240

    CAS  Google Scholar 

  • Pan X-M, Bastian E, von Sonntag C (1988) The reactions of hydroxyl radicals with 1,4-and 1,3-cyclohexadiene in aqueous solution. A pulse radiolysis and product study. Z Naturforsch 43b:1201–1205

    Google Scholar 

  • Parker VD (1998) Radical reactivity of radical ions in solution. Radical-radical and radical-substrate coupling mechanisms. Acta Chem Scand 52:154–159

    CAS  PubMed  Google Scholar 

  • Poskrebyshev GA, Neta P, Huie RE (2002) Temperature dependence of the acid dissociation constant of the hydroxyl radical. J Phys Chem A 106:11488–11491

    Article  CAS  Google Scholar 

  • Pou S, Hassett DJ, Britigan BE, Cohen MS, Rosen GM (1989) Problems associated with spin trapping oxygen-centered free radicals in biological systems. Anal Biochem 177:1–6

    Article  CAS  PubMed  Google Scholar 

  • Raghavan NV, Steenken S (1980) Electrophilic reaction of the OH radical with phenol. Determination of the distribution of isomeric dihydroxycyclohexadienyl radicals. J Am Chem Soc 102:3495–3499

    Article  CAS  Google Scholar 

  • Roder M, Wojnárovits L, Földiak G, Emmi SS, Beggiaro G, D’Angelantonio M (1999) Addition and elimination kinetics in OH radical induced oxidation of phenol and cresols in acidic and alkaline solutions. Radiat Phys Chem 54:475–479

    Article  CAS  Google Scholar 

  • Rosen GM, Pou S, Britigan BE, Cohen MS (1994) Spin trapping of OH radicals in biological systems. Methods Enzymol 233:105–111

    CAS  PubMed  Google Scholar 

  • Saran M, Summer KH (2000) Assaying for hydroxyl radicals: hydroxylated terephthalate is a superior fluorescence marker than hydroxylated benzoate. Free Rad Res 31:429–436

    Google Scholar 

  • Scholes ML, Schuchmann MN, von Sonntag C (1992) Enhancement of radiation-induced base release from nucleosides in alkaline solution: essential role of the O− radical. Int J Radiat Biol 61:443–449

    CAS  PubMed  Google Scholar 

  • Schuchmann H-P, von Sonntag C (1981) Photolysis at 185 nm of dimethyl ether in aqueous solution: Involvement of the hydroxymethyl radical. J Photochem 16:289–295

    CAS  Google Scholar 

  • Schuchmann H-P, von Sonntag C (1984) Methylperoxyl radicals: a study of the γ-radiolysis of methane in oxygenated aqueous solutions. Z Naturforsch 39b:217–221

    CAS  Google Scholar 

  • Schuchmann MN, von Sonntag C (1977) Radiation chemistry of carbohydrates. Part 14. Hydroxyl radical-induced oxidation of D-glucose in oxygenated aqueous solution. J Chem Soc Perkin Trans 2 1958–1963

    Google Scholar 

  • Schuchmann MN, Steenken S, Wroblewski J, von Sonntag C (1984) Site of OH radical attack on dihydrouracil and some of its methyl derivatives. Int J Radiat Biol 46:225–232

    CAS  Google Scholar 

  • Schuler RH, Albarran G, Zajicek J, George MV, Fessenden RW, Carmichael I (2002) On the addition of •OH radicals to the ipso position of alkyl-substituted aromatics: production of 4-hydroxy-4-methyl-2,5-cyclohexadien-1-one in the radiolytic oxidation of p-cresol. J Phys Chem A 106:12178–12183

    Article  CAS  Google Scholar 

  • Schwarz HA, Dodson RW (1984) Equilibrium between hydroxyl radicals and thallium(II) and the oxidation potential of OH(aq). J Phys Chem 88:3643–3647

    Article  CAS  Google Scholar 

  • Sehested K, Holcman J (1996) A pulse radiolysis study of the radical induced autoxidation of methanesulfinic acid. Radiat Phys Chem 47:357–360

    Article  CAS  Google Scholar 

  • Slivka A, Cohen G (1985) Hydroxyl radical attack on dopamine. J Biol Chem 260:15466–15472

    CAS  PubMed  Google Scholar 

  • Söylemez T, von Sonntag C (1980) Hydroxyl radical-induced oligomerization of ethylene in deoxygenated aqueous solution. J Chem Soc Perkin Trans 2 391–394

    Google Scholar 

  • Ste-Marie L, Boismenu D, Vachon L, Montgomery J (1996) Evaluation of sodium 4-hydroxybenzoate as an hydroxyl radical trap using gas chromatography — mass spectrometry and HPLC with electrochemical detection. Anal Biochem 241:67–74

    Article  CAS  PubMed  Google Scholar 

  • Steenken S, Raghavan NV (1979) Oxidation of methoxyhydroxycyclohexadienyl radicals by quinones. The influence of the rate constant for electron transfer. J Phys Chem 83:3101–3107

    CAS  Google Scholar 

  • Tabatabaei AR, Abbott FS (1999) LC/MS analysis of hydroxylation products of salicylate as an indicator of in vivo oxidative stress. Free Rad Biol Med 26:1054–1058

    Article  CAS  PubMed  Google Scholar 

  • Tiku ML, Yan YP, Chen KY (1998) Hydroxyl radical formation in chondrocytes and cartilage as detected by electron paramagnetic resonance spectroscopy using spin trapping reagents. Free Rad Res 29:177–187

    CAS  Google Scholar 

  • Tripathi GNR (1998) Electron-transfer component in hydroxyl radical reactions observed by time resolved resonance Raman spectroscopy. J Am Chem Soc 120:4161–4166

    CAS  Google Scholar 

  • Tsai T, Strauss R, Rosen GM (1999) Evaluation of various spin traps for the in vivo in situ detection of hydroxyl radical. J Chem Soc Perkin Trans 2 1759–1763

    Google Scholar 

  • Tsay L-Y, Lee K-T, Liu T-Z (1998) Evidence for accelerated generation of OH radicals in experimental obstructive jaundice of rats. Free Rad Biol Med 24:732–737

    Google Scholar 

  • Ulanski P, von Sonntag C (2000) Stability constants and decay of aqua-copper(III)-a study by pulse radiolysis with conductometric detection. Eur J Inorg Chem 1211–1217

    Google Scholar 

  • Veltwisch D, Janata E, Asmus K-D (1980) Primary processes in the reactions of OH• radicals with sulphoxides. J Chem Soc Perkin Trans 2 146–153

    Google Scholar 

  • Viehe HG, Janousek Z, Merenyi R, Stella L (1985) The captodative effect. Acc Chem Res 18:148–154

    Article  CAS  Google Scholar 

  • Volkert O, Schulte-Frohlinde D (1968) Mechanism of homolytic aromatic hydroxylation III. Tetrahedron Lett 2151–2154

    Google Scholar 

  • von Sonntag C, Schuchmann H-P (1994) Suppression of hydroxyl radical reactions in biological systems: considerations based on competition kinetics. Methods Enzymol 233:47–56

    Google Scholar 

  • von Sonntag C, Mark G, Fang X, Schuchmann MN, Schuchmann H-P (2000) Detection of hydroxyl radical reactions in biological systems. In: Moriarty M, Mothersill C, Seymour C, Edington M, Ward JF, Fry RJM (eds) Radiation research, vol 2. Congress Proceedings, 11th Int Congr Radiat Res, Dublin, 18–23 July 1999. Allen Press, Lawrence, pp 31–34

    Google Scholar 

  • Wang D, Schuchmann H-P, von Sonntag C (1993) Phenylalanine: its •OH and SO4•−-induced oxidation and decarboxylation. A pulse-radiolysis and product analysis study. Z Naturforsch 48b:761–770

    Google Scholar 

  • Wardman P (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem Ref Data 18:1637–1755

    CAS  Google Scholar 

  • Weeks JL, Rabani J (1966) The pulse radiolysis of deaerated aqueous carbonate solutions. I. Transient optical spectrum and mechanism. II. pK for OH radicals. J Phys Chem 70:2100–2105

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). The Hydroxyl Radical. In: Free-Radical-Induced DNA Damage and Its Repair. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30592-0_3

Download citation

Publish with us

Policies and ethics