Skip to main content
  • 2358 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams GE, Willson RL (1969) Pulse radiolysis studies on the oxidation of organic radicals in aqueous solution. Trans Faraday Soc 65:2981–2987

    CAS  Google Scholar 

  • Akhlaq MS, Al-Baghdadi S, von Sonntag C (1987) On the attack of hydroxyl radicals on polyhydric alcohols and sugars and the reduction of the so formed radicals by 1,4-dithiothreitol. Carbohydr Res 164:71–83

    CAS  Google Scholar 

  • Akhlaq MS, Murthy CP, Steenken S, von Sonntag C (1989) The reaction of α-hydroxyalkyl radicals and their anions with oxidized dithiothreitol. A pulse radiolysis and product analysis study. J Phys Chem 93:4331–4334

    Article  CAS  Google Scholar 

  • Al-Sheikhly MI, Schuchmann H-P, von Sonntag C (1985) γ-Radiolysis of N2O-saturated formate solutions. A chain reaction. Int J Radiat Biol 47:457–462

    CAS  Google Scholar 

  • Aravindakumar CT, Mohan H, Mudaliar M, Rao BSM, Mittal JP, Schuchmann MN, von Sonntag C (1994) Addition of eaqaq and H atoms to hypoxanthine and inosine and the reactions of α-hydroxyalkyl radicals with purines. A pulse radiolysis and product study. Int J Radiat Biol 66:351–365

    CAS  PubMed  Google Scholar 

  • Armstrong DA (1999) Thermochemistry of sulfur radicals. In: Alfassi ZB (ed) S-centered radicals. Wiley, New York, pp 27–61

    Google Scholar 

  • Armstrong DA, Yu D, Rauk A (1996) Oxidative damage to the glycyl α-carbon site in proteins: an ab initio study of the C-H bond dissociation energy and the reduction potential of the C-H centered radical. Can J Chem 74:1192–1199

    CAS  Google Scholar 

  • Asmus K-D, Bonifacic M (1984) Kohlenstoff-Radikale II. In: Fischer H (ed) Landolt-Börnstein, Neue Serie, Gruppe II: Atom-und Molekularphysik, Band 13, Teilband b. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Asmus K-D, Henglein A, Wigger A, Beck G (1966) Pulsradiolytische Versuche zur elektrolytischen Dissoziation von aliphatischen Alkoholradikalen. Ber Bunsenges Phys Chem 70:756–758

    CAS  Google Scholar 

  • Avila DA, Ingold KI, Lusztyk J, Green WH, Procopio DR (1995) Dramatic solvent effects on the absolute rate constant for abstraction of the hydroxylic hydrogen atom from tert-butyl hydroperoxide and phenol by the cumyloxyl radical. The role of hydrogen bonding. J Am Chem Soc 117:2929–2930

    CAS  Google Scholar 

  • Baciocchi E, Bietti M, Putignani L, Steenken S (1996) Side-chain fragmentation of arylalkanol radical cations. Carbon-carbon and carbon-hydrogen bond cleavage and the role of α-and β-OH groups. J Am Chem Soc 118:5952–5960

    CAS  Google Scholar 

  • Baciocchi E, Bietti M, Steenken S (1997) Base-catalyzed C-H deprotonation of 4-methoxbenzyl alcohol radical cations in water: evidence for a carbon-to-oxygen 1,2-H-shift mechanism. J Am Chem Soc 119:4078–4079

    Article  CAS  Google Scholar 

  • Baciocchi E, Bietti M, Lanzalunga O, Steenken S (1998) Oxygen acidity of 1-arylalkanol radical cations. 4-methoxycumyloxyl radical as-C (Me)2-O-to-nucleus electron-transfer intermediate in the reaction of 4-methoxycumyl alcohol radical cation with OH. J Am Chem Soc 120:11516–11517

    CAS  Google Scholar 

  • Baciocchi E, Bietti M, Steenken S (1999) Kinetic and product studies on the side-chain fragmentation of 1-arylalkanol radical cations in aqueous solution: oxygen versus carbon acidity. Chem Eur J 5:1785–1793

    Article  CAS  Google Scholar 

  • Bahnemann D, Asmus K-D, Willson RL (1983) Phenothiazine radical-cations: electron transfer equilibria with iodide ions and the determination of one-electron redox potentials by pulse radiolysis. J Chem Soc Perkin Trans 2 1669–1673

    Google Scholar 

  • Bales BC, Horner JH, Huang X, Newcomb M, Crich D, Greenberg MM (2001) Product studies and laser flash photolysis an alkyl radicals containing two different β-leaving groups are consonant with the formation of an olefin cation radical. J Am Chem Soc 123:3223–3629

    Article  Google Scholar 

  • Banks JT, Ingold KI, Lusztyk J (1996) Measurement of the equilibrium constants for complex formation between phenol and hydrogen-bond acceptors by kinetic laser flash photolysis. J Am Chem Soc 118:6790–6791

    CAS  Google Scholar 

  • Bargon J, Seifert KG (1974) A chemically induced dynamic nuclear polarization study of free-radical pairs and their reactions in aqueous solution. Ber Bunsenges Phys Chem 78:187–190

    CAS  Google Scholar 

  • Baulch DL, Cox RA, Hampson RF, Kerr JA, Troe J, Watson RT (1984) Evaluated kinetic and photochemical data for atmospheric chemistry. 2. CODATA task group on gas phase chemical kinetics. J Phys Chem Ref Data 13:1259–1380

    CAS  Google Scholar 

  • Beckwith ALJ, Griller D, Lorand JP (1984) Kohlenstoff-Radikale I. In: Fischer H (ed) Landolt-Börnstein, Neue Serie, Gruppe II: Atom-und Molekularphysik, Band 13, Teilband a. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Behrens G, Koltzenburg G (1985) Elimination of ammonium ion from α-hydroxyalkyl radicals of serine and threonine in aqueous solution and the difference in the reaction mechanism. Z Naturforsch 40c:785–797

    CAS  Google Scholar 

  • Behrens G, Schulte-Frohlinde D (1976) Radikale aus der Oxidation von Essigsäure-2-hydroxylethylester. Eine in situ-ESR Studie. Ber Bunsenges Phys Chem 80:429–436

    CAS  Google Scholar 

  • Behrens G, Koltzenburg G, Ritter A, Schulte-Frohlinde D (1978) The influence of protonation or alkylation of the phosphate group on the e.s.r. spectra and on the rate of phosphate elimination from 2-methoxyethyl phosphate 2-yl radicals. Int J Radiat Biol 33:163–171

    Google Scholar 

  • Behrens G, Bothe E, Koltzenburg G, Schulte-Frohlinde D (1980) Formation and structure of 1,1-dialkoxyalkene radical cations in aqueous solution. An in situ electron spin resonance and pulse conductivity study. J Chem Soc Perkin Trans 2 883–889

    Google Scholar 

  • Behrens G, Koltzenburg G, Schulte-Frohlinde D (1982) Model reactions for the degradation of DNA-4′ radicals in aqueous solution. Fast hydrolysis of α-alkoxyalkyl radicals with a leaving group in β-position followed by radical rearrangement and elimination reactions. Z Naturforsch 37c:1205–1227

    CAS  Google Scholar 

  • Berkowitz J, Ellison GB, Gutman D (1994) Three methods to measure RH bond energies. J Phys Chem 98:2744–2765

    Article  CAS  Google Scholar 

  • Bhatia K, Schuler RH (1974) Oxidation of hydroxy cyclohexadienyl radical by metal ions. J Phys Chem 78:2335–2338

    CAS  Google Scholar 

  • Binkley RW (1981) Photochemical reactions of carbohydrates. Adv Carbohydr Chem Biochem 38:105–193

    Google Scholar 

  • Blank B, Henne A, Laroff GP, Fischer H (1975) Enol intermediates in photoreduction and type I cleavage reactions of aliphatic aldehydes and ketones. Pure Appl Chem 41:475–494

    CAS  Google Scholar 

  • Block DA, Armstrong DA, Rauk A (1999) Gas phase free energies of formation and free energies of solution of αC-centered free radicals from alcohols: a quantum mechanical-Monte Carlo study. J Phys Chem A 103:3562–3568

    Article  CAS  Google Scholar 

  • Buley AL, Norman ROC, Pritchett RJ (1966) Electron spin resonance studies of oxidation, part VIII. Elimination reactions of some hydroxyalkyl radicals. J Chem Soc (B) 849–852

    Google Scholar 

  • Burchill CE, Perron KM (1971) Radiation-induced rearrangement of ethylene glycol in aqueous solution. Can J Chem 49:2382–2389

    CAS  Google Scholar 

  • Burchill CE, Wollner GP (1972) Radiation-induced oxidation of 2-propanol by nitrous oxide in alkaline aqueous solution. Can J Chem 50:1751–1756

    CAS  Google Scholar 

  • Buxton GV, Sellers RM (1973) Acid dissociation constant of the carboxyl radical. Pulse radiolysis studies of aqueous solutions of formic acid and sodium formate. J Chem Soc Faraday Trans 1 69:555–559

    Google Scholar 

  • Buxton GV, Langan JR, Lindsay Smith JR (1986) Aromatic hydroxylation. 8. A radiation chemical study of the oxidation of hydroxycyclohexadienyl radicals. J Phys Chem 90:6309–6313

    Article  CAS  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J Phys Chem Ref Data 17:513–886

    CAS  Google Scholar 

  • Crich D, Huang X, Newcomb M (2000) Inter-and intramolecular pathways for the formation of tetrahyrofurans from β-(phosphatoxy)alkyl radicals. Evidence for a dissociative mechanism. J Org Chem 65:523–529

    CAS  PubMed  Google Scholar 

  • Das PK, Encinas MV, Steenken S, Scaiano JC (1981) Reactions of tert-butoxy radicals with phenols. Comparison with the reactions of carbonyl triplets. J Am Chem Soc 103:4162–4166

    CAS  Google Scholar 

  • Delabie A, Creve S, Coussens B, Nguyen MT (2000) Theoretical study of the solvent effect on the hydrogen abstraction reaction of the methyl radical with hydrogen peroxide. J Chem Soc Perkin Trans 2 977–981

    Google Scholar 

  • Dixon WT, Murphy D (1976) Determination of the acidity constants of some phenol radical cations by means of electron spin resonance. J Chem Soc Faraday Trans 272:1221–1230

    Google Scholar 

  • Dizdaroglu M, Scherz H, von Sonntag C (1972) γ-Radiolyse von meso-Erythrit in wässriger Lösung. Z Naturforsch 27b:29–41

    Google Scholar 

  • Dizdaroglu M, von Sonntag C, Schulte-Frohlinde D (1975a) Strand breaks and sugar release by γ-irradiation of DNA in aqueous solution. J Am Chem Soc 97:2277–2278

    Article  CAS  PubMed  Google Scholar 

  • Dizdaroglu M, Henneberg D, Schomburg G, von Sonntag C (1975b) Radiation chemistry of carbohydrates. IV. γ-Radiolysis of glucose in deoxygenated N2O-saturated aqueous solution. Z Naturforsch 30b:416–425

    CAS  Google Scholar 

  • Eigen M, Kruse W, Maass G, de Maeyer L (1964) Rate constants of protolytic reactions in aqueous solution. Prog Reaction Kin 2:285–318

    CAS  Google Scholar 

  • Eigen M, Ilgenfritz G, Kruse W (1965) Eine kinetische Methode zur Untersuchung schneller prototroper Tautomerisierungsreaktionen. Chem Ber 98:1623–1638

    CAS  Google Scholar 

  • Elad D, Rosenthal I (1969) Photochemical alkylation of caffeine with amino-acids. Chem Commun 905–906

    Google Scholar 

  • Ershov BG (1998) Radiation-chemical degradation of cellulose and other polysaccharides. Russ Chem Rev 67:315–334

    Article  Google Scholar 

  • Fang X, Mark G, von Sonntag C (1996) OH-Radical formation by ultrasound in aqueous solutions, part I. The chemistry underlying the terephthalate dosimeter. Ultrason Sonochem 3:57–63

    CAS  Google Scholar 

  • Fang X, Schuchmann H-P, von Sonntag C (1997) Chain debromination of 4-bromobenzonitrile induced by the 2-hydroxyprop-2-yl radical. In: Ma X, Hu F, Feng W (eds) CJSRC’ 96. Proc 7th China-Japan Bilateral Meeting. Chenguang Research Institute of Chemical Industry, Chengdu, pp 35–140

    Google Scholar 

  • Flyunt R, Schuchmann MN, von Sonntag C (2001) Combination vs. proton-catalysed disproportionation of the carboxyl radical anion, CO2•−, in aqueous solution. Chem Eur J 7:796–799

    Article  CAS  Google Scholar 

  • Fojtik A, Czapski G, Henglein A (1970) Pulse radiolytic investigation of the carboxyl radical in aqueous solution. J Phys Chem 74:3204–3208

    Article  CAS  Google Scholar 

  • Freiberg M, Meyerstein D (1980) Reactions of aliphatic free radicals with copper cations in aqueous solution, part 2. Reactions with cupric ions: a pulse radiolysis study. J Chem Soc Faraday Trans 176:1825–1837

    Google Scholar 

  • Giese B (1983) Formation of CC bonds by addition of free radials to alkenes. Angew Chem Int Ed Engl 22:753–764

    Google Scholar 

  • Golden DM, Bierbaum VM, Howard CJ (1990) Comments on reevaluation of the bond dissociation energies δHDBE for H-OH, H-OOH, H-O, H-O, H-OO, and H-OO. J Phys Chem 94:5413–5415

    Article  CAS  Google Scholar 

  • Gray P, Herod AA (1968) Methyl radical reactions with isopropanol and methanol, their ethers and their deuterated derivatives. Trans Faraday Soc 64:2723–2734

    CAS  Google Scholar 

  • Hartmann V, von Sonntag C, Schulte-Frohlinde D (1970) γ-Radiolyse von 2-Desoxy-D-ribose in wässriger Lösung. Z Naturforsch 25b:1394–1404

    Google Scholar 

  • Hayon E (1969) Optical-absorption spectra of ketyl radicals and radical anions of some pyrimidines. J Chem Phys 51:4881–4892

    Article  CAS  Google Scholar 

  • Hayon E, Simic M (1972) Radiation sensitization reactions of N-ethylmaleimide with model compounds. Radiat Res 50:464–478

    CAS  PubMed  Google Scholar 

  • Heberger K, Lopata A (1998) Assessment of nucleophilicity and electrophilicity of radicals, and of polar and enthalpy effects on radical addition reactions. J Org Chem 63:8646–8653

    Article  CAS  Google Scholar 

  • Herak JN, Behrens G (1986) Formation and structure of radicals from D-ribose and 2-deoxy-D-ribose by reactions with SO4 radicals in aqueous solution. An “in-situ” electron spin resonance study. Z Naturforsch 41c:1062–1068

    Google Scholar 

  • Hüttermann J, Müller A (1969a) Free radicals in gamma-irradiated 2-deoxy-D-ribose. Electron spin resonance of single crystals and polycrystalline material. Radiat Res 38:248–259

    PubMed  Google Scholar 

  • Hüttermann J, Müller A (1969b) Electron-Spin-Resonanz an γ-bestrahlten Einkristallen von 2-Desoxy-D-ribose. Z Naturforsch 24b:463–464

    Google Scholar 

  • Janik I, Ulanski P, Rosiak JM, von Sonntag C (2000a) Hydroxyl-radical-induced reactions of the poly(vinyl methyl ether) model 2,4-dimethoxypentane in the absence and presence of dioxygen: a pulse radiolysis and product study. J Chem Soc Perkin Trans 2 2034–2040

    Google Scholar 

  • Janik I, Ulanski P, Hildenbrand K, Rosiak JM, von Sonntag C (2000b) Hydroxyl-radical-induced reactions of poly(vinyl methyl ether): a pulse radiolysis, EPR and product study in deoxygenated and oxygenated aqueous solutions. J Chem Soc Perkin Trans 2 2041–2048

    Google Scholar 

  • Jeevarajan AS, Carmichael I, Fessenden RW (1990) ESR Measurement of the pK of carboxyl radical and ab calculation of the carbon-13 hyperfine constant. J Phys Chem 94:1372–1376

    Article  CAS  Google Scholar 

  • Klein GW, Bhatia K, Madhavan V, Schuler RH (1975) Reaction of OH with benzoic acid. Isomer distribution in the radical intermediates. J Phys Chem 79:1767–1774

    CAS  Google Scholar 

  • Koffer H (1975) Kinetics of protolytic and keto-enol reactions of some 5-monosubstituted barbituric acids. J Chem Soc Perkin Trans 2 819–821

    Google Scholar 

  • Koltzenburg G, Behrens G, Schulte-Frohlinde D (1982) Fast hydrolysis of alkyl radicals with leaving groups in the β position. J Am Chem Soc 104:7311–7312

    Article  CAS  Google Scholar 

  • Koltzenburg G, Behrens G, Schulte-Frohlinde D (1983) 1,1-Dialkoxytrimethylene radical cations. Angew Chem Int Ed Engl 22:500–501

    Article  Google Scholar 

  • Laroff GP, Fessenden RW (1973) Equilibrium and kinetics of the acid dissociation of several hydroxyalkyl radicals. J Phys Chem 77:1283–1288

    Article  CAS  Google Scholar 

  • Laroff GP, Fischer H (1973) The enol of acetone during photochemical reaction of 3-hydroxy-4-methyl-2-butanone and of acetone. Helv Chim Acta 56:2011–2020

    Article  CAS  Google Scholar 

  • Lehni M, Fischer H (1983) Effects of diffusion on the self-termination kinetics of isopropylol radicals in solution. Int J Chem Kinet 15:733–757

    Article  CAS  Google Scholar 

  • Lemmes R, von Sonntag C (1982) On the formation of deoxy sugars from halogenated carbohydrates by α-hydroxyalkyl radicals: considerations for the optimisation of reaction conditions. Carbohydr Res 105:276–282

    Article  CAS  Google Scholar 

  • Martini M, Termini J (1997) Peroxy radical oxidation of thymidine. Chem Res Toxicol 10:234–241

    Article  CAS  PubMed  Google Scholar 

  • McMillen DF, Golden DM (1982) Hydrocarbon bond dissociation energies. Annu Rev Phys Chem 33:493–532

    Article  CAS  Google Scholar 

  • Merenyi R, Janousek Z, Viehe HG (1986) Studies on the captodative effect. Entropy/enthalpy compensation as solvent effect in radical forming reactions. A relative radical stabilisation scale. In: Viehe HG (ed) Substituent effects in radical chemistry. Reidel, Dordrecht, pp 301–324

    Google Scholar 

  • Merga G, Schuchmann H-P, Rao BSM, von Sonntag C (1996) The oxidation of benzyl radicals by Fe(CN)63−. J Chem Soc Perkin Trans 2 551–556

    Google Scholar 

  • Mertens R, von Sonntag C (1994) Determination of the kinetics of vinyl radical reactions by the characteristic visible absorption of vinyl peroxyl radicals. Angew Chem Int Ed Engl 33:1262–1264

    Google Scholar 

  • Mezyk SP, Madden KP (1999) Self-recombination rate constants for 2-propanol and tert-butyl alcohol radicals in water. J Phys Chem A 103:235–242

    CAS  Google Scholar 

  • Mieden OJ, von Sonntag C (1989) Peptide free-radicals: the reactions of OH radicals with glycine anhydride and its methyl derivatives sarcosine and alanine anhydride. A pulse radiolysis and product study. Z Naturforsch 44b:959–974

    Google Scholar 

  • Mohr M, Marx D, Parrinello M, Zipse H (2000) Solvation of radical cations in water-reactive or unreactive solvation? Chem Eur J 6:4009–4015

    Article  CAS  Google Scholar 

  • Muñoz F, Schuchmann MN, Olbrich G, von Sonntag C (2000) Common intermediates in the OH-radical-induced oxidation of cyanide and formamide. J Chem Soc Perkin Trans 2 655–659

    Google Scholar 

  • Müller SN, Batra R, Senn M, Giese B, Kisel M, Shadyro OI (1997) Chemistry of C-2 glyceryl radicals: indications for a new mechanism of lipid damage. J Am Chem Soc 119:2795–2803

    Google Scholar 

  • Nese C, Schuchmann MN, Steenken S, von Sonntag C (1995) Oxidation vs. fragmentation in radiosensitization. Reactions of α-alkoxyalkyl radicals with 4-nitrobenzonitrile and oxygen. A pulse radiolysis and product study. J Chem Soc Perkin Trans 2 1037–1044

    Google Scholar 

  • Neta P, Simic M, Hayon E (1969) Pulse radiolysis of aliphatic acids in aqueous solutions. I. Simple monocarboxylic acids. J Phys Chem 73:4207–4213

    CAS  Google Scholar 

  • O’Neill P, Steenken S, Schulte-Frohlinde D (1975) Formation of radical cations of methoxylated benzenes by reaction with OH radicals, Tl2+, Ag2+, and SO4•− in aqueous solution. An optical and conductometric pulse radiolysis and in situ radiolysis electron spin resonance study. J Phys Chem 79:2773–2779

    CAS  Google Scholar 

  • Parsons AF (2000) Introduction to free radical chemistry. Blackwell Science, Oxford

    Google Scholar 

  • Perrin DD, Dempsey B, Serjeant EP (1981) pKa prediction for organic acids and bases. Chapman and Hall, London

    Google Scholar 

  • Phulkar S, Rao BSM, Schuchmann H-P, von Sonntag C (1990) Radiolysis of tertiary butyl hydroperoxide in aqueous solution. Reductive cleavage by the solvated electron, the hydrogen atom, and, in particular, the superoxide radical anion. Z Naturforsch 45b:1425–1432

    Google Scholar 

  • Pross A, Yamataka H, Nagase S (1991) Reactivity in radical abstraction reactions-application of the curve crossing model. J Phys Org Chem 4:135–140

    Article  CAS  Google Scholar 

  • Rao PS, Hayon E (1975) Reaction of hydroxyl radicals with oligopeptides in aqueous solutions. A pulse radiolysis study. J Phys Chem 79:109–115

    CAS  Google Scholar 

  • Reid DL, Shustov GV, Armstrong DA, Rauk A, Schuchmann MN, Akhlaq MS, von Sonntag C (2002) H-Atom abstraction from thiols by C-centered radicals. An experimental and theoretical study. Phys Chem Chem Phys 4:2965–2974

    Article  CAS  Google Scholar 

  • Reid DL, Armstrong DA, Rauk A, Nese C, Schuchmann MN, Westhoff U, von Sonntag C (2003) H-atom abstraction by C-centered radicals from cyclic and acyclic dipeptides. A theoretical and experimental study of reaction rates. Phys Chem Chem Phys 5:3278–3288

    CAS  Google Scholar 

  • Roberts BP (1996) Understanding the rates of hydrogen abstraction reactions: empirical, semi-empirical and ab initio approaches. J Chem Soc Perkin Trans 2 2719–2725

    Google Scholar 

  • Russell GA (1973) Reactivity, selectivity, and polar effects in hydrogen atom transfer reactions. In: Kochi JK (ed) Free radicals. Wiley, New York, pp 275–331

    Google Scholar 

  • Russo-Caia C, Steenken S (2002) Photo-and radiation-chemical production of radical cations of methylbenzenes and benzyl alcohols and their reactivity in aqueous solution. Phys Chem Chem Phys 4:1478–1485

    Article  CAS  Google Scholar 

  • Samuni A, Neta P (1973) Hydroxyl radical reaction with phosphate esters and the mechanism of phosphate cleavage. J Phys Chem 77:2425–2429

    CAS  Google Scholar 

  • Schmittel M, Ghorai MK (2001) Reactivity patterns of radical ions-a unifying picture of radical-anion and radicalcation transformations. In: Balzani V (ed) Electron transfer in chemistry, vol 2. Organic molecules. Wiley-VCH, Weinheim, pp 5–54

    Google Scholar 

  • Schöneich C, Bonifacic M, Dillinger U, Asmus K-D (1990) Hydrogen abstraction by thiyl radicals from activated C-H-bond of alcohols, ethers and polyunsaturated fatty acids. In: Chatgilialoglu C, Asmus K-D (eds) Sulfur-centered reactive intermediates in chemistry and biology. Plenum, New York, pp 367–376

    Google Scholar 

  • Schuchmann H-P, von Sonntag C (1988) The oxidation of methanol and 2-propanol by potassium peroxodisulphate in aqueous solution: free-radical chain mechanisms elucidated by radiationchemical techniques. Radiat Phys Chem 32:149–156

    CAS  Google Scholar 

  • Schuchmann H-P, Wagner R, von Sonntag C (1986) The reactions of the hydroxymethyl radical with 1,3-dimethyluracil and 1,3-dimethylthymine. Int J Radiat Biol 50:1051–1068

    CAS  Google Scholar 

  • Schuchmann MN, von Sonntag C (1982) Determination of the rate constants of the reactions CO2 + OH → HCO3 and barbituric acid → barbiturate anion + H+ using the pulse radiolysis technique. Z Naturforsch 37b:1184–1186

    CAS  Google Scholar 

  • Schuchmann MN, von Sonntag C (1988) The rapid hydration of the acetyl radical. A pulse radiolysis study of acetaldehyde in aqueous solution. J Am Chem Soc 110:5698–5701

    Article  CAS  Google Scholar 

  • Schuchmann MN, von Sonntag C, Tsay YH, Krüger C (1981) Crystal structure and the radiation-induced free radical chain-reaction of 2-deoxy-β-D-erythro-pentopyranose in the solid state. Z Naturforsch 36b:726–731

    CAS  Google Scholar 

  • Schuchmann MN, Schuchmann H-P, von Sonntag C (1989) The pKa value of the O2CH2CO2H radical: the Taft δ* constant of the-CH2O2 group. J Phys Chem 93:5320–5323

    Article  CAS  Google Scholar 

  • Schuchmann MN, Scholes ML, Zegota H, von Sonntag C (1995) Reaction of hydroxyl radicals with alkyl phosphates and the oxidation of phosphatoalkyl radicals by nitro compounds. Int J Radiat Biol 68:121–131

    CAS  PubMed  Google Scholar 

  • Schuchmann MN, Rao R, Hauser M, Müller SC, von Sonntag C (2000) The reaction of the malonic acid derived radical with oxygen. A reinvestigation by pulse radiolysis. J Chem Soc Perkin Trans 2 941–943

    Google Scholar 

  • Seddon WA, Allen AO (1967) Radiation chemistry of aqueous solutions of ethanol. J Phys Chem 71:1914–1918

    Article  CAS  Google Scholar 

  • Sehested K, Holcman J (1978) Reactions of the radical cations of methylated benzene derivatives in aqueous solutions. J Phys Chem 82:651–653

    Article  CAS  Google Scholar 

  • Sehested K, Corfitzen H, Christensen HC, Hart EJ (1975) Rates of reaction of O, OH, and H with methylated benzenes in aqueous solution. Optical spectra of radicals. J Phys Chem 79:310–315

    CAS  Google Scholar 

  • Sehested K, Holcman J, Hart EJ (2002) Conversion of hydroxycyclohexadienyl radicals of methylated benzenes to cation radicals in acid media. J Phys Chem 81:1363–1367

    Google Scholar 

  • Seidler F, von Sonntag C (1969) Die Acetaldehydbildung bei der γ-Radiolyse wässriger, N2O-gesättigter Lösungen von Äthylenglykol. Z Naturforsch 24b:780–781

    Google Scholar 

  • Sherman WV (1967a) Photosensitized chain reactions in alkaline solutions of nitrous oxide in 2-propanol. J Am Chem Soc 89:1302–1307

    Article  CAS  Google Scholar 

  • Sherman WV (1967b) Light-induced and radiation-induced reactions in methanol. I. γ-Radiolysis of solutions containing nitrous oxide. J Phys Chem 71:4245–4255

    CAS  Google Scholar 

  • Sherman WV (1967c) The γ-radiolysis of liquid 2-propanol. III. Chain reactions in alkaline solutions containing nitrous oxide. J Phys Chem 71:1695–1702

    CAS  Google Scholar 

  • Snelgrove DW, Lusztyk J, Banks JT, Mulder P, Ingold KU (2001) Kinetic solvent effects on hydrogenatom abstractions: reliable, quantitative predictions via a single empirical equation. J Am Chem Soc 123:469–477

    Article  CAS  Google Scholar 

  • Söylemez T, von Sonntag C (1980) Hydroxyl radical-induced oligomerization of ethylene in deoxygenated aqueous solution. J Chem Soc Perkin Trans 2 391–394

    Google Scholar 

  • Steenken S (1979) Oxidation of phenolates and phenylenediamines by 2-alkanonyl radicals produced from 1,2-dihydroxy-and 1-hydroxy-2-alkoxyalkyl radicals. J Phys Chem 83:595–599

    CAS  Google Scholar 

  • Steenken S (1985) Electron transfer equilibria involving radicals and radical ions in aqueous solutions. In: Fischer H (ed) Landolt-Börnstein, Neue Serie, Gruppe II. Springer, Berlin Heidelberg New York, pp 147–293

    Google Scholar 

  • Steenken S, Behrens G, Schulte-Frohlinde D (1974) Radiation chemistry of DNA model compounds, part IV. Phosphate ester cleavage in radicals derived from glycerol phosphates. Int J Radiat Biol 25:205–210

    CAS  Google Scholar 

  • Steenken S, Davies MJ, Gilbert BC (1986a) Pulse radiolysis and electron spin resonance studies of the dehydration of radicals from 1,2-diols and related compounds. J Chem Soc Perkin Trans 2 1003–1010

    Google Scholar 

  • Steenken S, Buschek J, McClelland RA (1986b) Radiation chemical production and lifetimes of trialkoxymethyl carbocations in aqueous solution. J Am Chem Soc 108:2808–2813

    Article  CAS  Google Scholar 

  • Steenken S, Jovanovic SV, Candeias LP, Reynisson J (2001) Is „frank“ DNA-stand breakage via the guanine radical thermodynamically and sterically possible? Chem Eur J 7:2829–2833

    Article  CAS  Google Scholar 

  • Stockhausen K, Henglein A (1971) Pulsradiolytische Untersuchung des Mechanismus der Oxidation und Autoxidation von Formaldehyd in wässriger Lösung. Ber Bunsenges Phys Chem 75:833–840

    CAS  Google Scholar 

  • Takács E, Dajka K, Wojnárovits L, Emmi SS (2000) Protonation kinetics of acrylate radical anions. Phys Chem Chem Phys 2:1431–1433

    Article  Google Scholar 

  • Theruvathu JA, Aravindakumar CT, Flyunt R, von Sonntag C (2001) Fenton chemistry of 1,3-dimethyluracil. J Am Chem Soc 123:9007–9014

    Article  CAS  PubMed  Google Scholar 

  • Thomas JK (1967) Pulse radiolysis of aqueous solutions of methyl iodide and methyl bromide. The reactions of iodine atoms and methyl radicals in water. J Phys Chem 71:1919–1925

    Article  CAS  Google Scholar 

  • Tsang W, Hampson RF (1986) Chemical kinetic data base for combustion chemistry, part I. Methane and related compounds. J Phys Chem Ref Data 15:1086–1279

    Google Scholar 

  • Ulanski P, von Sonntag C (1999) The OH-radical-induced chain reactions of methanol with hydrogen peroxide and with peroxodisulfate. J Chem Soc Perkin Trans 2 165–168

    Google Scholar 

  • Ulanski P, Bothe E, Hildenbrand K, von Sonntag C, Rosiak JM (1997) The influence of repulsive electrostatic forces on the lifetimes of poly(acrylic acid) radicals in aqueous solution. Nukleonika 42:425–436

    CAS  Google Scholar 

  • Ulanski P, Merényi G, Lind J, Wagner R, von Sonntag C (1999) The reaction of methyl radicals with hydrogen peroxide. J Chem Soc Perkin Trans 2 673–676

    Google Scholar 

  • Ulanski P, Bothe E, Hildenbrand K, von Sonntag C (2000) Free-radical-induced chain breakage and depolymerization of poly(methacrylic acid). Equilibrium polymerization in aqueous solution at room temperature. Chem Eur J 6:3922–3934

    Article  CAS  Google Scholar 

  • Valgimigli L, Banks JT, Ingold KI, Lusztyk J (1995) Kinetic solvent effects on hydroxylic hydrogen atom abstractions are independent of the nature of the abstracting radical. Two extreme tests using Vitamin E and phenol. J Am Chem Soc 117:9966–9971

    Article  CAS  Google Scholar 

  • Viehe HG, Janousek Z, Merenyi R, Stella L (1985) The captodative effect. Acc Chem Res 18:148–154

    Article  CAS  Google Scholar 

  • Volkert O, Schulte-Frohlinde D (1968) Mechanism of homolytic aromatic hydroxylation III. Tetrahedron Lett 2151–2154

    Google Scholar 

  • Volkert O, Termens G, Schulte-Frohlinde D (1967) Mechanismus der strahlenchemischen Hydroxylierung von 4-Nitrophenol in wässriger Lösung. II. Dehydrierung des intermediären substituierten Cyclohexadienylradikals. Z Phys Chem NF 56:261–267

    CAS  Google Scholar 

  • von Sonntag C (1969) Strahlenchemie von Alkoholen. Top Curr Chem 13:333–365

    Google Scholar 

  • von Sonntag C (1980) Free radical reactions of carbohydrates as studied by radiation techniques. Adv Carbohydr Chem Biochem 37:7–77

    Google Scholar 

  • von Sonntag C (1984) Weiss lecture. Carbohydrate radicals: from ethylene glycol to DNA strand breakage. Int J Radiat Biol 46:507–519

    Google Scholar 

  • von Sonntag C (1987) The chemical basis of radiation biology. Taylor and Francis, London

    Google Scholar 

  • von Sonntag C, Dizdaroglu M (1977) The reactions of OH radicals with D-ribose in deoxygenated and oxygenated aqueous solution. Carbohydr Res 58:21–30

    Google Scholar 

  • von Sonntag C, Schuchmann H-P (2001) Carbohydrates. In: Jonah CD, Rao BSM (eds) Radiation chemistry: present status and future trends. Elsevier, Amsterdam, pp 481–511

    Google Scholar 

  • von Sonntag C, Thoms E (1970) Strahlenchemie von Alkoholen XV. γ-Radiolyse von Äthylenglykol in wäßriger Lösung. Z Naturforsch 25b:1405–1407

    Google Scholar 

  • von Sonntag C, Neuwald K, Dizdaroglu M (1974) Radiation chemistry of carbohydrates. III. γ-Radiolysis of 2-deoxy-D-ribose in the crystalline state. Conversion of 2-dideoxy-D-ribose into 2,5-dideoxy-D-erythropentonic acid via a chain reaction. Radiat Res 58:1–8

    Google Scholar 

  • von Sonntag J, Knolle W, Naumov S, Mehnert R (2002) Deprotonation and dimerization of maleimide in the triplet state. A laser flash photolysis study with optical and conductometric detection. Chem Eur J 8:4199–4209

    Google Scholar 

  • Walbiner M, Wu JQ, Fischer H (1995) Absolute rate constants for addition of benzyl (PhCH2) and cumyl (PhCMe2) radicals to alkenes in solution. Helv Chim Acta 78:910–924

    Article  CAS  Google Scholar 

  • Wang D, Schuchmann H-P, von Sonntag C (1993) Phenylalanine: its OH and SO4•−-induced oxidation and decarboxylation. A pulse-radiolysis and product analysis study. Z Naturforsch 48b:761–770

    Google Scholar 

  • Wang W-F, Schuchmann MN, Bachler V, Schuchmann H-P, von Sonntag C (1996) The termination of CH2OH/CH2O•− radicals in aqueous solutions. J Phys Chem 100:15843–15847

    CAS  Google Scholar 

  • Wang W-F, Schuchmann MN, Schuchmann H-P, von Sonntag C (2001) The importance of mesomery in the termination of α-carboxymethyl radicals from aqueous malonic and acetic acids. Chem Eur J 7:791–795

    Article  CAS  Google Scholar 

  • Wardman P (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem Ref Data 18:1637–1755

    CAS  Google Scholar 

  • Wayner DDA, Houman A (1998) Redox properties of free radicals. Acta Chem Scand 52:377–384

    CAS  Google Scholar 

  • Whitted PO, Horner JH, Newcomb M, Huang X, Crich D (1999) Heterolytic cleavage of a β-phosphatoxyalkyl radical resulting in phosphate migration or radical cation formation as a function of solvent polarity. Org Lett 1:153–156

    Article  CAS  PubMed  Google Scholar 

  • Wolfenden BS, Willson RL (1982) Radical-cations as reference chromogens in kinetic studies of oneelectron transfer reactions: Pulse radiolysis studies of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). J Chem Soc Perkin Trans 2 805–812

    Google Scholar 

  • Wu JQ, Fischer H (1995) Absolute rate constants for the addition of hydroxymethyl radicals to alkenes in methanol solution. Int J Chem Kinet 27:167–179

    Article  CAS  Google Scholar 

  • Wu JQ, Beranek I, Fischer H (1995) Absolute rate constants for the addition of cyanomethyl (CH2CN) and (tert-butoxy)carbonylmethyl (CH2CO2C(CH3)3) radicals to alkenes in solution. Helv Chim Acta 78:194–214

    Article  CAS  Google Scholar 

  • Zavitsas AA, Chatgilialoglu C (1995) Energies of activation. The paradigm of hydrogen abstraction by radicals. J Am Chem Soc 117:10645–10654

    Article  CAS  Google Scholar 

  • Zhang R, Wang Y (2003) Independent generation of 5-(2′-deoxycitydinyl)methyl radical and formation of a novel cross-link lesion between 5-methylcytosine and guanine. J Am Chem Soc 125:12795–12802

    CAS  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Carbon-Centered Radicals. In: Free-Radical-Induced DNA Damage and Its Repair. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30592-0_6

Download citation

Publish with us

Policies and ethics