Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamic K, Howard JA, Ingold KU (1969) Absolute rate constants for hydrocarbon autoxidation. XVI. Reactions of peroxy radicals at low temperatures. Can J Chem 47:3803–3808

    CAS  Google Scholar 

  • Adams GE, Willson RL (1969) Pulse radiolysis studies on the oxidation of organic radicals in aqueous solution. Trans Faraday Soc 65:2981–2987

    CAS  Google Scholar 

  • Adhikary A, Bothe E, Jain V, von Sonntag C (2000) Pulse radiolysis of the DNA-binding bisbenzimidazole derivatives Hoechst 33258 and 33342 in aqueous solution. Int J Radiat Biol 76:1157–1166

    CAS  PubMed  Google Scholar 

  • Aikens J, Dix TA (1991) Perhydroxyl radical (HOO) initiated lipid peroxidation. The role of fatty acid hydroperoxides. J Biol Chem 266:15091–15098

    CAS  PubMed  Google Scholar 

  • Al-Sheikhly M (1994) The reactivity of adenyl and guanyl radicals towards oxygen. Radiat Phys Chem 44:297–301

    Article  CAS  Google Scholar 

  • Alfassi ZB, Mosseri S, Neta P (1987) Halogenated alkylperoxyl radicals as oxidants: effects of solvents and of substituents on rates of electron transfer. J Phys Chem 91:3383–3385

    CAS  Google Scholar 

  • Alfassi ZB, Marguet S, Neta P (1994) Formation and reactivity of phenylperoxyl radicals in aqueous solutions. J Phys Chem 98:8019–8023

    Article  CAS  Google Scholar 

  • Alfassi ZB, Khaikin GI, Neta P (1995) Arylperoxyl radicals. Formation, absorption spectra, and reactivity in aqueous alcohol solutions. J Phys Chem 99:265–268

    CAS  Google Scholar 

  • Arudi RL, Bielski BHJ, Allen AO (1984) Search for singlet oxygen luminescence in the disproportionation of HO2/O 2 . Photochem Photobiol 39:703–706

    CAS  PubMed  Google Scholar 

  • Asmus K-D, Henglein A (1964) Die Reaktion des Tetranitromethans mit hydratisierten Elektronen aus der γ-Radiolyse des Wassers. Ber Bunsenges Phys Chem 68:348–352

    CAS  Google Scholar 

  • Asmus K-D, Lal M, Mönig J, Schöneich C (1988) Radical-induced degradation of organic halogen and sulfur compounds in oxygenated aqueous solutions. In: Simic MG, Taylor KA, von Sonntag C et al. (eds) Oxygen radicals in biology and medicine. Plenum, New York, pp 67–73

    Google Scholar 

  • Aubry JM, Rigaudy J, Ferradini C, Pucheault J (1981) A search for singlet oxygen in the disproportionation of superoxide anion. J Am Chem Soc 103:4965–4966

    Article  CAS  Google Scholar 

  • Avila DA, Ingold KI, Lusztyk J, Green WH, Procopio DR (1995) Dramatic solvent effects on the absolute rate constant for abstraction of the hydroxylic hydrogen atom from tert-butyl hydroperoxide and phenol by the cumyloxyl radical. The role of hydrogen bonding. J Am Chem Soc 117:2929–2930

    CAS  Google Scholar 

  • Banks JT, Ingold KI, Lusztyk J (1996) Measurement of the equilibrium constants for complex formation between phenol and hydrogen-bond acceptors by kinetic laser flash photolysis. J Am Chem Soc 118:6790–6791

    CAS  Google Scholar 

  • Barclay LRC, Baskin KA, Locke SJ, Vinquist MR (1989) Absolute rate constants for lipid peroxidation and inhibition in model biomembranes. Can J Chem 67:1366–1369

    CAS  Google Scholar 

  • Bartlett PD, Guaraldi G (1967) Di-t-butyl trioxide and di-t-butyl tetroxide. J Am Chem Soc 89:4799–4801

    Article  CAS  Google Scholar 

  • Bauer G (2000) Reactive oxygen and nitrogen species: efficient, selective and interactive signals during intercellular induction of apoptosis. Anticancer Res 20:4115–4140

    CAS  PubMed  Google Scholar 

  • Beckwith ALJ, Davies AG, Davison IGE, Maccoll A, Mruzek MH (1989) The mechanisms of the rearrangements of allylic hydroperoxides: 5α-hydroperoxy-3β-hydrocholest-6-ene and 7α-hydroperoxy-3β-hydroxycholest-5-ene. J Chem Soc Perkin Trans 2 815–824

    Google Scholar 

  • Behar D, Czapski G, Rabani J, Dorfman LM, Schwarz HA (1970) The acid dissociation constant and decay kinetics of the perhydroxyl radical. J Phys Chem 74:3209–3213

    CAS  Google Scholar 

  • Benjan EV, Font-Sanchis E, Scaiano JC (2001) Lactone-derived carbon-centered radicals: formation and reactivity with oxygen. Org Lett 3:4059–4062

    Google Scholar 

  • Bennett JE, Summers R (1974) Product studies of the mutual termination reactions of sec-alkylperoxy radicals: Evidence for non-cyclic termination. Can J Chem 52:1377–1379

    CAS  Google Scholar 

  • Bennett JE, Brown DM, Mile B (1970) Studies by electron spin resonance of the reactions of alkylperoxy radicals, part 2. Equilibrium between alkylperoxy radicals and tetroxide molecules. Trans Faraday Soc 66:397–405

    CAS  Google Scholar 

  • Bennett JE, Brunton G, Smith JRL, Salmon TM, Waddington DJ (1987) Reactions of alkylperoxyl radicals in solution, part 1. A kinetic study of self-reactions of 2-propylperoxyl radicals between 135 and 300 K. J Chem Soc Faraday Trans 183:2421–2432

    Google Scholar 

  • Benrahmoune M, Therond P, Abedinzadeh Z (2000) The reaction of superoxide radical with N-acetylcysteine. Free Rad Biol Med 29:775–782

    Article  CAS  PubMed  Google Scholar 

  • Benson SW, Shaw R (1970) Thermochemistry of organic peroxides, hydroperoxides, polyoxides, and their radicals. In: Swern D (ed) Organic peroxides, vol I. Wiley, New York, pp 105–139

    Google Scholar 

  • Berdnikov VM, Bazhin NM, Fedorov VK, Polyakov OV (1972) Isomerization of the ethoxyl radical to the α-hydroxyethyl radical in aqueous solution. Kinet Catal (Engl Transl) 13:986–987

    Google Scholar 

  • Besler BH, Sevilla MD, MacNeille P (1986) Ab initio studies of hydrocarbon peroxyl radicals. J Phys Chem 90:6446–6451

    Article  CAS  Google Scholar 

  • Bielski BHJ (1985) Fast kinetic studies of dioxygen-derived species and their metal complexes. Philos Trans R Soc Lond B 311:473–482

    CAS  Google Scholar 

  • Bielski BHJ, Gebicki JM (1970) Species in irradiated oxygenated water. Adv Radiat Chem 2:177–274

    CAS  Google Scholar 

  • Bielski BHJ, Gebicki JM (1982) Generation of superoxide radicals by photolysis of oxygenated ethanol solutions. J Am Chem Soc 104:796–798

    Article  CAS  Google Scholar 

  • Bielski BHJ, Richter HW (1977) A study of the superoxide radical chemistry by stopped-flow radiolysis and radiation induced oxygen consumption. J Am Chem Soc 99:3019–3023

    CAS  Google Scholar 

  • Bielski BHJ, Saito E (1962) The activation energy for the disproportionation of the HO2 radical in acid solution. J Phys Chem 66:2266–2268

    CAS  Google Scholar 

  • Bielski BHJ, Saito E (1971) Deuterium isotope effect on the decay kinetics of perhydroxyl radical. J Phys Chem 75:2263–2266

    Article  CAS  Google Scholar 

  • Bielski BHJ, Shiue GG (1979) Reaction rates of superoxide radicals with the essential amino acids. In: Oxygen free radicals and tissue damage. Ciba Foundation Symposium 65, Amsterdam, pp 43–56

    Google Scholar 

  • Bielski BHJ, Shiue GG, Bajuk S (1980) Reduction of nitro blue tetrazolium by CO 2 and O 2 radicals. J Phys Chem 84:830–833

    Article  CAS  Google Scholar 

  • Bielski BHJ, Cabelli DE, Arudi RL, Ross AB (1985) Reactivity of HO2/O 2 radicals in aqueous solution. J Phys Chem Ref Data 14:1041–1100

    CAS  Google Scholar 

  • Bloodworth AJ, Courtneidge JL, Davies AG (1984) Rate constants for the formation of oxiranes by γ-scission in secondary β-t-butylperoxyalkyl radicals. J Chem Soc Perkin Trans 2 523–527

    Google Scholar 

  • Bohr V (2002) Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cell. Free Rad Biol Med 32:804–812

    Article  CAS  PubMed  Google Scholar 

  • Bonifacic M, Stefanic I (2000) Oxidation of organic sulfides by peroxyl radicals; search for an adduct intermediate. Nukleonika 45:39–44

    CAS  Google Scholar 

  • Bonifacic M, Schöneich C, Asmus K-D (1991) Halogenated peroxyl radicals as multi-electron oxidants: pulse radiolysis study on the reaction of trichloromethyl peroxyl radicals with iodide. J Chem Soc Chem Commun 1117–1119

    Google Scholar 

  • Bothe E, Schulte-Frohlinde D (1978) The bimolecular decay of the β-hydroxymethylperoxyl radicals in aqueous solution. Z Naturforsch 33b:786–788

    CAS  Google Scholar 

  • Bothe E, Behrens G, Schulte-Frohlinde D (1977) Mechanism of the first order decay of 2-hydroxypropyl-2-peroxyl radicals and of O •−2 formation in aqueous solution. Z Naturforsch 32b:886–889

    CAS  Google Scholar 

  • Bothe E, Schuchmann MN, Schulte-Frohlinde D, von Sonntag C (1983) Hydroxyl radical-induced oxidation of ethanol in oxygenated aqueous solutions. A pulse radiolysis and product study. Z Naturforsch 38b:212–219

    CAS  Google Scholar 

  • Boveris A, Cadenas E (1997) Cellular sources and steady-state levels of reactive oxygen species. In: Biadasz Clerch L, Massaro DJ (eds) Oxygen, gene expression, and cellular function. Dekker, New York, pp 1–25

    Google Scholar 

  • Bozzelli JW, Dean AM (1993) Hydrocarbon radical reactions with O2: comparison of allyl, formyl, and vinyl to ethyl. J Phys Chem 97:4427–4441

    Article  CAS  Google Scholar 

  • Bull C, McClune GJ, Fee JA (1983) The mechanism of Fe-EDTA catalyzed superoxide dismutation. J Am Chem Soc 105:5290–5300

    Article  CAS  Google Scholar 

  • Buxton GV, Sellers RM, McCracken DR (1976) Pulse radiolysis study of monovalent cadmium, cobalt, nickel and zinc in aqueous solution, part 2. Reactions of the monovalent ions. J Chem Soc Faraday Trans 172:1464–1476

    Google Scholar 

  • Cabelli DE (1997) The reactions of HO2/O 2 radicals in aqueous solution. In: Alfassi ZB (ed) Peroxyl radicals. Wiley, Chichester, pp 407–437

    Google Scholar 

  • Cabelli DE, Bielski BHJ (1983) Kinetics and mechanism for the oxidation of ascorbic acid/ascorbate by HO2/O 2 radicals. A pulse radiolysis and stopped-flow photolysis study. J Phys Chem 87:1809–1812

    Article  CAS  Google Scholar 

  • Candeias LP, Patel KB, Stratford MRL, Wardman P (1993) Free hydroxyl radicals are formed on reaction between the neutrophil-derived species superoxide anion and hypochlorous acid. FEBS Lett 333:151–153

    Article  CAS  PubMed  Google Scholar 

  • Chan HWS, Levett G, Matthew JA (1978) Thermal isomerisation of methyl linoleate hydroperoxides. Evidence of molecular oxygen as a leaving group in a radical rearrangement. J Chem Soc Chem Commun 756–757

    Google Scholar 

  • Cohen G, Heikkila R (1974) The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid and related cytotoxic agents. J Biol Chem 249:2447–2452

    CAS  PubMed  Google Scholar 

  • Czapski G, Bielski BHJ (1963) The formation and decay of H2O3 and HO2 in electron-irradiated aqueous solutions. J Phys Chem 67:2180–2184

    CAS  Google Scholar 

  • Czapski G, Dorfman LM (1964) Pulse radiolysis studies. V. Transient spectra and rate constants in oxygenated aqueous solutions. J Phys Chem 68:1169–1177

    Google Scholar 

  • Czapski G, Ilan YA (1978) On the generation of the hydroxylation agent from superoxide radical. Can the Haber-Weiss reaction be the source of OH radicals? Photochem Photobiol 28:651–653

    CAS  Google Scholar 

  • D’Alessandro N, Bianchi G, Fang X, Jin F, Schuchmann H-P, von Sonntag C (2000) Reaction of superoxide with phenoxyl-type radicals. J Chem Soc Perkin Trans 2 1862–1867

    Google Scholar 

  • Dambrova M, Baumane L, Kalvinsh I, Wikberg JES (2000) Improved methods for EPR detection of DEPMPO-superoxide radicals by liquid nitrogen freezing. Biochem Biophys Res Commun 275:895–898

    Article  CAS  PubMed  Google Scholar 

  • Das PK, Encinas MV, Steenken S, Scaiano JC (1981) Reactions of tert-butoxy radicals with phenols. Comparison with the reactions of carbonyl triplets. J Am Chem Soc 103:4162–4166

    CAS  Google Scholar 

  • Das S, Schuchmann MN, Schuchmann H-P, von Sonntag C (1987) The production of the superoxide radical anion by the OH radical-induced oxidation of trimethylamine in oxygenated aqueous solution. The kinetics of the hydrolysis of (hydroxymethyl)dimethylamine. Chem Ber 120:319–323

    CAS  Google Scholar 

  • Deeble DJ, von Sonntag C (1992) Decarboxylation of 3,4-dihydroxymandelic acid induced by the superoxide radical anion: a chain reaction. Int J Radiat Biol 62:105

    Google Scholar 

  • Deeble DJ, Parsons BJ, Phillips GO (1987) Evidence for the addition of the superoxide anion to the anti-oxidant n-propyl gallate in aqueous solution. Free Rad Res Commun 2:351–358

    CAS  Google Scholar 

  • Deeble DJ, Parsons BJ, Phillips GO, Schuchmann H-P, von Sonntag C (1988) Superoxide radical reactions in aqueous solutions of pyrogallol and n-propyl gallate: the involvement of phenoxyl radicals. A pulse radiolysis study. Int J Radiat Biol 54:179–193

    CAS  PubMed  Google Scholar 

  • Denisov ET, Denisova TG (1993) The polar effect in the reaction of alkoxy and peroxy radicals with alcohols. Kinet Catal 34:738–744

    Google Scholar 

  • Eigen M, Kruse W, Maass G, de Maeyer L (1964) Rate constants of protolytic reactions in aqueous solution. Prog Reaction Kin 2:285–318

    CAS  Google Scholar 

  • Eigen M, Ilgenfritz G, Kruse W (1965) Eine kinetische Methode zur Untersuchung schneller prototroper Tautomerisierungsreaktionen. Chem Ber 98:1623–1638

    CAS  Google Scholar 

  • El-Agamey A, McGarvey DJ (2002) Acyl/aroylperoxyl radicals: a comparative study of the reactivity of peroxyl radicals resulting from α-cleavage of ketones. Phys Chem Chem Phys 4:1611–1617

    Article  CAS  Google Scholar 

  • Emanuel CJ, Newcomb M, Ferreri C, Chatgilialoglu C (1999) Kinetics of 2′-deoxyuridine-1′-yl radical reactions. J Am Chem Soc 121:2927–2928

    Article  CAS  Google Scholar 

  • Engelmann I, Dormann S, Saran M, Bauer G (2000) Transformed target cell-derived superoxide anions drive apoptosis induction by myoloperoxidase. Redox Rep 5:207–214

    Article  CAS  PubMed  Google Scholar 

  • Engman L, Persson J, Merényi G, Lind J (1995) Oxygen atom transfer from alkylperoxyl radicals to aromatic tellurides. Organometallics 14:3641–3648

    Article  CAS  Google Scholar 

  • Fang X, Pan X, Rahmann A, Schuchmann H-P, von Sonntag C (1995a) Reversibility in the reaction of cyclohexadienyl radicals with oxygen in aqueous solution. Chem Eur J 1:423–429

    CAS  Google Scholar 

  • Fang X, Mertens R, von Sonntag C (1995b) Pulse radiolysis of aryl bromides in aqueous solutions: some properties of aryl and arylperoxyl radicals. J Chem Soc Perkin Trans 2 1033–1036

    Google Scholar 

  • Fang X, Jin F, Jin H, von Sonntag C (1998) Reaction of the superoxide radical with the N-centered radical derived from N-acetyltryptophan methyl ester. J Chem Soc Perkin Trans 2 259–263

    Google Scholar 

  • Fee JA (1981) Is superoxide toxic and are superoxide dismutases essential for aerobic life? In: Rodgers MAJ, Powers EL (eds) Oxygen and oxy-radicals in chemistry and biology. Academic Press, New York, pp 205–231

    Google Scholar 

  • Fenton HJH, Jackson H (1899) The oxidation of polyhydric alcohols in the presence of iron. J Chem Soc Transact (Lond) 75:1–11

    CAS  Google Scholar 

  • Ferradini C, Seide C (1969) Radiolyse de solutions acides et aérées de peroxyde d’hydrogène. Int J Radiat Phys Chem 1:219–228

    Article  CAS  Google Scholar 

  • Fielden EM, Roberts PB, Bray RC, Lowe DJ, Mautner GN, Rotilio G, Calabrese L (1974) The mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis. Biochem J 139:49–60

    CAS  PubMed  Google Scholar 

  • Flyunt R, Leitzke A, Mark G, Mvula E, Reisz E, Schick R, von Sonntag C (2003) Detection of the formation of OH and O •−2 in ozone reactions in aqueous solutions. J Phys Chem B 107:7242–7253

    Article  CAS  Google Scholar 

  • Foote CS, Shook FC, Abakerli RA (1980) Chemistry of superoxide ion. 4. Singlet oxygen is not a major product of dismutation. J Am Chem Soc 102:2503–2504

    Article  CAS  Google Scholar 

  • Francisco JS, Williams IH (1988) The thermochemistry of polyoxides and polyoxy radicals. Int J Chem Kinet 20:455–466

    Article  CAS  Google Scholar 

  • Fridovich I (1970) Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J Biol Chem 245:4053–4057

    CAS  PubMed  Google Scholar 

  • Fridovich I (1975) Superoxide dismutases. Annu Rev Biochem 44:147–159

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Superoxide radical is an agent of oxygen toxicity; superoxide dismutase provide an important defense. Science 201:875–880

    CAS  PubMed  Google Scholar 

  • Fridovich SE, Porter NA (1981) Oxidation of arachidonic acid in micelles by superoxide and hydrogen peroxide. J Biol Chem 256:260–265

    CAS  PubMed  Google Scholar 

  • Furimsky E, Howard JA, Selwyn J (1980) Absolute rate constants for hydrocarbon autoxidation. 28. A low temperature kinetic electron spin resonance study of the self-reactions of isopropylperoxy and related secondary alkylperoxy radicals in solution. Can J Chem 58:677–680

    CAS  Google Scholar 

  • Gebicki JM, Allen AO (1969) Relationship between critical micelle concentration and rate of radiolysis of aqueous sodium linolenate. J Phys Chem 73:2443–2445

    Article  CAS  Google Scholar 

  • Gebicki JM, Bielski BHJ (1981) Comparison of the capacities of the perhydroxyl and the superoxide radicals to initiate chain oxidation of linoleic acid. J Am Chem Soc 103:7020–7022

    CAS  Google Scholar 

  • Gilbert BC, Holmes RGG, Laue HAH, Norman ROC (1976) Electron spin resonance studies, part L. Reactions of alkoxyl radicals generated from alkylhydroperoxides and titanium(III) ion in aqueous solution. J Chem Soc Perkin Trans 2 1047–1052

    Google Scholar 

  • Gilbert BC, Holmes RGG, Norman ROC (1977) Electron spin resonance studies. Part LII. Reactions of secondary alkoxyl radicals. J Chem Res (S) 1-1

    Google Scholar 

  • Goldstein S, Lind J, Merényi G (2002) The reaction of ONOO with carbonyls: estimation of the halflives of ONOC(O)O and O2NOC(O)O. J Chem Soc Dalton Trans 808–810

    Google Scholar 

  • Haber F, Weiss J (1932) Über die Katalyse des Hydroperoxydes. Naturwissenschaften 20:948–950

    CAS  Google Scholar 

  • Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc (Lond) A 147:332–352

    Google Scholar 

  • Han P, Bartels DM (1994) Encounters of H and D atoms with O2 in water: relative diffusion and reaction rates. In: Gauduel Y, Rossky P (eds) AIP conference proceedings 298. “Ultrafast reaction dynamics and solvent effects.” AIP Press, New York, 72 pp

    Google Scholar 

  • Hasegawa K, Patterson LK (1978) Pulse radiolysis studies in model lipid systems: formation and behavior of peroxy radicals in fatty acids. Photochem Photobiol 28:817–823

    CAS  Google Scholar 

  • Herdener M, Heigold S, Saran M, Bauer G (2000) Target cell-derived superoxide anions cause efficiency and selectivity of intercellular induction of apoptosis. Free Rad Biol Med 29:1260–1271

    Article  CAS  PubMed  Google Scholar 

  • Hildenbrand K, Schulte-Frohlinde D (1997) Time-resolved EPR studies on the reaction rates of peroxyl radicals of poly(acrylic acid) and of calf thymus DNA with glutathione. Re-examination of a rate constant for DNA. Int J Radiat Biol 71:377–385

    CAS  PubMed  Google Scholar 

  • Howard JA (1978) Self-reactions of alkylperoxy radicals in solution (1). In: Pryor WA (ed) Organic free radicals. ACS Symp Ser 69:413–432

    Google Scholar 

  • Howard JA, Bennett JE (1972) The self-reaction of sec-alkylperoxy radicals: a kinetic electron spin resonance study. Can J Chem 50:2374–2377

    CAS  Google Scholar 

  • Hunter EPL, Desrosiers MF, Simic MG (1989) The effect of oxygen, antioxidants and superoxide radical on tyrosine phenoxyl radical dimerization. Free Rad Biol Med 6:581–585

    Article  CAS  PubMed  Google Scholar 

  • Ilan Y, Rabani J (1976) On some fundamental reactions in radiation chemistry: nanosecond pulse radiolysis. Int J Radiat Phys Chem 8:609–611

    Article  CAS  Google Scholar 

  • Ilan Y, Meisel D, Czapski G (1974) The redox potential of the O2-O 2 system in aqueous media. Isr J Chem 12:891–895

    CAS  Google Scholar 

  • Ilan Y, Rabani J, Henglein A (1976) Pulse radiolytic investigations of peroxy radicals produced from 2-propanol and methanol. J Phys Chem 80:1558–1565

    CAS  Google Scholar 

  • Ingold KU, Paul T, Young MJ, Doiron L (1997) Invention of the first azo compound to serve a superoxide thermal source under physiological conditions: concept, synthesis, and chemical properties. J Am Chem Soc 117:12364–12365

    Google Scholar 

  • Isildar M, Schuchmann MN, Schulte-Frohlinde D, von Sonntag C (1982) Oxygen uptake in the radiolysis of aqueous solutions of nucleic acids and their constituents. Int J Radiat Biol 41:525–533

    CAS  Google Scholar 

  • Jacobsen F, Holcman J, Sehested K (1997) Manganese(II)-superoxide complex in aqueous solution. J Phys Chem A 101:1324–1328

    Article  CAS  Google Scholar 

  • Janik I, Ulanski P, Hildenbrand K, Rosiak JM, von Sonntag C (2000) Hydroxyl-radical-induced reactions of poly(vinyl methyl ether): a pulse radiolysis, EPR and product study in deoxygenated and oxygenated aqueous solutions. J Chem Soc Perkin Trans 2 2041–2048

    Google Scholar 

  • Jayson GG, Stirling DA, Swallow AJ (1971) Pulse-and X-radiolysis of 2-mercaptoethanol in aqueous solution. Int J Radiat Biol 19:143–156

    CAS  Google Scholar 

  • Jin F, Leitich J, von Sonntag C (1993) The superoxide radical reacts with tyrosine-derived phenoxyl radicals by addition rather than by electron transfer. J Chem Soc Perkin Trans 2 1583–1588

    Google Scholar 

  • Jones CM, Lawrence A, Wardman P, Burkitt MJ (2002) Electron paramagnetic resonance with spin trapping investigation into the kinetics of glutathione oxidation by the superoxide radical: reevaluation of the rate constant. Free Rad Biol Med 32:982–900

    Article  CAS  PubMed  Google Scholar 

  • Jones CM, Lawrence A, Wardman P, Burkitt MJ (2003) Kinetics of superoxide scavenging by glutathione: an evaluation of its role in the removal of mitochondrial superoxide. Biochem Soc Trans 31:1337–1339

    CAS  PubMed  Google Scholar 

  • Jonsson M, Lind J, Reitberger T, Eriksen TE, Merényi G (1993) Free radical combination reactions involving phenoxyl radicals. J Phys Chem 97:8229–8233

    CAS  Google Scholar 

  • Kapoor SK, Gopinathan C (1992) Reactions of halogenated organic peroxyl radicals with various purine derivatives, tyrosine, and thymine: a pulse radiolysis study. Int J Chem Kinet 24:1035–1042

    Article  CAS  Google Scholar 

  • Khaikin GI, Neta P (1995) Formation and reactivity of vinylperoxyl radicals in aqueous solutions. J Phys Chem 99:4549–4553

    CAS  Google Scholar 

  • Khursan SL, Martem’yanov VS (1991) Thermochemistry of the recombination of peroxyl radicals. Russ J Phys Chem 65:321–325

    Google Scholar 

  • Khursan SL, Martem’yanov VS, Denisov ET (1990) Mechanism of the recombination of peroxyl radicals. Kinet Catal 31:899–907

    Google Scholar 

  • Klug D, Rabani J, Fridovich I (1972) A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J Biol Chem 247:4839–4842

    CAS  PubMed  Google Scholar 

  • Koppenol WH (1983) Thermodynamic of the Fenton-driven Haber-Weiss and related reactions. In: Cohen G, Greenwald RA (eds) Oxy radicals and their scavenger systems. Vol I: Molecular aspects. Elsevier Biomedical, New York, pp 84–88

    Google Scholar 

  • Kranenburg M, Ciriano MV, Cherkasov A, Mulder P (2000) Carbon-oxygen bond dissociation enthalpies in peroxyl radicals. J Phys Chem A 104:915–921

    Article  CAS  Google Scholar 

  • Lal M, Rao R, Fang X, Schuchmann H-P, von Sonntag C (1997) Radical-induced oxidation of dithiothreitol in acidic oxygenated aqueous solution: a chain reaction. J Am Chem Soc 119:5735–5739

    Article  CAS  Google Scholar 

  • Lauricella R, Allouch A, Roubaud V, Boutellier J-C (2004) A new kinetic approach to the evaluation of rate constants for the spin trapping of superoxid/hydroperoxyl radical by nitrones in aqueous media. Org Biomol Chem 2:1304–1309

    Article  CAS  PubMed  Google Scholar 

  • Lee S-H, Mendenhall GD (1988) Relative yields of excited ketones from self-reactions of alkoxyl and alkylperoxyl radical pairs. J Am Chem Soc 110:4318–4323

    CAS  Google Scholar 

  • Leitzke A, Reisz E, Flyunt R, von Sonntag C (2001) The reaction of ozone with cinnamic acids-formation and decay of 2-hydroperoxy-2-hydroxy-acetic acid. J Chem Soc Perkin Trans 2 793–797

    Google Scholar 

  • Lodhi ZH, Walker RW (1991) Oxidation of allyl radicals: kinetic parameters for the reactions of allyl radicals with HO2 and O2 between 400 and 480 °C. J Chem Soc Faraday Trans 87:2361–2365

    CAS  Google Scholar 

  • Martini M, Termini J (1997) Peroxy radical oxidation of thymidine. Chem Res Toxicol 10:234–241

    Article  CAS  PubMed  Google Scholar 

  • McDowell MS, Bakac A, Espenson JH (1983) A convenient route to superoxide ion in aqueous solution. Inorg Chem 22:847–848

    Article  CAS  Google Scholar 

  • Mendenhall GD, Sheng XC, Wilson T (1991) Yields of excited carbonyl species from alkoxyl and from alkylperoxyl radical dismutation. J Am Chem Soc 113:8976–8977

    Article  CAS  Google Scholar 

  • Merényi G, Lind J, Engman L (1994) One-and two-electron reduction potentials of peroxyl radicals and related species. J Chem Soc Perkin Trans 2 2551–2553

    Google Scholar 

  • Mertens R, von Sonntag C (1994) Determination of the kinetics of vinyl radical reactions by the characteristic visible absorption of vinyl peroxyl radicals. Angew Chem Int Ed Engl 33:1262–1264

    Google Scholar 

  • Mertens R, von Sonntag C, Lind J, Merényi G (1994) A kinetic study of the hydrolysis of phosgene in aqueous solution by pulse radiolysis. Angew Chem Int Ed Engl 33:1259–1261

    Google Scholar 

  • Mieden OJ, von Sonntag C (1989) Peptide free-radicals: the reactions of OH radicals with glycine anhydride and its methyl derivatives sarcosine and alanine anhydride. A pulse radiolysis and product study. Z Naturforsch 44b:959–974

    Google Scholar 

  • Mieden OJ, Schuchmann MN, von Sonntag C (1993) Peptide peroxyl radicals: base-induced O2•− elimination versus bimolecular decay. A pulse radiolysis and product study. J Phys Chem 97:3783–3790

    Article  CAS  Google Scholar 

  • Misiaszek R, Crean C, Joffe A, Geacintov NE, Shafirovich V (2004) Oxidative DNA damage associated with combination of guanine and superoxide radicals and repair mechanisms via radical trapping. J Biol Chem 279:32106–32115

    Article  CAS  PubMed  Google Scholar 

  • Morgan ME, Osborne DA, Waddington DJ (1984) Reactions of oxygenated radicals in the gas phase, part 15. Reactions of t-butylperoxyl radicals with alkenes. J Chem Soc Perkin Trans 2 1869–1873

    Google Scholar 

  • Mortensen A, Skibsted LH (1998) Reactivity of β-carotene towards peroxyl radicals studied by laser flash and steady-state photolysis. FEBS Lett 426:392–396

    Article  CAS  PubMed  Google Scholar 

  • Muñoz F, von Sonntag C (2000) The reactions of ozone with tertiary amines including the complexing agents nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA) in aqueous solution. J Chem Soc Perkin Trans 2 2029–2033

    Google Scholar 

  • Muñoz F, Schuchmann MN, Olbrich G, von Sonntag C (2000) Common intermediates in the OH-radical-induced oxidation of cyanide and formamide. J Chem Soc Perkin Trans 2 655–659

    Google Scholar 

  • Muñoz F, Mvula E, Braslavsky SE, von Sonntag C (2001) Singlet dioxygen formation in ozone reactions in aqueous solution. J Chem Soc Perkin Trans 2 1109–1116

    Google Scholar 

  • Nakano M, Takayama K, Shimizu Y, Tsuji Y, Inaba H, Migita T (1976) Spectroscopic evidence for the generation of singlet oxygen in self-reaction of sec-peroxy radicals. J Am Chem Soc 98:1974–1975

    Article  CAS  Google Scholar 

  • Nangia PS, Benson SW (1979) Thermochemistry of organic polyoxides and their free radicals. J Phys Chem 83:1138–1142

    Article  CAS  Google Scholar 

  • Nangia PS, Benson SW (1980) The kinetics of the interaction of peroxy radicals. II. Primary and secondary alkyl peroxy. Int J Chem Kinet 12:43–53

    CAS  Google Scholar 

  • Naumov S, von Sonntag C (2005) UV/Vis absorption spectra of alkyl-, vinyl-, aryl-and thiylperoxyl radicals and some related radicals in aqueous solution. A quantum-chemical study. J Phys Org Chem 18:586–594

    Article  CAS  Google Scholar 

  • Nese C, Schuchmann MN, Steenken S, von Sonntag C (1995) Oxidation vs. fragmentation in radiosensitization. Reactions of α-alkoxyalkyl radicals with 4-nitrobenzonitrile and oxygen. A pulse radiolysis and product study. J Chem Soc Perkin Trans 2 1037–1044

    Google Scholar 

  • Neta P, Huie RE, Mosseri S, Shastri LV, Mittal JP, Maruthamuthu P, Steenken S (1989) Rate constants for reduction of substituted methylperoxyl radicals by ascorbate ions and N,N,N′,N′-tetramethyl-p-phenylenediamine. J Phys Chem 93:4099–4104

    CAS  Google Scholar 

  • Neta P, Huie RE, Ross AB (1990) Rate constants for reactions of peroxyl radicals in fluid solutions. J Phys Chem Ref Data 19:413–513

    CAS  Google Scholar 

  • Nishikimi M (1975) Oxidation of ascorbic acid with superoxide anion generated by the xanthine-xanthine oxidase system. Biochem Biophys Res Commun 63:463–468

    CAS  PubMed  Google Scholar 

  • Niu QJ, Mendenhall GD (1992) Yields of singlet molecular oxygen from peroxyl radical termination. J Am Chem Soc 114:165–172

    CAS  Google Scholar 

  • Oberley LW (1982) Superoxide dismutase. CRC Press, Boca Raton

    Google Scholar 

  • Packer JE, Willson RL, Bahnemann D, Asmus K-D (1980) Electron transfer reactions of halogenated aliphatic peroxyl radicals: measurement of absolute rate constants by pulse radiolysis. J Chem Soc Perkin Trans 2 296–299

    Google Scholar 

  • Pan X-M, von Sonntag C (1990) OH-Radical-induced oxidation of benzene in the presence of oxygen: R <=> RO2 equilibria in aqueous solution. A pulse radiolysis study. Z Naturforsch 45b:1337–1340

    Google Scholar 

  • Pan X-M, Schuchmann MN, von Sonntag C (1993) Oxidation of benzene by the OH radical. A product and pulse radiolysis study in oxygenated aqueous solution. J Chem Soc Perkin Trans 2 289–297

    Google Scholar 

  • Patterson LK (1981) Studies of radiation induced peroxidation in fatty acid micelles. In: Rodgers MAJ, Powers EL (eds) Oxygen and oxy-radicals in chemistry and biology. Academic Press, New York, pp 89–96

    Google Scholar 

  • Patterson LK, Hasegawa K (1978) Pulse radiolysis studies in model lipid systems. The influence of aggregation on kinetic behavior of OH induced radicals in aqueous sodium linoleate. Ber Bunsenges Phys Chem 82:951–956

    CAS  Google Scholar 

  • Perrin DD, Dempsey B, Serjeant EP (1981) pKa prediction for organic acids and bases. Chapman and Hall, London

    Google Scholar 

  • Phulkar S, Rao BSM, Schuchmann H-P, von Sonntag C (1990) Radiolysis of tertiary butyl hydroperoxide in aqueous solution. Reductive cleavage by the solvated electron, the hydrogen atom, and, in particular, the superoxide radical anion. Z Naturforsch 45b:1425–1432

    Google Scholar 

  • Pick M, Rabani J, Yost F, Fridovich I (1974) The catalytic mechanism of the manganese-containing superoxide dismutase of Escherichia coli studied by pulse radiolysis. J Am Chem Soc 96:7329–7333

    Article  CAS  PubMed  Google Scholar 

  • Porter NA, Roe AN, McPhail AT (1980) Serial cyclization of peroxy free radicals: models for polyolefin oxidation. J Am Chem Soc 102:7574–7576

    CAS  Google Scholar 

  • Porter NA, Lehman LS, Weber BA, Smith KJ (1981) Unified mechanism for polyunsaturated fatty acid autoxidation. Competition of peroxy radical hydrogen atom abstraction, β-scission, and cyclization. J Am Chem Soc 103:6447–6455

    Article  CAS  Google Scholar 

  • Porter NA, Mills KA, Caldwell SE, Dubay GR (1994) The mechanism of the [3,2] allylperoxyl rearrangement: a radical-dioxygen pair reaction that proceeds with stereochemical memory. J Am Chem Soc 116:6697–6705

    CAS  Google Scholar 

  • Pryor WA, Stanley JP (1975) A suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymatic production of prostaglandin endoperoxides during autoxidation. J Org Chem 40:3615–3617

    CAS  PubMed  Google Scholar 

  • Rabani J, Nielsen SO (1969) Absorption spectrum and decay kinetics of O2 and HO2 in aqueous solutions by pulse radiolysis. J Phys Chem 73:3736–3744

    Article  CAS  Google Scholar 

  • Rabani J, Mulac WA, Matheson MS (1965) The pulse radiolysis of aqueous tetranitromethane. I. Rate constants and the extinction coefficient of eaq. II. Oxygenated solutions. J Phys Chem 69:53–70

    CAS  Google Scholar 

  • Rabani J, Klug-Roth D, Henglein A (1974) Pulse radiolytic investigations of OHCH2O2 radicals. J Phys Chem 78:2089–2093

    CAS  Google Scholar 

  • Raiti MJ, Sevilla MD (1999) Density functional theory investigation of the electronic and spin density distribution in peroxyl radicals. J Phys Chem A 103:1619–1626

    Article  CAS  Google Scholar 

  • Razskazovskii Y, Sevilla MD (1996) Reactions of sulphonyl peroxyl radicals with DNA and its components: hydrogen abstraction from the sugar backbone versus addition to pyrimidine double bonds. Int J Radiat Biol 69:75–87

    Article  CAS  PubMed  Google Scholar 

  • Razskazovskii Y, Colson A-O, Sevilla MD (1995) Nature of thiyl radical: ESR and ab initio MO evidence for intermolecular stabilization of the charge transfer state, RS+OO•−. J Phys Chem 99:7993–8001

    Article  CAS  Google Scholar 

  • Rush JD, Bielski BHJ (1985) Pulse radiolytic studies of the reactions of HO2/O2 with Fe(II)/Fe(III) ions. The reactivity of HO2/O2 with ferric ions and its implication on the occurrence of the Haber-Weiss reaction. J Phys Chem 89:5062–5066

    CAS  Google Scholar 

  • Russell GA (1957) Deuterium-isotope effects in the autoxidation of aralkyl hydrocarbons. Mechanism of the interaction of peroxy radicals. J Am Chem Soc 79:3871–3877

    CAS  Google Scholar 

  • Rüchardt C (1987) Basic principles of reactivity in free radical chemistry. Free Rad Res Commun 2:197–216

    Google Scholar 

  • Saran M, Beck-Speier I, Fellerhoff B, Bauer G (1999) Phagocytic killing of microorganisms by radical processes: consequences of the reaction of hydroxyl radicals with chloride yielding chlorine atoms. Free Rad Biol Med 26:482–490

    Article  CAS  PubMed  Google Scholar 

  • Sawaki Y, Ogata Y (1984) Reactivities of acylperoxy radicals in the photoreaction of α-diketones and oxygen. J Org Chem 49:3344–3349

    Article  CAS  Google Scholar 

  • Schenck GO, Neumüller O-A, Eisfeld W (1958) Zur photosensibilisierten Autoxydation der Steroide. Δ5-Steroid-7α-hydroperoxyde und 7-Ketone durch Allylumlagerung von Δ6-Steroid-5α-hydroperoxyden. Liebigs Ann Chem 618:202–210

    CAS  Google Scholar 

  • Schmidt KH, Han P, Bartels DM (1995) Radiolytic yields of the hydrated electron from transient conductivity: improved calculation of the hydrated electron diffusion coefficient and analysis of some diffusion-limited (e)aq reaction rates. J Phys Chem 99:10530–10539

    CAS  Google Scholar 

  • Schöneich C, Aced A, Asmus K-D (1991) Halogenated peroxyl radicals as two-electron-transfer agents. Oxidation of organic sulfides to sulfoxides. J Am Chem Soc 113:375–376

    Google Scholar 

  • Schuchmann H-P, von Sonntag C (1981) Photolysis at 185 nm of dimethyl ether in aqueous solution: Involvement of the hydroxymethyl radical. J Photochem 16:289–295

    CAS  Google Scholar 

  • Schuchmann H-P, von Sonntag C (1984) Methylperoxyl radicals: a study of the γ-radiolysis of methane in oxygenated aqueous solutions. Z Naturforsch 39b:217–221

    CAS  Google Scholar 

  • Schuchmann H-P, von Sonntag C (1997) Heteroatom peroxyl radicals. In: Alfassi ZB (ed) Peroxyl radicals. Wiley, Chichester, pp 439–455

    Google Scholar 

  • Schuchmann MN, von Sonntag C (1978) Free radical induced oxidation of neutral aqueous solutions of D-glucose in the presence of oxygen — a non-chain process. Z Naturforsch 33b:329–331

    CAS  Google Scholar 

  • Schuchmann MN, von Sonntag C (1982) Hydroxyl radical induced oxidation of diethyl ether in oxygenated aqueous solution. A product and pulse radiolysis study. J Phys Chem 86:1995–2000

    Article  CAS  Google Scholar 

  • Schuchmann MN, von Sonntag C (1983) The radiolysis of uracil in oxygenated aqueous solutions. A study by product analysis and pulse radiolysis. J Chem Soc Perkin Trans 2 1525–1531

    Google Scholar 

  • Schuchmann MN, von Sonntag C (1987) Hydroxyl radical-induced oxidation of diisopropyl ether in oxygenated aqueous solution. A product and pulse radiolysis study. Z Naturforsch 42b:495–502

    Google Scholar 

  • Schuchmann MN, von Sonntag C (1988) The rapid hydration of the acetyl radical. A pulse radiolysis study of acetaldehyde in aqueous solution. J Am Chem Soc 110:5698–5701

    Article  CAS  Google Scholar 

  • Schuchmann MN, Al-Sheikhly M, von Sonntag C, Garner A, Scholes G (1984) The kinetics of the rearrangement of some isopyrimidines to pyrimidines studied by pulse radiolysis. J Chem Soc Perkin Trans 2 1777–1780

    Google Scholar 

  • Schuchmann MN, Zegota H, von Sonntag C (1985) Acetate peroxyl radicals, O2CH2CO2: a study on the γ-radiolysis and pulse radiolysis of acetate in oxygenated aqueous solutions. Z Naturforsch 40b:215–221

    CAS  Google Scholar 

  • Schuchmann MN, Schuchmann H-P, von Sonntag C (1989) The pKa value of the O2CH2CO2H radical: the Taft σ* constant of the-CH2O2 group. J Phys Chem 93:5320–5323

    Article  CAS  Google Scholar 

  • Schuchmann MN, Schuchmann H-P, von Sonntag C (1990) Hydroxyl radical induced oxidation of acetaldehyde dimethyl acetal in oxygenated aqueous solution. Rapid O2•− release from the CH3C(OCH3)2O2• radical. J Am Chem Soc 112:403–407

    Article  CAS  Google Scholar 

  • Schuchmann MN, Schuchmann H-P, Hess M, von Sonntag C (1991) O2•− Addition to ketomalonate leads to decarboxylation: A chain reaction in oxygenated aqueous solution. J Am Chem Soc 113:6934–6937

    Article  CAS  Google Scholar 

  • Schuchmann MN, Schuchmann H-P, von Sonntag C (1995) Oxidation of hydroxymalonic acid by OH radicals in the presence and in the absence of molecular oxygen. A pulse radiolysis and product study. J Phys Chem 99:9122–9129

    Article  CAS  Google Scholar 

  • Schuchmann MN, Rao R, Hauser M, Müller SC, von Sonntag C (2000) The reaction of the malonic acid derived radical with oxygen. A reinvestigation by pulse radiolysis. J Chem Soc Perkin Trans 2 941–943

    Google Scholar 

  • Schulte-Frohlinde D, Behrens G, Önal A (1986) Lifetime of peroxyl radicals of poly(U), poly(A) and single-and double-stranded DNA and the rate of their reaction with thiols. Int J Radiat Biol 50:103–110

    CAS  Google Scholar 

  • Sehested K, Rasmussen OL, Fricke H (1968) Rate constants of OH with HO2, O2, and H2O2+ from hydrogen peroxide formation in pulse-irradiated oxygenated water. J Phys Chem 72:626–631

    Article  CAS  Google Scholar 

  • Sevilla MD, Becker D, Yan M (1990a) The formation and structure of the sulfoxyl radicals RSO, RSOO, RSO2, and RSO2OO from the reaction of cysteine, glutathione and penicillamine thiyl radicals with molecular oxygen. Int J Radiat Biol 57:65–81

    CAS  PubMed  Google Scholar 

  • Sevilla MD, Becker D, Mengyayo Y (1990b) Structure and reactivity of peroxyl and sulphoxyl radicals from measurement of oxygen-17 hyperfine couplings: relationship with Taft substituent parameters. J Chem Soc Faraday Trans 86:3279–3286

    Article  CAS  Google Scholar 

  • Shen X, Lind J, Eriksen TE, Merényi G (1989) The reaction of the CCl3O2 radical with indoles. J Chem Soc Perkin Trans 2 555–562

    Google Scholar 

  • Shoute LCT, Alfassi ZB, Neta P, Huie RE (1994) Rate constants for reactions of (perhaloalkyl)peroxyl radicals with alkenes in methanol. J Phys Chem 98:5701–5704

    CAS  Google Scholar 

  • Sies H (1986) Biochemie des oxidativen Stress. Angew Chem 98:1061–1075

    CAS  Google Scholar 

  • Sies H (1991) Oxidative stress — oxidants and antioxidants. Academic Press, London

    Google Scholar 

  • Simic MG, Jovanovic SV, Niki E (1992) Mechanisms of lipid oxidative processes and their inhibition. ACS Symp Ser 500:14–32

    CAS  Google Scholar 

  • Sway MI, Waddington DJ (1982) Reactions of oxygenated radicals in the gas phase, part 11. Reaction of isopropylperoxyl radicals with 2,3-dimethylbut-2-ene. J Chem Soc Perkin Trans 2 999–1003

    Google Scholar 

  • Tamba M, Simone G, Quintiliani M (1986) Interactions of thiyl free radicals with oxygen: a pulse radiolysis study. Int J Radiat Biol 50:595–600

    CAS  Google Scholar 

  • Tauber A, von Sonntag C (2000) Products and kinetics of the OH-radical-induced dealkylation of atrazine. Acta Hydrochim Hydrobiol 28:15–23

    Article  CAS  Google Scholar 

  • Turrens JF (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17:3–8

    Article  CAS  PubMed  Google Scholar 

  • Ulanski P, Bothe E, Hildenbrand K, Rosiak JM, von Sonntag C (1996a) Hydroxyl-radical-induced reactions of poly(acrylic acid); a pulse radiolysis, EPR and product study, part II. Oxygenated solution. J Chem Soc Perkin Trans 2 23–28

    Google Scholar 

  • Ulanski P, Bothe E, Rosiak JM, von Sonntag C (1996b) Radiolysis of the poly(acrylic acid) model 2,4-dimethylglutaric acid: a pulse radiolysis and product study. J Chem Soc Perkin Trans 2 5–12

    Google Scholar 

  • Ulanski P, Bothe E, Hildenbrand K, Rosiak JM, von Sonntag C (1996c) Hydroxyl-radical-induced reactions of poly(acrylic acid): a pulse radiolysis, EPR and product study, part I. Deoxygenated aqueous solution. J Chem Soc, Perkin Trans 2 13–22

    Google Scholar 

  • Ulanski P, Merényi G, Lind J, Wagner R, von Sonntag C (1999) The reaction of methyl radicals with hydrogen peroxide. J Chem Soc Perkin Trans 2 673–676

    Google Scholar 

  • Valgimigli L, Banks JT, Ingold KI, Lusztyk J (1995) Kinetic solvent effects on hydroxylic hydrogen atom abstractions are independent of the nature of the abstracting radical. Two extreme tests using Vitamin E and phenol. J Am Chem Soc 117:9966–9971

    Article  CAS  Google Scholar 

  • Vasvary G, Gal D (1993) Self-reaction of benzylperoxy radicals in the oxidation of toluene. A chemiluminescence and product study. Ber Bunsenges Phys Chem 97:22–28

    Google Scholar 

  • von Sonntag C (1980) Free radical reactions of carbohydrates as studied by radiation techniques. Adv Carbohydr Chem Biochem 37:7–77

    Google Scholar 

  • von Sonntag C (1994) Topics in free-radical-mediated DNA damage: purines and damage amplification-superoxide reactions-bleomycin, the incomplete radiomimetic. Int J Radiat Biol 66:485–490

    Google Scholar 

  • von Sonntag C C, Deeble DJ, Hess M, Schuchmann H-P, Schuchmann MN (1993) Superoxide radical anion in some unexpected chain reactions. In: Yagi K (ed) Active oxygens, lipid peroxides and antioxidants. Japan Scientific Societies Press, Tokyo, pp 127–138

    Google Scholar 

  • von Sonntag C, Schuchmann H-P (1977) Photolysis of saturated alcohols, ethers and amines. Adv Photochem 10:59–145

    Google Scholar 

  • von Sonntag C, Schuchmann H-P (1991) The elucidation of peroxyl radical reactions in aqueous solution with the help of radiation-chemical techniques. Angew Chem Int Ed Engl 30:1229–1253

    Google Scholar 

  • von Sonntag C, Schuchmann H-P (1997) Peroxyl radicals in aqueous solution. In: Alfassi ZB (ed) Peroxyl radicals. Wiley, Chichester, pp 173–234

    Google Scholar 

  • Wang D, Schuchmann H-P, von Sonntag C (1993) Phenylalanine: its OH and SO4•−-induced oxidation and decarboxylation. A pulse-radiolysis and product analysis study. Z Naturforsch 48b:761–770

    Google Scholar 

  • Wang D, György G, Hildenbrand K, von Sonntag C (1994) Free-radical-induced oxidation of phloroglucinol-a pulse radiolysis and EPR study. J Chem Soc Perkin Trans 2 45–55

    CAS  Google Scholar 

  • Wardman P (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem Ref Data 18:1637–1755

    CAS  Google Scholar 

  • Weinstein J, Bielski BHJ (1979) Kinetics of the interaction of HO2 and O2 radicals with hydrogen peroxide. The Haber-Weiss reaction. J Am Chem Soc 101:58–62

    Article  CAS  Google Scholar 

  • Winterbourn CC, Metodiewa D (1994) The reaction of superoxide with reduced glutathione. Arch Biochem Biophys 314:284–290

    Article  CAS  PubMed  Google Scholar 

  • Winterbourn CC, Metodiewa D (1999) Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Rad Biol Med 27:322–328

    Article  CAS  PubMed  Google Scholar 

  • Yu X-Y, Barker JR (2003a) Hydrogen peroxide photolysis in acidic solutions containing chloride ions. I. Chemical mechanism. J Phys Chem A 107:1313–1324

    CAS  Google Scholar 

  • Yu X-Y, Barker JR (2003b) Hydrogen peroxide photolysis in acidic solutions containing chloride ions. II. Quantum yield of HO(aq) radicals. J Phys Chem A 107:1325–1332

    CAS  Google Scholar 

  • Yu X-Y, Bao ZC, Barker JR (2004) Free radical reactions involving Cl, Cl2•−, and SO4•− in the 248 nm photolysis of aqueous solutions containing S2O82− and Cl. J Phys Chem A 108:295–308

    CAS  Google Scholar 

  • Zander R (1976a) Der Verteilungsraum von physikalisch gelöstem Sauerstoff in wässrigen Lösungen organischer Substanzen. Z Naturforsch 31c:339–352

    CAS  Google Scholar 

  • Zander R (1976b) Cellular oxygen concentration. Adv Exp Med Biol 75:463–467

    CAS  PubMed  Google Scholar 

  • Zegota H, Schuchmann MN, von Sonntag C (1984) Cyclopentylperoxyl and cyclohexylperoxyl radicals in aqueous solution. A study by product analysis and pulse radiolysis. J Phys Chem 88:5589–5593

    Article  CAS  Google Scholar 

  • Zhang N, Schuchmann H-P, von Sonntag C (1991) The reaction of the superoxide radical anion with dithiothreitol: a chain process. J Phys Chem 95:4718–4722

    CAS  Google Scholar 

  • Zhang X, Zhang N, Schuchmann H-P, von Sonntag C (1994) Pulse radiolysis of 2-mercaptoethanol in oxygenated aqueous solution. Generation and reactions of the thiylperoxyl radical. J Phys Chem 98:6541–6547

    CAS  Google Scholar 

  • Zhu J, Sevilla MD (1990) Kinetic analysis of free-radical reactions in the low-temperature autoxidation of triglycerides. J Phys Chem 94:1447–1452

    CAS  Google Scholar 

  • Zils R (2000) Direct determination of the equilibrium constant and thermodynamic parameters in the reaction of pentadienyl radicals with O2. CR Acad Sci Ser IIc Chim 3:667–674

    CAS  Google Scholar 

  • Zils R, Inomata S, Imamura A, Washida N (2001) Determination of the equilibrium constant and thermodynamic parameters for the reaction of pentadienyl radicals with O2. J Phys Chem 105:1277–1282

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Peroxyl Radicals. In: Free-Radical-Induced DNA Damage and Its Repair. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30592-0_8

Download citation

Publish with us

Policies and ethics