Skip to main content

Nuclear Medicine Imaging

  • Chapter
Imaging of Soft Tissue Tumors

4.4 Conclusion

After a rather long period of underutilization in the field of soft tissue tumors, nuclear medicine procedures have made a remarkable comeback. This is due to technical improvements, the introduction of newer, more specific radiopharmaceuticals, and the introduction of FDG-PET. As a result, nuclear medicine methods are now not only used in the more classic context of staging and follow-up, but also in diagnosis, therapy, and even prognosis of soft tissue tumors. The future availability of other specific radiopharmaceuticals (e.g., labeled monoclonal antibodies and more specific PET tracers) is likely to confirm and enhance the current evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler LP, Blair HF, Makley JT, Williams RP, Joyce MJ, Leisure G, al-Kaisi N, Miraldi F (1991) Noninvasive grading of musculoskeletal tumors using PET. J Nucl Med 32(8):1508–1512

    CAS  PubMed  Google Scholar 

  2. Aoki J, Watanabe H, Shinozaki T et al (2003) FDG-PET for preoperative differential diagnosis between benign and malignant soft tissue masses. Skeletal Radiol 32:133–138

    CAS  PubMed  Google Scholar 

  3. Barton DJ, Miller JH, Allwright SJ, Sloan GM (1992) Distinguishing soft tissue hemangiomas from vascular malformations using technetium-labeled red blood cell scintigraphy. Plast Reconstr Surg 89(1):46–52

    CAS  PubMed  Google Scholar 

  4. Beaulieu S, Rubin B, Djang D, Conrad E, Turcotte E, Eary JF (2004) Positron emission tomography of schwannomas: emphasizing its potential in preoperative planning. Am J Roentgenol 182(4):971–974

    Google Scholar 

  5. Becherer A, Szabo M, Karanikas G, Wunderbaldinger P, Angelberger P, Raderer M, Kurtaran A, Dudczak R, Kletter K (2004) Imaging of advanced neuroendocrine tumors with (18)F-FDOPA PET. J Nucl Med 45(7):1161–1167

    CAS  PubMed  Google Scholar 

  6. Bender H, Friedrich E, Zamora PO, Biersack HJ (1995) Detection of multidrug resistance with Tc-99m sestamibi. J Nucl Med 36(5):129P (Abstract)

    Google Scholar 

  7. Blatt CJ, Hayt DB, Desai M et al (1977) Soft-tissue sarcoma: imaged with technetium-99m pyrophosphate. NY State J Med 77:2118–2119

    CAS  Google Scholar 

  8. Brant WE, Floyd JL, Jackson DE et al (1987) The radiological evaluation of hepatic cavernous hemangioma. JAMA 257:1063–1070

    Article  Google Scholar 

  9. Bredella MA, Caputo GR, Steinbach LS (2002) Value of FDG positron emission tomography in conjunction with MRI for evaluating therapy response in patients with musculoskeletal sarcomas. Am J Roentgenol 179(5):1145–1150

    Google Scholar 

  10. Cardona S, Schwarzbach M, Hinz U et al (2003) Evaluation of F-18-deoxyglucose positron emission tomography (FDG-PET) to assess the nature of neurogenic tumours. Eur J Surg Oncol 29(6):536–541

    Article  CAS  PubMed  Google Scholar 

  11. Chauhan UPS, Babbar A, Kashyap R, Prakash R (1992) Evaluation of a DMSA kit for instant preparation of 99mTc-(V)-DMSA for tumour and metastasis scintigraphy. Nucl Med Biol 19:825–830

    CAS  Google Scholar 

  12. Chew FS, Hudson TM, Enneking WF (1981) Radionuclide imaging of soft tissue neoplasms. Semin Nucl Med XI(4):266–276

    Google Scholar 

  13. Ciarmiello A, Del Vecchio S, Potena MI, Mainolfi C, Carriero MV, Tsuruo T, Marone A, Salvatore M (1995) Tc-99m-sestamibi efflux and P-glycoprotein expression in human breast carcinoma. J Nucl Med 36(5):129P (Abstract)

    Google Scholar 

  14. Citrin DL, McKillop JH (1978) Atlas of technetium bone scans. Saunders, Philadelphia, pp 43–65

    Google Scholar 

  15. Cobben DC, Elsinga PH, Suurmeijer AJ, Vaalburg W, Maas B, Jager PL, Hoekstra HJ (2004) Detection and grading of soft tissue sarcomas of the extremities with (18)F-3′-fluoro-3′-deoxy-L-thymidine. Clin Cancer Res 10(5):1685–1690

    Article  CAS  PubMed  Google Scholar 

  16. Cogswell A, Howman-Giles R, Bergin M (1994) Bone and gallium scintigraphy in children with rhabdomyosarcoma: a 10-year review. Med Pediatr Oncol 22(11):15–21

    CAS  PubMed  Google Scholar 

  17. Cox PH, Verweij J, Pillay M, Stoter G, Schonfeld D (1988) Indium-111 antimyosin for the detection of leiomyosarcoma and rhabdomyosarcoma. Eur J Nucl Med 14:50–52

    Article  CAS  PubMed  Google Scholar 

  18. Delbeke D (1999) Oncological applications of FDG PET imaging. J Nucl Med 40:1706–1715

    CAS  PubMed  Google Scholar 

  19. De Moerloose B, Van de Wiele C, Dhooge C, Philippé J, Speleman F, Benoit Y, Laureys G, Dierckx RA (1999) Technetium-99m sestamibi imaging in paediatric neuroblastoma and ganglioneuroma and its relation to P-glycoprotein. Eur J Nucl Med 26:396–403

    PubMed  Google Scholar 

  20. Drane WE (1991) Nuclear medicine techniques for the liver and biliary system. Radiol Clin North Am 29:1129–1151

    CAS  PubMed  Google Scholar 

  21. Eary JF, O’Sullivan F, Powitan Y, Chandhury KR, Vernon C, Bruckner JD, Conrad EU (2002) Sarcoma tumor FDG uptake measured by PET and patient outcome: a retrospective analysis. Eur J Nucl Med Mol Imaging 29(9):1149–1154

    Article  CAS  PubMed  Google Scholar 

  22. Enneking WF, Chew FS, Springfield DS et al (1981) The role of radionuclide bone-scanning in determining the respectability of soft-tissue sarcomas. J Bone Joint Surg 63:249–257

    CAS  PubMed  Google Scholar 

  23. Feldman F, van Heertum R, Manos C (2003) 18-FDG PET scanning of benign and malignant musculoskeletal lesions. Skeletal Radiol 32:201–208

    PubMed  Google Scholar 

  24. Felix EL, Sindelar WF, Bagley DH et al (1975) The use of bone and brain scans as screening procedures in patients with malignant lesions. Surg Gynecol Obstet 141:867–869

    CAS  PubMed  Google Scholar 

  25. Garcia R, Kim EE, Wong FC, Korkmaz M, Wong WH, Yang DJ, Podoloff DA (1996) Comparison of fluorine-18-FDG PET and technetium-99m-MIBI SPECT in evaluation of musculoskeletal sarcomas. J Nucl Med 37(9):1476–1479

    CAS  PubMed  Google Scholar 

  26. Gehring PJ, Hammand PB (1967) The interrelationship between thallium and potassium in animals. J Pharmacol Exp Ther 155:187–201

    CAS  PubMed  Google Scholar 

  27. Ginkel RJ van, Hoekstra HJ, Pruim J, Nieweg OE, Molenaar WM, Paans AM, Willemsen AT, Vaalburg W, Koop HS (1996) FDG-PET to evaluate response to hyperthermic isolated limb perfusion for locally advanced soft-tissue sarcoma. J Nucl Med 37(6):984–990

    PubMed  Google Scholar 

  28. Ginkel RJ van, Kole AC, Nieweg OE, Molenaar WM, Pruim J, Koops HS, Vaalburg W, Hoekstra HJ (1999) L-[1-11C]-tyrosine PET to evaluate response to hyperthermic isolated limb perfusion for locally advanced soft-tissue sarcoma and skin cancer. J Nucl Med 40(2):262–267

    PubMed  Google Scholar 

  29. Goshen E, Meller I, Lantsberg S, Sagi A, Moses M, Fuchsbrauner R, Quastel MR (1991) Radionuclide imaging of soft tissue masses with Tc-99m DTPA. Clin Nucl Med 16(9):636–642

    CAS  PubMed  Google Scholar 

  30. Goto Y, Ihara K, Kawauchi S, Ohi R, Sasaki K, Kawai S (2002) Clinical significance of thallium-201 scintigraphy in bone and soft tissue tumors. J Orthop Sci 7(3):304–312

    Article  PubMed  Google Scholar 

  31. Grufferman S, Gillman MW, Pasternak LR et al (1980) Familial carotid body tumors: case report and epidemiologic review. Cancer 46:2116–2122

    CAS  PubMed  Google Scholar 

  32. Hain SF, O’Doherty MJ, Bingham J, Chinyama C, Smith MA (2003) Can FDG PET be used to successfully direct preoperative biopsy of soft tissue tumours? Nucl Med Commun 24(11):1139–1143

    CAS  PubMed  Google Scholar 

  33. Hattner RS, White DL (1990) Gallium-67/stable gadolinium antagonism: MRI contrast agent markedly alters the normal biodistribution of gallium-67. J Nucl Med 31:1844–1846

    CAS  PubMed  Google Scholar 

  34. Hattner RS, Huberty JP, Engelstad BL, Gooding CA, Ablin AR (1984) Localization of m-iodo (I-131) benzylguanidine in neuroblastoma. Am J Roentgenol 143:373–374

    CAS  Google Scholar 

  35. Hoefnagel CA, de Kraker F (1994) Childhood neoplasia. In: Murray IPC, Ell PJ (eds) Nuclear medicine in clinical diagnosis and treatment, vol 2. Churchill Livingstone, Edinburgh, p 765–777

    Google Scholar 

  36. Hoefnagel CA, Voûte PA, Kraker J de, Behrendt H (1987) Scintigraphic detection of rhabdomyosarcoma. Lancet i:921

    Google Scholar 

  37. Hoefnagel CA, Kraker J de, Voûte PA, Behrendt H (1988) Tumor imaging of rhabdomyosarcoma using radiolabeled fragments of monoclonal anti-myosin antibody. J Nucl Med 29:791

    Google Scholar 

  38. Hoefnagel CA, Kapucu Ö, de Kraker J, Voûte PA (1993) Radioimmunoscintigraphy using 111In-antimyosin Fab fragments for the diagnosis and follow-up of rhabdomyosarcoma. Eur J Cancer 29A:2096–2100

    CAS  PubMed  Google Scholar 

  39. Hoegerle S, Schneider B, Kraft A, Moser E, Nitzsche EU (1999) Imaging of a metastatic gastrointestinal carcinoid by F-18-DOPA positron emission tomography. Nuklearmedizin 38(4):127–130

    CAS  PubMed  Google Scholar 

  40. Howman-Giles R, Uren RF, Shaw PJ (1995) Thallium-201 scintigraphy in pediatric soft tissue tumors. J Nucl Med 36(8):1372–1376

    CAS  PubMed  Google Scholar 

  41. Imaeda T, Seki M, Sone Y, Iinuma G, Kanematsu M, Mochizuki R, Takeuchi S, Nishimoto Y, Shimokawa K (1991) Gallium-67 citrate scintigraphy in the pre-operative evaluation of soft tissue tumors of the extremities. Ann Nucl Med 5(4):127–132

    CAS  PubMed  Google Scholar 

  42. Jackson GE, Byrne MJ (1996) Metal ion speciation in blood plasma: gallium-67-citrate and MRI contrast agents. J Nucl Med 37(2):379–386

    CAS  PubMed  Google Scholar 

  43. Johnson GR, Zhuang H, Khan J, Chiang SB, Alavi A (2003) Roles of positron emission tomography with fluorine-18-deoxyglucose in the detection of local recurrent and distant metastatic sarcoma. Clin Nucl Med 28(10):815–820

    PubMed  Google Scholar 

  44. Jones DN, McCowage GB, Sostman HD, Brizel DM, Layfield L, Charles HC, Dewhirst MW, Prescott DM, Friedman HS, Harrelson JM, Scully SP, Coleman RE (1996) Monitoring of neoadjuvant therapy resonse of soft-tissue and musculoskeletal sarcoma using fluorine-18-FDG PET. J Nucl Med 37(9):1438–1444

    CAS  PubMed  Google Scholar 

  45. Kairemo KJA, Wiklund TA, Liewendahl L et al (1990) Imaging of soft tissue sarcomas with In-111-labeled monoclonal antimyosin Fab fragments. J Nucl Med 31:23–31

    CAS  PubMed  Google Scholar 

  46. Kaye SB (1988) The multidrug resistance phenotype. Br J Cancer 58:691–694

    CAS  PubMed  Google Scholar 

  47. Kim E, Garcia JR, Wong FC, Kim CG, Broussard W, Podoloff DA (1995) Comparison of fluorodeoxyglucose (FDG) PET and Sestamibi (MIBI) SPECT in detection of residual or recurrent musculoskeletal sarcoma. J Nucl Med 36(5):234P (Abstract)

    Google Scholar 

  48. Kobayashi H, Sakahara H, Hosono M, Shirato M, Konishi J, Kotoura Y, Yamamuro T, Endo K (1993) Scintigraphic evaluation of tenosynovial giant-cell tumor using technetium-99m(V)-dimercaptosuccinic acid. J Nucl Med 34(10):1745–1747

    CAS  PubMed  Google Scholar 

  49. Kobayashi H, Sakahara H, Hosono M, Shirato M, Endo K, Kotoura Y, Yamamuro T, Konishi J (1994) Soft-tissue tumors: diagnosis with Tc-99m (V) dimercaptosuccinic acid scintigraphy. Radiology 190(1):277–280

    CAS  PubMed  Google Scholar 

  50. Korkmaz M, Kim EE, Wong F, Haynie T, Wong WH, Tilbury R, Benjamin R (1993) FDG and methionine PET in differentiation of recurrent or residual musculoskeletal sarcomas from posttherapy changes. J Nucl Med 34(5):33P (Abstract)

    Google Scholar 

  51. Kostakoglu L, Manicek DM, Divgi CR, Botet J, Healy J, Larson SM, Abdel-Dayem HM (1995) Correlation of the findings of thallium-201 chloride scans with those of other imaging modalities and histology following therapy in patients with bone and soft tissue sarcomas. J Nucl Med 22(11):1232–1237

    CAS  Google Scholar 

  52. Krause T, Hauenstein K, Studier-Fischer B, Schuemichen C, Moser E (1993) Improved evaluation of technetium-99m-red blood cell SPECT in hemangioma of the liver. J Nucl Med 34(3):375–380

    CAS  PubMed  Google Scholar 

  53. Krenning EP, Kwekkeboom DJ, Reubi JC, Lamberts SWJ (1994) Somatostatin receptor scintigraphy with (111In-DTPA-d-Phe1) octreotide. In: Murray IPC, Ell PJ (eds) Nuclear medicine in clinical diagnosis and treatment, vol 2. Churchill Livingstone, Edinburgh, pp 757–764

    Google Scholar 

  54. Kushner BH, Yeung HW, Larson SM, Kramer K, Cheung NK (2001) Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol 19(14):3397–3405

    CAS  PubMed  Google Scholar 

  55. Kwekkeboom DJ, Van Urk H, Pauw KH et al (1993) Octreotide scintigraphy for the detection of paragangliomas. J Nucl Med 43:873–878

    Google Scholar 

  56. Lamberts SWJ, Krenning EP, Reubi JC (1991) The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocrinol Rev 12:450–482

    CAS  Google Scholar 

  57. Larson SM, Radey JS, Allen DR et al (1980) Common pathway for tumour cell uptake of gallium-67 and iron-59 via a transferring receptor. J Natl Cancer Inst 64:41–53

    CAS  PubMed  Google Scholar 

  58. Lebtahi R, Le Cloirec J, Houzard C et al (2002) Detection of neuroendocrine tumors: 99m-Tc-P829 scintigraphy compared with 111-In-pentetreotide scintigraphy. J Nucl Med 43(7):889–895

    CAS  PubMed  Google Scholar 

  59. Lepanto PB, Rosenstock J, Littman P, Alavi A, Donaldson M, Kuhl DE (1976) Gallium-67 scans in children with solid tumours. Am J Roentgenol 126:176–186

    Google Scholar 

  60. Lin WY, Kao CH, Hsu CY, Liao SQ, Wang SJ, Ueh SH (1994) The role of Tc-99m MDP and Ga-67 imaging in the clinical evaluation of malignant fibrous histiocytoma. Clin Nucl Med 19(11):996–1000

    CAS  PubMed  Google Scholar 

  61. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA (1999) A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med 26(1):22–30

    Article  CAS  PubMed  Google Scholar 

  62. Lucas JD, O’Doherty MJ, Wong JC, Bingham JB, McKee PH, Fletcher CD, Smith MA (1998) Evaluation of fluorodeoxyglucose positron emission tomography in the management of soft-tissue sarcomas. J Bone Joint Surg Br 80(3):441–447

    Article  CAS  PubMed  Google Scholar 

  63. Lucas JD, O’Doherty MJ, Cronin BF, Marsden PK, Lodge MA, McKee PH, Smith MA (1999) Prospective evaluation of soft tissue masses and sarcomas using fluorodeoxyglucose positron emission tomography. Br J Surg 86(4):550–556

    Article  CAS  PubMed  Google Scholar 

  64. Lumbroso JD, Guermazi F, Hartmann O et al (1988) Metaiodobenzylguanidine (mIBG) scans in neuroblastoma: sensitivity and specificity, a review of 115 scans. Prog Clin Biol Res 271:689–705

    CAS  PubMed  Google Scholar 

  65. Maurea S, Cuocolo A, Reynolds JC, Tumeh SS, Begley MG, Linehan WM, Norton JA, Walther MM, Keiser HR, Neumann RD (1993) Iodine-131-metaiodobenzylguanidine scintigraphy in preoperative and postoperative evaluation of paragangliomas: comparison with CT and MRI. J Nucl Med 34(2):173–179

    CAS  PubMed  Google Scholar 

  66. Menendez LR, Fideler BM, Mirra J (1993) Thallium-201 scanning for the evaluation of osteosarcoma and soft-tissue sarcoma. A study of the evaluation and predictability of the histological response to chemotherapy. J Bone Joint Surg Am 75:526–531

    CAS  PubMed  Google Scholar 

  67. Nagaraj N, Ashok G, Waxman A, Kovalevsky M, Youssim C, Forscher C, Rosen G (1995) Clinical usefulness of serial Tc-99m sestamibi scintigraphy in evaluating tumor response to preop chemotherapy in patients with bone and soft tissue sarcomas. J Nucl Med 36(5):129P (Abstract)

    Google Scholar 

  68. Noujaim AA, Turner CJ, Van Nieuwenhuyze BM, Terner U, Lentle BC (1981) An investigation of the mechanism of cis-diamine dichloroplatinum (cis-pt) interference with radiogallium uptake in tumors. Aust NZJ Med 11:437

    Google Scholar 

  69. Ohta H, Endo K, Konishi J et al (1990) Scintigraphic evaluation of aggressive fibromatosis. J Nucl Med 31:1632–1634

    CAS  PubMed  Google Scholar 

  70. Parisi MT, Green MK, Dykes TM, Moraldo TV, Sandler ED, Hattner RS (1992) Efficacy of metaiodobenzylguanidine as a scintigraphic agent for the detection of neuroblastoma. Invest Radiol 10:768–772

    Google Scholar 

  71. Pearlman AW (1977) Preoperative evaluation of liposarcoma by nuclear imaging. Clin Nucl Med 2:47–51

    Google Scholar 

  72. Plaat B, Kole A, Mastik M, Hoekstra H, Molenaar W, Vaalburg W (1999) Protein synthesis rate measured with L-[1-11C]tyrosine positron emission tomography correlates with mitotic activity and MIB-1 antibody-detected proliferation in human soft tissue sarcomas. Eur J Nucl Med 26(4):328–332

    Article  CAS  PubMed  Google Scholar 

  73. Prakash R, Jena A, Behari V et al (1987) Technetium-99m red blood cell scintigraphy in diagnosis of hepatic hemangioma. Clin Nucl Med 12:235–237

    CAS  PubMed  Google Scholar 

  74. Pruim J, Ginkel RJ van, Willemsen ATM, Paans AMJ, Nieweg OE, Kole AC, Hoekstra HJ, Molenaar WM, Visser GM, Schraffordt Koops H, Vaalburg W (1995) Protein synthesis rate (PSR) measured with L-(1-C-11)-tyrosine in soft tissue tumours. J Nucl Med 36(5):217P (Abstract)

    Google Scholar 

  75. Reuland P, Koscelniak E, Ruck P, Treuner J, Feine U (1991) Application of an anti-myosin for scintigraphic differential diagnosis of infantile tumors. Int J Rad Appl Istrum (B) 18:89–93

    CAS  Google Scholar 

  76. Rosso J, Guillon JM, Parrot A, Denis M, Akoun G, Mayaud Ch, Scherrer M, Meignan M (1992) Technetium-99m-DTPA aerosol and gallium-67 scanning in pulmonary complications of human immunodeficiency virus infection. J Nucl Med 33(1):81–87

    CAS  PubMed  Google Scholar 

  77. Rubin RA, Lichtenstein GR (1993) Scintigraphic evaluation in liver masses: cavernous hepatic hemangioma. J Nucl Med 34(5):849–852

    CAS  PubMed  Google Scholar 

  78. Rufini V, Giordano A, Di Giuda D, Petrone A, Deb G, De Sio L, Donfrancesco A, Troncone L (1995) 123-I MIBG scintigraphy in neuroblastoma: a comparison between planar and SPECT imaging. Q J Nucl Med 39:25–28

    CAS  PubMed  Google Scholar 

  79. Schulte M, Brecht-Krauss D, Heymer B, Guhlmann A, Hartwig E, Sarkar MR, Diederichs CG, Schultheiss M, Kotzerke J, Reske SN (1999) Fluorodeoxyglucose positron emission tomography of soft tissue tumours: is a noninvasive determination of biological activity possible? Eur J Nucl Med 26(6):599–605

    Article  CAS  PubMed  Google Scholar 

  80. Schwartz HS, Jones CK (1992) The efficacy of gallium scintigraphy. Ann Surg 215:78–82

    CAS  PubMed  Google Scholar 

  81. Schwarzbach M, Willeke F, Dimitrakopoulou-Strauss A, Straus LG, Zhang YM (1999) Functional imaging and detection of local recurrence in soft tissue sarcomas by positron emission tomography. Anticancer Res 19(2B):1343–1349

    CAS  PubMed  Google Scholar 

  82. Schwarzbach MH, Dimitrakopoulou-Strauss A, Willeke F et al (2000) Clinical value of 18-F-fluorodeoxyglucose positron emission tomography imaging in soft tissue sarcomas. Ann Surg 231(3):380–386

    Article  CAS  PubMed  Google Scholar 

  83. Schwarzbach MH, Dimitrakopoulou-Strauss A, Mechtersheimer G et al (2001) Assessment of soft tissue lesions suspicious for liposarcoma by F18-deoxyglucose (FDG) positron emission tomography (PET). Anticancer Res 21(5):3609–3614

    CAS  PubMed  Google Scholar 

  84. Shapiro B, Copp JE, Sisson JC, Eyre PL, Wallis J, Beierwaltes WH (1985) Iodine-131 metaiodobenzylguanidine for the locating of suspected pheochromocytoma: experience in 400 cases. J Nucl Med 26:576–585

    CAS  PubMed  Google Scholar 

  85. Shulkin BL, Wieland DM, Baro ME, Ungar DR, Mitchell DS, Dole MG, Rawwas JB, Castle VP, Sisson JC, Hutchinson RJ (1996) PET Hydroxyephedrine imaging of neuroblastoma. J Nucl Med 37(1):16–21

    CAS  PubMed  Google Scholar 

  86. Southee AF, Kaplan WD, Jochelson MS, Gonin R, Dwyer JP, Antman KH, Elias AD (1992) Gallium imaging in metastatic and recurrent soft-tissue sarcoma. J Nucl Med 33(9):1594–1599

    CAS  PubMed  Google Scholar 

  87. Stroobants S, Goeminne J, Seegers M et al (2003) 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer 39(14):2012–2020

    Article  CAS  PubMed  Google Scholar 

  88. Taki J, Sumiya H, Tsuchiya H, Tomita K, Nonomura A, Tonami N (1997) Evaluating benign and malignant bone and soft-tissue lesions with technetium-99m-MIBI scintigraphy. J Nucl Med 38:501–506

    CAS  PubMed  Google Scholar 

  89. Taki J, Sumiya H, Asada N, Ueda Y, Tsuchiya H, Tonami N (1998) Assessment of P-glycoprotein in patients with malignant bone and soft-tissue tumors using technetium-99m-MIBI scintigraphy. J Nucl Med 39:1179–1184

    CAS  PubMed  Google Scholar 

  90. Terui S, Terauchi T, Abe H, Fukuma H, Beppu Y, Chuman K, Yokoyama R (1994) On clinical usefulness of TI-201 scintigraphy for the management of malignant soft tissue tumors. Ann Nucl Med 8:55–64

    CAS  PubMed  Google Scholar 

  91. Thompson DE, Frost HM, Hendrick JW et al (1971) Soft tissue sarcomas involving the extremities and the limb girdles: a review. South Med J 64:33–44

    Google Scholar 

  92. Troncone L, Galli G (eds) (1991) The role of 131-I-MIBG in the treatment of neural crest tumor. Proceedings of an international workshop, Rome, September 6–7. J Nucl Biol Med 35:177–363

    Google Scholar 

  93. Vernon CB, Eary JF, Rubin BP, Conrad EU, Schuetze S (2003) FDG PET imaging guided re-evaluation of histopathological response in a patient with high-grade sarcoma. Skeletal Radiol 32(3):139–142

    PubMed  Google Scholar 

  94. Wahl RL, Hutchins GD, Buchsbaum DJ, Liebert M Grossman HB, Fischer S (1991) Fluorine-18-2-deoxy-2-fluoro-D-glucose (FDG) uptake into human tumor xenografts: feasibility studies for cancer imaging with PET. Cancer 67:1544–1549

    CAS  PubMed  Google Scholar 

  95. Wallner KE, Galieich JH, Malkin MG, Arbit E, Korl G, Rosenblum MK (1989) Inability of computed tomography appearance of recurrent malignant astrocytoma to predict survival following reoperation. J Clin Oncol 7:1492–1496

    CAS  PubMed  Google Scholar 

  96. Wieland DM, Wu J, Brown LE, Mangner TJ, Swanson DP, Beierwaltes WH (1980) Radiolabeled adrenergic neuron-blocking agents: adrenomedullary imaging with 131I metaiodobenzylguanidine. J Nucl Med 21:349–353

    CAS  PubMed  Google Scholar 

  97. Wiggins J, Goldstein H, Weinmann H (1991) Gallium-67/stable gadolinium antagonism. J Nucl Med 32:1830–1831

    CAS  PubMed  Google Scholar 

  98. Zhang H, Tian M, Oriuchi N, Higuchi T, Watanabe H, Aoki J, Tanada S, Endo K (2003) 11C-choline PET for the detection of bone and soft tissue tumours in comparison with FDG PET. Nucl Med Commun 24(3):273–279

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carp, L., Blockx, P.P. (2006). Nuclear Medicine Imaging. In: De Schepper, A.M., Vanhoenacker, F., Gielen, J., Parizel, P.M. (eds) Imaging of Soft Tissue Tumors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30792-3_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-30792-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24809-5

  • Online ISBN: 978-3-540-30792-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics