Skip to main content

Inhibitory Ly49 Receptors on Mouse Natural Killer Cells

  • Chapter
  • First Online:
Negative Co-Receptors and Ligands

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 350))

Abstract

The Ly49 receptors, which are expressed in a stochastic manner on subsets of murine natural killer (NK) cells, T cells, and other cells, are encoded by the Klra gene family and include receptors with either inhibitory or activating function. All of the inhibitory Ly49 receptors are characterized by an immunoreceptor tyrosine-based inhibitory motif in their cytoplasmic domain, which upon phosphorylation recruits tyrosine or lipid phosphatases to dampen signals transmitted through other activating receptors. Most of the inhibitory Ly49 receptors recognize polymorphic epitopes on major histocompatibility complex (MHC) class I proteins as ligands. Here, we review the polymorphism, ligand specificity, and signaling capacity of the inhibitory Ly49 receptors and discuss how these molecules regulate NK cell development and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abi-Rached L, Parham P (2005) Natural selection drives recurrent formation of activating killer cell immunoglobulin-like receptor and Ly49 from inhibitory homologues. J Exp Med 201:1319–1332

    PubMed  CAS  Google Scholar 

  • Adams EJ, Juo ZS, Venook RT et al (2007) Structural elucidation of the m157 mouse cytomegalovirus ligand for Ly49 natural killer cell receptors. Proc Natl Acad Sci U S A 104:10128–10133

    PubMed  CAS  Google Scholar 

  • Arase H, Mocarski ES, Campbell AE et al (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296:1323–1326

    PubMed  CAS  Google Scholar 

  • Asai O, Longo DL, Tian ZG et al (1998) Suppression of graft-versus-host disease and amplification of graft-versus-tumor effects by activated natural killer cells after allogeneic bone marrow transplantation. J Clin Invest 101:1835–1842

    PubMed  CAS  Google Scholar 

  • Back J, Malchiodi EL, Cho S et al (2009) Distinct conformations of Ly49 natural killer cell receptors mediate MHC class I recognition in trans and cis. Immunity 31:598–608

    PubMed  CAS  Google Scholar 

  • Barber MA, Zhang T, Gagne BA et al (2008) Ly49G2 receptor blockade reduces tumor burden in a leukemia model but not in a solid tumor model. Cancer Immunol Immunother 57:655–662

    PubMed  CAS  Google Scholar 

  • Belanger S, Tai LH, Anderson SK et al (2008) Ly49 cluster sequence analysis in a mouse model of diabetes: an expanded repertoire of activating receptors in the NOD genome. Genes Immun 9:509–521

    PubMed  CAS  Google Scholar 

  • Binstadt BA, Brumbaugh KM, Dick CJ et al (1996) Sequential involvement of Lck and SHP-1 with MHC-recognizing receptors on NK cells inhibits FcR-initiated tyrosine kinase activation. Immunity 5:629–638

    PubMed  CAS  Google Scholar 

  • Binstadt BA, Billadeau DD, Jevremovic D et al (1998) SLP-76 is a direct substrate of SHP-1 recruited to killer cell inhibitory receptors. J Biol Chem 273:27518–27523

    PubMed  CAS  Google Scholar 

  • Bix M, Liao NS, Zijlstra M et al (1991) Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature 349:329–331

    PubMed  CAS  Google Scholar 

  • Brennan J, Mahon G, Mager DL et al (1996) Recognition of class I major histocompatibility complex molecules by Ly-49: specificities and domain interactions. J Exp Med 183:1553–1559

    PubMed  CAS  Google Scholar 

  • Brodin P, Karre K, Hoglund P (2009a) NK cell education: not an on-off switch but a tunable rheostat. Trends Immunol 30:143–149

    PubMed  CAS  Google Scholar 

  • Brodin P, Lakshmikanth T, Johansson S et al (2009b) The strength of inhibitory input during education quantitatively tunes the functional responsiveness of individual natural killer cells. Blood 113:2434–2441

    PubMed  CAS  Google Scholar 

  • Brown MG, Fulmek S, Matsumoto K et al (1997) A 2-Mb YAC contig and physical map of the natural killer gene complex on mouse chromosome 6. Genomics 42:16–25

    PubMed  CAS  Google Scholar 

  • Bukowski JF, Woda BA, Habu S et al (1983) Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J Immunol 131:1531–1538

    PubMed  CAS  Google Scholar 

  • Burshtyn DN, Scharenberg AM, Wagtmann N et al (1996) Recruitment of tyrosine phosphatase HCP by the killer cell inhibitor receptor. Immunity 4:77–85

    PubMed  CAS  Google Scholar 

  • Cao D, Hu L, Wang Y et al (2009) Suppression of graft-versus-host disease after adoptive infusion of alloreactive NK cells induced by silencing Ly49C gene in mice. Transpl Immunol 20:243–248

    PubMed  CAS  Google Scholar 

  • Carlyle JR, Mesci A, Fine JH et al (2008) Evolution of the Ly49 and Nkrp1 recognition systems. Semin Immunol 20:321–330

    PubMed  CAS  Google Scholar 

  • Chalifour A, Scarpellino L, Back J et al (2009) A role for cis interaction between the inhibitory Ly49A receptor and MHC class I for natural killer cell education. Immunity 30:337–347

    PubMed  CAS  Google Scholar 

  • Correa I, Raulet DH (1995) Binding of diverse peptides to MHC class I molecules inhibits target cell lysis by activated natural killer cells. Immunity 2:61–71

    PubMed  CAS  Google Scholar 

  • Daniels BF, Karlhofer FM, Seaman WE et al (1994) A natural killer cell receptor specific for a major histocompatibility complex class I molecule. J Exp Med 180:687–692

    PubMed  CAS  Google Scholar 

  • Daniels KA, Devora G, Lai WC et al (2001) Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H. J Exp Med 194:29–44

    PubMed  CAS  Google Scholar 

  • Daws MR, Eriksson M, Oberg L et al (1999) H-2Dd engagement of Ly49A leads directly to Ly49A phosphorylation and recruitment of SHP1. Immunology 97:656–664

    PubMed  CAS  Google Scholar 

  • Depatie C, Lee SH, Stafford A et al (2000) Sequence-ready BAC contig, physical, and transcriptional map of a 2-Mb region overlapping the mouse chromosome 6 host-resistance locus Cmv1. Genomics 66:161–174

    PubMed  CAS  Google Scholar 

  • Desrosiers MP, Kielczewska A, Loredo-Osti JC et al (2005) Epistasis between mouse Klra and major histocompatibility complex class I loci is associated with a new mechanism of natural killer cell-mediated innate resistance to cytomegalovirus infection. Nat Genet 37:593–599

    PubMed  CAS  Google Scholar 

  • Dokun AO, Kim S, Smith HR et al (2001) Specific and nonspecific NK cell activation during virus infection. Nat Immunol 2:951–956

    PubMed  CAS  Google Scholar 

  • Doom CM, Hill AB (2008) MHC class I immune evasion in MCMV infection. Med Microbiol Immunol 197:191–204

    PubMed  CAS  Google Scholar 

  • Dorfman JR, Raulet DH (1998) Acquisition of Ly49 receptor expression by developing natural killer cells. J Exp Med 187:609–618

    PubMed  CAS  Google Scholar 

  • Doucey MA, Scarpellino L, Zimmer J et al (2004) Cis association of Ly49A with MHC class I restricts natural killer cell inhibition. Nat Immunol 5:328–336

    PubMed  CAS  Google Scholar 

  • Eriksson M, Ryan JC, Nakamura MC et al (1999a) Ly49A inhibitory receptors redistribute on natural killer cells during target cell interaction. Immunology 97:341–347

    PubMed  CAS  Google Scholar 

  • Eriksson M, Leitz G, Fallman E et al (1999b) Inhibitory receptors alter natural killer cell interactions with target cells yet allow simultaneous killing of susceptible targets. J Exp Med 190:1005–1012

    PubMed  CAS  Google Scholar 

  • Fassett MS, Davis DM, Valter MM et al (2001) Signaling at the inhibitory natural killer cell immune synapse regulates lipid raft polarization but not class I MHC clustering. Proc Natl Acad Sci U S A 98:14547–14552

    PubMed  CAS  Google Scholar 

  • Fernandez NC, Treiner E, Vance RE et al (2005) A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 105:4416–4423

    PubMed  CAS  Google Scholar 

  • Franksson L, Sundback J, Achour A et al (1999) Peptide dependency and selectivity of the NK cell inhibitory receptor Ly-49C. Eur J Immunol 29:2748–2758

    PubMed  CAS  Google Scholar 

  • Fraser KP, Gays F, Robinson JH et al (2002) NK cells developing in vitro from fetal mouse progenitors express at least one member of the Ly49 family that is acquired in a time-dependent and stochastic manner independently of CD94 and NKG2. Eur J Immunol 32:868–878

    PubMed  CAS  Google Scholar 

  • Fry AM, Lanier LL, Weiss A (1996) Phosphotyrosines in the killer cell inhibitory receptor motif of NKB1 are required for negative signaling and for association with protein tyrosine phosphatase 1C. J Exp Med 184:295–300

    PubMed  CAS  Google Scholar 

  • Gagnier L, Wilhelm BT, Mager DL (2003) Ly49 genes in non-rodent mammals. Immunogenetics 55:109–115

    PubMed  CAS  Google Scholar 

  • Galandrini R, Tassi I, Morrone S et al (2001) The adaptor protein shc is involved in the negative regulation of NK cell-mediated cytotoxicity. Eur J Immunol 31:2016–2025

    PubMed  CAS  Google Scholar 

  • Gasser S, Raulet DH (2006) Activation and self-tolerance of natural killer cells. Immunol Rev 214:130–142

    PubMed  CAS  Google Scholar 

  • Gays F, Aust JG, Reid DM et al (2006) Ly49B is expressed on multiple subpopulations of myeloid cells. J Immunol 177:5840–5851

    PubMed  CAS  Google Scholar 

  • George TC, Mason LH, Ortaldo JR et al (1999a) Positive recognition of MHC class I molecules by the Ly49D receptor of murine NK cells. J Immunol 162:2035–2043

    PubMed  CAS  Google Scholar 

  • George TC, Ortaldo JR, Lemieux S et al (1999b) Tolerance and alloreactivity of the Ly49D subset of murine NK cells. J Immunol 163:1859–1867

    PubMed  CAS  Google Scholar 

  • Glass B, Uharek L, Zeis M et al (1996) Graft-versus-leukaemia activity can be predicted by natural cytotoxicity against leukaemia cells. Br J Haematol 93:412–420

    PubMed  CAS  Google Scholar 

  • Grundemann C, Bauer M, Schweier O et al (2006) Cutting edge: identification of E-cadherin as a ligand for the murine killer cell lectin-like receptor G1. J Immunol 176:1311–1315

    PubMed  Google Scholar 

  • Gupta N, Scharenberg AM, Burshtyn DN et al (1997) Negative signaling pathways of the killer cell inhibitory receptor and Fc gamma RIIb1 require distinct phosphatases. J Exp Med 186:473–478

    PubMed  CAS  Google Scholar 

  • Hanke T, Raulet DH (2001) Cumulative inhibition of NK cells and T cells resulting from engagement of multiple inhibitory Ly49 receptors. J Immunol 166:3002–3007

    PubMed  CAS  Google Scholar 

  • Hanke T, Takizawa H, McMahon CW et al (1999) Direct assessment of MHC class I binding by seven Ly49 inhibitory NK cell receptors. Immunity 11:67–77

    PubMed  CAS  Google Scholar 

  • Hao L, Nei M (2004) Genomic organization and evolutionary analysis of Ly49 genes encoding the rodent natural killer cell receptors: rapid evolution by repeated gene duplication. Immunogenetics 56:343–354

    PubMed  CAS  Google Scholar 

  • Held W, Kunz B (1998) An allele-specific, stochastic gene expression process controls the expression of multiple Ly49 family genes and generates a diverse, MHC-specific NK cell receptor repertoire. Eur J Immunol 28:2407–2416

    PubMed  CAS  Google Scholar 

  • Held W, Raulet DH (1997) Expression of the Ly49A gene in murine natural killer cell clones is predominantly but not exclusively mono-allelic. Eur J Immunol 27:2876–2884

    PubMed  CAS  Google Scholar 

  • Held W, Roland J, Raulet DH (1995) Allelic exclusion of Ly49-family genes encoding class I MHC-specific receptors on NK cells. Nature 376:355–358

    PubMed  CAS  Google Scholar 

  • Hengel H, Reusch U, Gutermann A et al (1999) Cytomegaloviral control of MHC class I function in the mouse. Immunol Rev 168:167–176

    PubMed  CAS  Google Scholar 

  • Hof P, Pluskey S, Dhe-Paganon S et al (1998) Crystal structure of the tyrosine phosphatase SHP-2. Cell 92:441–450

    PubMed  CAS  Google Scholar 

  • Hoglund P, Ohlen C, Carbone E et al (1991) Recognition of beta 2-microglobulin-negative (beta 2m-) T-cell blasts by natural killer cells from normal but not from beta 2m- mice: nonresponsiveness controlled by beta 2m- bone marrow in chimeric mice. Proc Natl Acad Sci U S A 88:10332–10336

    PubMed  CAS  Google Scholar 

  • Hoglund P, Glas R, Menard C et al (1998) Beta2-microglobulin-deficient NK cells show increased sensitivity to MHC class I-mediated inhibition, but self tolerance does not depend upon target cell expression of H-2Kb and Db heavy chains. Eur J Immunol 28:370–378

    PubMed  CAS  Google Scholar 

  • Ito M, Maruyama T, Saito N et al (2006) Killer cell lectin-like receptor G1 binds three members of the classical cadherin family to inhibit NK cell cytotoxicity. J Exp Med 203:289–295

    PubMed  Google Scholar 

  • Johansson MH, Bieberich C, Jay G et al (1997) Natural killer cell tolerance in mice with mosaic expression of major histocompatibility complex class I transgene. J Exp Med 186:353–364

    PubMed  CAS  Google Scholar 

  • Johansson MH, Hoglund E, Nakamura MC et al (1998) Alpha1/alpha2 domains of H-2D(d), but not H-2L(d), induce “missing self” reactivity in vivo–no effect of H-2L(d) on protection against NK cells expressing the inhibitory receptor Ly49G2. Eur J Immunol 28:4198–4206

    PubMed  CAS  Google Scholar 

  • Joncker NT, Fernandez NC, Treiner E et al (2009) NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self-MHC class I: the rheostat model. J Immunol 182:4572–4580

    PubMed  CAS  Google Scholar 

  • Jonsson AH, Yang L, Kim S et al (2010) Effects of MHC class I alleles on licensing of Ly49A + NK cells. J Immunol 184(7):3424–3432

    PubMed  CAS  Google Scholar 

  • Kane KP (1994) Ly-49 mediates EL4 lymphoma adhesion to isolated class I major histocompatibility complex molecules. J Exp Med 179:1011–1015

    PubMed  CAS  Google Scholar 

  • Karlhofer FM, Ribaudo RK, Yokoyama WM (1992) MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 358:66–70

    PubMed  CAS  Google Scholar 

  • Karre K, Ljunggren HG, Piontek G et al (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675–678

    PubMed  CAS  Google Scholar 

  • Kielczewska A, Pyzik M, Sun T et al (2009) Ly49P recognition of cytomegalovirus-infected cells expressing H2-Dk and CMV-encoded m04 correlates with the NK cell antiviral response. J Exp Med 206:515–523

    PubMed  CAS  Google Scholar 

  • Kim S, Poursine-Laurent J, Truscott SM et al (2005) Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436:709–713

    PubMed  CAS  Google Scholar 

  • Koh CY, Blazar BR, George T et al (2001) Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo. Blood 97:3132–3137

    PubMed  CAS  Google Scholar 

  • Koh CY, Raziuddin A, Welniak LA et al (2002) NK inhibitory-receptor blockade for purging of leukemia: effects on hematopoietic reconstitution. Biol Blood Marrow Transplant 8:17–25

    PubMed  CAS  Google Scholar 

  • Koh CY, Ortaldo JR, Blazar BR et al (2003) NK-cell purging of leukemia: superior antitumor effects of NK cells H2 allogeneic to the tumor and augmentation with inhibitory receptor blockade. Blood 102:4067–4075

    PubMed  CAS  Google Scholar 

  • Kubota A, Kubota S, Lohwasser S et al (1999) Diversity of NK cell receptor repertoire in adult and neonatal mice. J Immunol 163:212–216

    PubMed  CAS  Google Scholar 

  • Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    PubMed  CAS  Google Scholar 

  • Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9:495–502

    PubMed  CAS  Google Scholar 

  • Lian RH, Li Y, Kubota S et al (1999) Recognition of class I MHC by NK receptor Ly-49C: identification of critical residues. J Immunol 162:7271–7276

    PubMed  CAS  Google Scholar 

  • Liao NS, Bix M, Zijlstra M et al (1991) MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity. Science 253:199–202

    PubMed  CAS  Google Scholar 

  • Ljunggren HG, Van Kaer L, Ploegh HL et al (1994) Altered natural killer cell repertoire in Tap-1 mutant mice. Proc Natl Acad Sci U S A 91:6520–6524

    PubMed  CAS  Google Scholar 

  • Long EO (2008) Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol Rev 224:70–84

    PubMed  CAS  Google Scholar 

  • Lundqvist A, McCoy JP, Samsel L et al (2007) Reduction of GVHD and enhanced antitumor effects after adoptive infusion of alloreactive Ly49-mismatched NK cells from MHC-matched donors. Blood 109:3603–3606

    PubMed  CAS  Google Scholar 

  • MacFarlane AW, Campbell KS (2006) Signal transduction in natural killer cells. Curr Top Microbiol Immunol 298:23–57

    PubMed  Google Scholar 

  • Makrigiannis AP, Gosselin P, Mason LH et al (1999) Cloning and characterization of a novel activating Ly49 closely related to Ly49A. J Immunol 163:4931–4938

    PubMed  CAS  Google Scholar 

  • Makrigiannis AP, Pau AT, Saleh A et al (2001) Class I MHC-binding characteristics of the 129/J Ly49 repertoire. J Immunol 166:5034–5043

    PubMed  CAS  Google Scholar 

  • Makrigiannis AP, Pau AT, Schwartzberg PL et al (2002) A BAC contig map of the Ly49 gene cluster in 129 mice reveals extensive differences in gene content relative to C57BL/6 mice. Genomics 79:437–444

    PubMed  CAS  Google Scholar 

  • Marincola FM, Shamamian P, Alexander RB et al (1994) Loss of HLA haplotype and B locus down-regulation in melanoma cell lines. J Immunol 153:1225–1237

    PubMed  CAS  Google Scholar 

  • Mason LH, Ortaldo JR, Young HA et al (1995) Cloning and functional characteristics of murine large granular lymphocyte-1: a member of the Ly-49 gene family (Ly-49G2). J Exp Med 182:293–303

    PubMed  CAS  Google Scholar 

  • Mason LH, Gosselin P, Anderson SK et al (1997) Differential tyrosine phosphorylation of inhibitory versus activating Ly-49 receptor proteins and their recruitment of SHP-1 phosphatase. J Immunol 159:4187–4196

    PubMed  CAS  Google Scholar 

  • McQueen KL, Freeman JD, Takei F et al (1998) Localization of five new Ly49 genes, including three closely related to Ly49c. Immunogenetics 48:174–183

    PubMed  CAS  Google Scholar 

  • McQueen KL, Lohwasser S, Takei F et al (1999) Expression analysis of new Ly49 genes: most transcripts of Ly49j lack the transmembrane domain. Immunogenetics 49:685–691

    PubMed  CAS  Google Scholar 

  • Mehta IK, Smith HR, Wang J et al (2001a) A “chimeric” C57l-derived Ly49 inhibitory receptor resembling the Ly49D activation receptor. Cell Immunol 209:29–41

    PubMed  CAS  Google Scholar 

  • Mehta IK, Wang J, Roland J et al (2001b) Ly49A allelic variation and MHC class I specificity. Immunogenetics 53:572–583

    PubMed  CAS  Google Scholar 

  • Merck E, Voyle RB, MacDonald HR (2009) Ly49D engagement on T lymphocytes induces TCR-independent activation and CD8 effector functions that control tumor growth. J Immunol 182:183–192

    PubMed  CAS  Google Scholar 

  • Michaelsson J, Achour A, Salcedo M et al (2000) Visualization of inhibitory Ly49 receptor specificity with soluble major histocompatibility complex class I tetramers. Eur J Immunol 30:300–307

    PubMed  CAS  Google Scholar 

  • Mishra AK, Zhang A, Niu T et al (2002) Substrate specificity of protein tyrosine phosphatase: differential behavior of SHP-1 and SHP-2 towards signal regulation protein SIRPalpha1. J Cell Biochem 84:840–846

    PubMed  Google Scholar 

  • Nakamura MC, Niemi EC, Fisher MJ et al (1997) Mouse Ly-49A interrupts early signaling events in natural killer cell cytotoxicity and functionally associates with the SHP-1 tyrosine phosphatase. J Exp Med 185:673–684

    PubMed  CAS  Google Scholar 

  • Natarajan K, Boyd LF, Schuck P et al (1999) Interaction of the NK cell inhibitory receptor Ly49A with H-2Dd: identification of a site distinct from the TCR site. Immunity 11:591–601

    PubMed  CAS  Google Scholar 

  • Olcese L, Lang P, Vely F et al (1996) Human and mouse killer-cell inhibitory receptors recruit PTP1C and PTP1D protein tyrosine phosphatases. J Immunol 156:4531–4534

    PubMed  CAS  Google Scholar 

  • Olsson-Alheim MY, Sundback J, Karre K et al (1999) The MHC class I molecule H-2Dp inhibits murine NK cells via the inhibitory receptor Ly49A. J Immunol 162:7010–7014

    PubMed  CAS  Google Scholar 

  • Orr MT, Sun JC, Hesslein DG et al (2009) Ly49H signaling through DAP10 is essential for optimal natural killer cell responses to mouse cytomegalovirus infection. J Exp Med 206:807–817

    PubMed  CAS  Google Scholar 

  • Orr MT, Murphy WJ, Lanier LL (2010) 'Unlicensed' natural killer cells dominate the response to cytomegalovirus infection. Nat Immunol 11:321–327

    PubMed  CAS  Google Scholar 

  • Palmieri G, Tullio V, Zingoni A et al (1999) CD94/NKG2-A inhibitory complex blocks CD16-triggered Syk and extracellular regulated kinase activation, leading to cytotoxic function of human NK cells. J Immunol 162:7181–7188

    PubMed  CAS  Google Scholar 

  • Peterson ME, Long EO (2008) Inhibitory receptor signaling via tyrosine phosphorylation of the adaptor Crk. Immunity 29:578–588

    PubMed  CAS  Google Scholar 

  • Proteau MF, Rousselle E, Makrigiannis AP (2004) Mapping of the BALB/c Ly49 cluster defines a minimal natural killer cell receptor gene repertoire. Genomics 84:669–677

    PubMed  CAS  Google Scholar 

  • Raulet DH, Held W, Correa I et al (1997) Specificity, tolerance and developmental regulation of natural killer cells defined by expression of class I-specific Ly49 receptors. Immunol Rev 155:41–52

    PubMed  CAS  Google Scholar 

  • Robbins SH, Tessmer MS, Mikayama T et al (2004) Expansion and contraction of the NK cell compartment in response to murine cytomegalovirus infection. J Immunol 173:259–266

    PubMed  CAS  Google Scholar 

  • Romagne F, Andre P, Spee P et al (2009) Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood 114:2667–2677

    PubMed  CAS  Google Scholar 

  • Rouhi A, Lai CB, Cheng TP et al (2009) Evidence for high bi-allelic expression of activating Ly49 receptors. Nucleic Acids Res 37:5331–5342

    PubMed  CAS  Google Scholar 

  • Ruggeri L, Capanni M, Urbani E et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100

    PubMed  CAS  Google Scholar 

  • Sasawatari S, Yoshizaki M, Taya C et al (2010) The Ly49Q receptor plays a crucial role in neutrophil polarization and migration by regulating raft trafficking. Immunity 32:200–213

    PubMed  CAS  Google Scholar 

  • Scarpellino L, Oeschger F, Guillaume P et al (2007) Interactions of Ly49 family receptors with MHC class I ligands in trans and cis. J Immunol 178:1277–1284

    PubMed  CAS  Google Scholar 

  • Shlomchik WD, Couzens MS, Tang CB et al (1999) Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 285:412–415

    PubMed  CAS  Google Scholar 

  • Silver ET, Lavender KJ, Gong DE et al (2002) Allelic variation in the ectodomain of the inhibitory Ly-49G2 receptor alters its specificity for allogeneic and xenogeneic ligands. J Immunol 169:4752–4760

    PubMed  Google Scholar 

  • Smith HR, Karlhofer FM, Yokoyama WM (1994) Ly-49 multigene family expressed by IL-2-activated NK cells. J Immunol 153:1068–1079

    PubMed  CAS  Google Scholar 

  • Smith KM, Wu J, Bakker AB et al (1998) Ly-49D and Ly-49H associate with mouse DAP12 and form activating receptors. J Immunol 161:7–10

    PubMed  CAS  Google Scholar 

  • Smith HR, Heusel JW, Mehta IK et al (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci U S A 99:8826–8831

    PubMed  CAS  Google Scholar 

  • Stebbins CC, Watzl C, Billadeau DD et al (2003) Vav1 dephosphorylation by the tyrosine phosphatase SHP-1 as a mechanism for inhibition of cellular cytotoxicity. Mol Cell Biol 23:6291–6299

    PubMed  CAS  Google Scholar 

  • Sun JC, Lanier LL (2008) Cutting edge: viral infection breaks NK cell tolerance to “missing self”. J Immunol 181:7453–7457

    PubMed  CAS  Google Scholar 

  • Sun JC, Beilke JN, Lanier LL (2009) Adaptive immune features of natural killer cells. Nature 457:557–561

    PubMed  CAS  Google Scholar 

  • Tai LH, Goulet ML, Belanger S et al (2007) Recognition of H-2K(b) by Ly49Q suggests a role for class Ia MHC regulation of plasmacytoid dendritic cell function. Mol Immunol 44:2638–2646

    PubMed  CAS  Google Scholar 

  • Tai LH, Goulet ML, Belanger S et al (2008) Positive regulation of plasmacytoid dendritic cell function via Ly49Q recognition of class I MHC. J Exp Med 205:3187–3199

    PubMed  CAS  Google Scholar 

  • Takei F, Brennan J, Mager DL (1997) The Ly-49 family: genes, proteins and recognition of class I MHC. Immunol Rev 155:67–77

    PubMed  CAS  Google Scholar 

  • Tonks NK, Neel BG (1996) From form to function: signaling by protein tyrosine phosphatases. Cell 87:365–368

    PubMed  CAS  Google Scholar 

  • Tortorella D, Gewurz BE, Furman MH et al (2000) Viral subversion of the immune system. Annu Rev Immunol 18:861–926

    PubMed  CAS  Google Scholar 

  • Toyama-Sorimachi N, Tsujimura Y, Maruya M et al (2004) Ly49Q, a member of the Ly49 family that is selectively expressed on myeloid lineage cells and involved in regulation of cytoskeletal architecture. Proc Natl Acad Sci U S A 101:1016–1021

    PubMed  CAS  Google Scholar 

  • Vahlne G, Lindholm K, Meier A et al (2010) In vivo tumor cell rejection induced by NK cell inhibitory receptor blockade: maintained tolerance to normal cells even in the presence of IL-2. Eur J Immunol 40:813–823

    PubMed  CAS  Google Scholar 

  • Valiante NM, Phillips JH, Lanier LL et al (1996) Killer cell inhibitory receptor recognition of human leukocyte antigen (HLA) class I blocks formation of a pp 36/PLC-gamma signaling complex in human natural killer (NK) cells. J Exp Med 184:2243–2250

    PubMed  CAS  Google Scholar 

  • Van Beneden K, Stevenaert F, De Creus A et al (2001) Expression of Ly49E and CD94/NKG2 on fetal and adult NK cells. J Immunol 166:4302–4311

    PubMed  Google Scholar 

  • Van Beneden K, De Creus A, Stevenaert F et al (2002) Expression of inhibitory receptors Ly49E and CD94/NKG2 on fetal thymic and adult epidermal TCR V gamma 3 lymphocytes. J Immunol 168:3295–3302

    PubMed  Google Scholar 

  • Van Den Broeck T, Stevenaert F, Taveirne S et al (2008) Ly49E-dependent inhibition of natural killer cells by urokinase plasminogen activator. Blood 112:5046–5051

    Google Scholar 

  • Vivier E, Anfossi N (2004) Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future. Nat Rev Immunol 4:190–198

    PubMed  CAS  Google Scholar 

  • Vyas YM, Mehta KM, Morgan M et al (2001) Spatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulated noncytolytic and cytolytic interactions. J Immunol 167:4358–4367

    PubMed  CAS  Google Scholar 

  • Vyas YM, Maniar H, Dupont B (2002) Cutting edge: differential segregation of the SRC homology 2-containing protein tyrosine phosphatase-1 within the early NK cell immune synapse distinguishes noncytolytic from cytolytic interactions. J Immunol 168:3150–3154

    PubMed  CAS  Google Scholar 

  • Vyas YM, Maniar H, Lyddane CE et al (2004) Ligand binding to inhibitory killer cell Ig-like receptors induce colocalization with Src homology domain 2-containing protein tyrosine phosphatase 1 and interruption of ongoing activation signals. J Immunol 173:1571–1578

    PubMed  CAS  Google Scholar 

  • Wang JW, Howson JM, Ghansah T et al (2002) Influence of SHIP on the NK repertoire and allogeneic bone marrow transplantation. Science 295:2094–2097

    PubMed  CAS  Google Scholar 

  • Wilhelm BT, Gagnier L, Mager DL (2002) Sequence analysis of the ly49 cluster in C57BL/6 mice: a rapidly evolving multigene family in the immune system. Genomics 80:646–661

    PubMed  CAS  Google Scholar 

  • Wong S, Freeman JD, Kelleher C et al (1991) Ly-49 multigene family. New members of a superfamily of type II membrane proteins with lectin-like domains. J Immunol 147:1417–1423

    PubMed  CAS  Google Scholar 

  • Wu MF, Raulet DH (1997) Class I-deficient hemopoietic cells and nonhemopoietic cells dominantly induce unresponsiveness of natural killer cells to class I-deficient bone marrow cell grafts. J Immunol 158:1628–1633

    PubMed  CAS  Google Scholar 

  • Yang J, Liang X, Niu T et al (1998) Crystal structure of the catalytic domain of protein-tyrosine phosphatase SHP-1. J Biol Chem 273:28199–28207

    PubMed  CAS  Google Scholar 

  • Yokoyama WM, Kim S (2006) Licensing of natural killer cells by self-major histocompatibility complex class I. Immunol Rev 214:143–154

    PubMed  CAS  Google Scholar 

  • Yokoyama WM, Plougastel BF (2003) Immune functions encoded by the natural killer gene complex. Nat Rev Immunol 3:304–316

    PubMed  CAS  Google Scholar 

  • Yu YY, George T, Dorfman JR et al (1996) The role of Ly49A and 5E6(Ly49C) molecules in hybrid resistance mediated by murine natural killer cells against normal T cell blasts. Immunity 4:67–76

    PubMed  CAS  Google Scholar 

  • Yu MC, Su LL, Zou L et al (2008) An essential function for beta-arrestin 2 in the inhibitory signaling of natural killer cells. Nat Immunol 9:898–907

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M.T.O. is an Irvington Postdoctoral Fellow of the Cancer Research Institute. L.L.L. is a American Cancer Society Professor and is supported by NIH grants AI068129, CA095137, and AI066897. The authors have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark T. Orr or Lewis L. Lanier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Orr, M.T., Lanier, L.L. (2010). Inhibitory Ly49 Receptors on Mouse Natural Killer Cells. In: Ahmed, R., Honjo, T. (eds) Negative Co-Receptors and Ligands. Current Topics in Microbiology and Immunology, vol 350. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_85

Download citation

Publish with us

Policies and ethics