Skip to main content

Abstract

In this chapter, I discuss methods of obtaining optical section data using methods other than standard confocal microscopy. These techniques have the potential of being more light efficient, faster, and of providing better resolution than standard, unprocessed confocal microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andresen, V., Egner, A., and Hell, S.W., 2001, Time-multiplexed multifocal multiphoton microscope, Opt. Lett. 26:75–77.

    CAS  Google Scholar 

  • Ando, R., Mizuno, H., and Miyawaki, A., 2004, Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting, Science 306:1370–1373.

    Article  CAS  PubMed  Google Scholar 

  • Barth, M., and Stelzer, E.H.K., 1994, Boosting the optical transfer-function with a spatially resolving detector in a high numerical aperture confocal reflection microscope, Optik 96:53–58.

    Google Scholar 

  • Bailey, B., Farkas, D.L., Taylor, D.L., and Lanni, F., 1993, Enhancement of axial resolution in fluorescence microscopy by standing wave excitation, Nature 366:44–48.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Levy, M., and Peleg, E., August 1995, WO 97/06509, US Patent 5,867,604.

    Google Scholar 

  • Benedetti, P.A., Evangelista, V., Guidarini, D., and Vestri, S., 1996, US Patent 6,016,367.

    Google Scholar 

  • Bertero, M., Boccacci, P., Defrise, M., De Mol, C., and Pike, E.R., 1989, Superresolution in confocal scanning microscopy: II. The incoherent case, Inverse Problems 5:441–461.

    Article  Google Scholar 

  • Bertero, M., De Mol, C., Pike, E.R, and Walzer, J.G., 1984, Resolution in diffraction- limited imaging, a singular value analysis. IV. The case of uncertain localization or non-uniform illumination of the object. Opt. Acta 31:923–946.

    Google Scholar 

  • Bewersdorf, J., Pick, R., and Hell, S.W., 1998, Multifocal multiphoton microscopy, Opt. Lett. 23:655–657.

    CAS  Google Scholar 

  • Corrie, J.E., Davis, C.T., and Eccleston, J.F., 2001, Chemistry of sulforhodamine- amine conjugates, Bioconjug. Chem. 12:186–194.

    CAS  Google Scholar 

  • Cox, I.J., and Sheppard, C.J.R, 1986, Information capacity and resolution in an optical system, J. Opt. Soc. Am. A 3:1152–1158.

    Article  Google Scholar 

  • Dodt, H.-U., 1990, German Patent DE 40 23 650 A1.

    Google Scholar 

  • Dodt, H.-U., and Becker, K., 2003, Confocal microscopy in transmitted light, Proc. SPIE 5139:79–87.

    Article  Google Scholar 

  • Dodt, H.-U., Becker, K., Eder, M., and Zieglgänsberger, W., 2001, Confocal microscopy of unstained neurons in brain slices, Schloessmann Seminar 2001 Abstractbook, Max-Planck Society, Schloss Elman, Oberbayern, DE, pp. 22–23.

    Google Scholar 

  • Egner, A., Jakobs, S., and Hell, S.W., 2002, Fast 100-nm resolution 3Dmicroscope reveals structural plasticity of mitochondria in live yeast, Proc. Natl. Acad. Sci. USA 99:3370–3375.

    Article  CAS  PubMed  Google Scholar 

  • Failla, A.V., Spoeri, U., Albrecht, B., Kroll, A., and Cremer, C., 2002, Nanosizing of fluorescent objects by spatially modulated illuminated

    Google Scholar 

  • microscopy, Appl. Opt. 41:7275–7283.

    Google Scholar 

  • Frohn, J.T., Knapp, H.F., and Stemmer, A., 2000, True optical resolution beyond the Rayleigh limit achieved by standing wave illumination, Proc. Natl. Acad. Sci. USA 97:7232–7236.

    Article  CAS  PubMed  Google Scholar 

  • Frohn, J.T., Knapp, H.F., and Stemmer, A., 2001, Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation, Opt. Lett. 26:828–830.

    CAS  Google Scholar 

  • Fukano, T., and Miyawaki, A., 2003, Whole-field fluorescence microscope with digital micromirror device: Imaging of biological samples, Appl. Opt. 42:4119–4124.

    Google Scholar 

  • Giordano, L., Jovin, T.M., Irie, M., and Jares-Erijman, E.A., 2002, Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET) J. Am. Chem. Soc. 124:7481–7489.

    Article  CAS  Google Scholar 

  • Gustafsson, M.G.L., 2000, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy, J. Microsc. 198:82–87.

    Article  CAS  Google Scholar 

  • Gustafsson, M.G.L., 2005, Non-linear structured-illumination microscopy: widefield fluorescence imaging with theoretically unlimited resolution, Pro. Nat. Acad. Sci. USA 102:13081–13086.

    Article  CAS  Google Scholar 

  • Gustafsson, M.G.L., Agard, D.A., and Sedat, J.W., 1999, I5M: 3D widefield light microscopy with better than 100 nm axial resolution, J. Microsc. 195: 10–16.

    Article  CAS  Google Scholar 

  • Gustafsson, M.G.L., Agard, D.A., and Sedat, J.W., 2000, Doubling the lateral resolution of widefield fluorescence microscopy using structured illumination microscopy, Proc. SPIE 3919:141–150.

    Article  Google Scholar 

  • Gustafsson, M.G.L., Sedat, J.W., and Agard, D.A., US Patent 5,671,085.

    Google Scholar 

  • Hanley, Q.S., Verveer, P.J., Gemkov, M.J., Arndt-Jovin, D., and Jovin, T.M., 1999, An optical sectioning programmable array microscope implemented with a digital micromirror device, J. Microsc. 196:317–331.

    Article  CAS  Google Scholar 

  • Heintzmann, R., 2003, Saturated patterned excitation microscopy with twodimensional excitation patterns, Micron 34:283–291.

    Article  PubMed  Google Scholar 

  • Heintzmann, R., and Cremer, C., 1999a, Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating, Proc. SPIE 3568:185–196.

    Article  Google Scholar 

  • Heintzmann, R., and Cremer, C., March 1999b, Patent WO 0052512.

    Google Scholar 

  • Heintzmann, R., Jovin, T.M., and Cremer, C., 2002, Saturated patterned excitation microscopy — a concept for optical resolution improvement, J. Opt. Soc. Am. A 19:1599–1609.

    Article  Google Scholar 

  • Heintzmann, R., Hanley, Q.S., Arndt-Jovin, D., and Jovin, T.M., 2001, A dual path programmable array microscope (PAM): Simultaneous acquisition of conjugate and non-conjugate images, J. Microsc., 204:119–137.

    Article  CAS  PubMed  Google Scholar 

  • Hiraoka, Y., Sedat, J.W., and Agard, D.A., 1990, Determination of 3-dimensional imaging properties of a light-microscope system — partial confocal behaviour in epifluorescence microscopy, Biophys. J. 57:325– 333.

    CAS  Google Scholar 

  • Hell, S.W., 2004, Strategy for far-field optical imaging and writing without diffraction limit, Phys. Lett. A 326:140–145.

    Article  CAS  Google Scholar 

  • Hell, S.W., and Kroug, M., 1995, Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit, Appl. Phys. B 60:495–497.

    Article  Google Scholar 

  • Ichihara, A., Tanaami, T., Isozaki, K., Sugiyama, Y., Kosugi, Y., Mikuriya, K., Abe, M., and Uemura, I., 1996, High-speed confocal fluorescence

    Google Scholar 

  • microscopy using a Nipkow scanner with microlenses for 3-D imaging of single fluorescent molecules in real time, Bioimages 4:57–62.

    Google Scholar 

  • Klar, T.A., Jakobs, S., Dyba, M., and Hell, S.W., 2000, Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission, Proc. Natl. Acad. Sci. USA 97:8206–8210.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthi, V., Bailey, B., and Lanni, F., 1996, Image processing in 3D standing-wave fluorescence microscopy, Proc. SPIE 2655:18–25.

    Article  Google Scholar 

  • Lanni, F., Bailey, B., Farkas, D.L., and Taylor, D.L., 1993, Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopes, Bioimaging 1:187–196.

    Article  Google Scholar 

  • Lanni, F., Taylor, D.L., and Waggoner, A.S., 1986, US Patent 4,621,911.

    Google Scholar 

  • Lukosz, W., 1967, Optical systems with resolving powers exceeding the classical limit. II, J. Opt. Soc. Am. 57:932–941.

    Article  Google Scholar 

  • Lukosz, W., and Marchand, M., 1963, Optischen Abbildung unter Überschreitung der beugungsbedingten Auflösungsgrenze [in German], Opt. Acta 10:241–255.

    Google Scholar 

  • Majoul, I., Straub, M., Duden, R., Hell, S. W., and Söling, H. D., 2002, Fluorescence resonance energy transfer analysis of protein-protein interactions in single living cells by multifocal multiphoton microscopy, Rev. Mol. Biotechnol. 82:267–277.

    Article  CAS  Google Scholar 

  • Mermelstein, M.S., 1999, Synthetic aperture microscopy, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, June 1999.

    Google Scholar 

  • Nagorni, M., and Hell, S.W., 2001a, Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts, J. Opt. Soc. Am. A 18:36–48.

    CAS  Google Scholar 

  • Nagorni, M., and Hell, S.W., 2001b, Coherent use of opposing lenses for axial resolution increase. II. Power and limitation for nonlinear image restoration, J. Opt. Soc. Am. A 18:49–54.

    CAS  Google Scholar 

  • Neil, M.A.A., Juskaitis, R., and Wilson, T., 1997, Method of obtaining optical sectioning by using structured light in a conventional microscope, Opt. Lett. 22:1905–1907.

    CAS  Google Scholar 

  • Nellist, P.D., McCallum, B.C., and Rodenburg, J.M., 1995, Resolution beyond the “information limit” in transmission electron microscopy, Nature 374:630–632.

    Article  CAS  Google Scholar 

  • Pawley, J., Blouke, M., and Jenesick, J., 1996, The CCDiode: An optimal detector for laser confocal microscopes, Proc. SPIE 2655:125–129.

    Article  Google Scholar 

  • Petràn˘, M., Hadravsky, M., Egger, M.D., and Galambos, R., 1968, Tandemscanning reflected-light microscope, J. Opt. Soc. Am. 58:661.

    Article  Google Scholar 

  • Sandison, D.R., Williams, R.M., Wells, K.S., Strickler, J., and Webb, W.W., 1995, Quantitative fluorescence confocal laser scanning microscopy (CLSM), In: Handbook of Biological Confocal Microscopy, 2nd ed. (J.B. Pawley, ed.), Plenum Press, New York, pp. 267–268.

    Google Scholar 

  • Schaefer, L.H., Schuster, D., and Schaffer, J., 2004, Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach, J. Microsc. 216:165–174.

    Article  CAS  Google Scholar 

  • Schönle, A., Hänninen, P.E., and Hell, S.W., 1999, Nonlinear fluorescence through intermolecular energy transfer and resolution increase in fluorescence microscopy, Ann. Phys. (Leipzig) 8:115–133.

    Article  Google Scholar 

  • Schwarz, C.J., Kuznetsova, Y., and Brueck, S.R.J., 2003, Imaging interferometric microscopy, Opt. Lett. 28:1424–1426.

    CAS  Google Scholar 

  • Sheppard, C.J.R., and Cogswell, C.J., 1990, Confocal microscopy with detector arrays, J. Modern Opt. 37:267–279.

    Article  CAS  Google Scholar 

  • So, P.T.C., Kwon, H-S., and Dong, C.Y., 2001, Resolution enhancement in standing-wave total internal reflection microscopy: a pointspread- function engineering approach, J. Opt. Soc. Am. A 18:2833– 2845.

    Article  CAS  Google Scholar 

  • Verveer, P.J., Hanley, Q.S., Verbeek, P.W., van Vliet, L.J., and Jovin, T.M., 1998, Theory of confocal fluorescence imaging in the programmable array microscope (PAM), J. Microsc. 189:192–198.

    Article  Google Scholar 

  • Wilson, T., Juskaitis, R., Neil, M.A.A., and Kozubek, M., 1996, Confocal microscopy by aperture correlation Opt. Lett. 21:1879–1881.

    CAS  Google Scholar 

  • Yaroslavsky, L., 2003, Boundary effect free and adaptive discrete signal sincinterpolation algorithms for signal and image resampling, Appl. Opt. 42:4166–4175.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Heintzmann, R. (2006). Structured Illumination Methods. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_13

Download citation

Publish with us

Policies and ethics