Skip to main content

Abstract

If a picture is worth a thousand words, then a movie may be worth a million words. Microcinematography and, later, video microscopy have provided great insight into biological phenomena. One limitation, however, has been the difficulty of imaging in three dimensions. In many cases, observations have been made on cultured cells that are thin to start with or tissue preparations that have been sectioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, C.L., Chen, Y.T., Smith, S.J., and Nelson, W.J., 1998, Mechanisms of epithelial cell-cell adhesion and cell compaction revealed by highresolution tracking of E-cadherin-green fluorescent protein, J. Cell Biol. 142:1105–1119.

    CAS  Google Scholar 

  • Adams, M.C., Salmon, W.C., Gupton, S.L., Cohan, C.S., Wittmann, T., Prigozhina, N., and Waterman-Storer, C.M., 2003, A high-speed multispectral spinning-disk confocal microscope system for fluorescent speckle microscopy of living cells, Methods 29:29–41.

    CAS  PubMed  Google Scholar 

  • Amos, W.B., Reichelt, S., Cattermole, D.M., and Laufer, J., 2003, Reevaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics, J. Microsc. 210:166–175.

    CAS  Google Scholar 

  • Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H., and Miyawaki, A., 2002, An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein, Proc. Natl. Acad. Sci. USA 99:12651–12656.

    CAS  PubMed  Google Scholar 

  • Ando, R., Mizuno, H., and Miyawaki, A., 2004, Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting, Science 306:1370–1373.

    CAS  PubMed  Google Scholar 

  • Andrews, P.M., Petroll, W.M., Cavanagh, H.D., and Jester, J.V., 1991, Tandem scanning confocal microscopy (TSCM) of normal and ischemic living kidneys, Am. J. Anat. 191:95–102.

    CAS  PubMed  Google Scholar 

  • Andrews, P.D., Harper, I.S., and Swedlow, J.R., 2002, To 5D and beyond: Quantitative fluorescence microscopy in the postgenomic era, Traffic 3:29–36.

    PubMed  Google Scholar 

  • Ashkin, A., Schutze, K., Dziedzic, J.M., Euteneuer, U., and Schliwa, M., 1990, Force generation of organelle transport measured in vivo by an infrared laser trap, Nature 348:346–348.

    CAS  PubMed  Google Scholar 

  • Ashworth, R., 2004, Approaches to measuring calcium in zebrafish: Focus on neuronal development, Cell Calcium 35:393–402.

    CAS  PubMed  Google Scholar 

  • Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E., and Webb, W.W., 1976, Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophys. J. 16:1055–1069.

    CAS  Google Scholar 

  • Bacia, K., and Schwille, P., 2003, A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy, Methods 29:74–85.

    CAS  PubMed  Google Scholar 

  • Baker, G.E., and Reese, B.E., 1993, Using confocal laser scanning microscopy to investigate the organization and development of neuronal projections labeled with DiI, Methods Cell Biol. 38:325–344.

    CAS  PubMed  Google Scholar 

  • Baker, M.W., Kauffman B., Macagno, E.R., and Zipser, B., 2003, In vivo dynamics of CNS sensory arbor formation: a time-lapse study in the embryonic leech, J. Neurobiol. 56:41–53.

    Google Scholar 

  • Ballestrem, C., Hinz, B., Imhof, B.A., Wehrle-Haller, B., 2001, Marching at the front and dragging behind: differential alphaVbeta3-integrin turnover regulates focal adhesion behavior, J. Cell Biol. 155(7):1319–1332.

    CAS  Google Scholar 

  • Barber, R.P., Phelps, P.E., and Vaughn, J.E., 1993, Preganglionic autonomic motor neurons display normal translocation patterns in slice cultures of embryonic rat spinal cord, J. Neurosci. 13:4898–4907.

    CAS  Google Scholar 

  • Bastiaens, P.I., and Pepperkok, R., 2000, Observing proteins in their natural habitat: The living cell, Trends Biochem. Sci. 25:631–637.

    CAS  Google Scholar 

  • Bastiaens, P.I., and Squire, A. 1999, Fluorescence lifetime imaging microscopy: Spatial resolution of biochemical processes in the cell, Trends Cell Biol. 9:48–52.

    CAS  PubMed  Google Scholar 

  • Baumgartner, W., Schutz, G.J., Wiegand, J., Golenhofen, N., and Drenckhahn, D., 2003, Cadherin function probed by laser tweezer and single molecule fluorescence in vascular endothelial cells, J. Cell Sci. 116:1001–1011.

    CAS  Google Scholar 

  • Bement, W.M., Sokac, A.M., and Mandato, C.A., 2003, Four-dimensional imaging of cytoskeletal dynamics in Xenopus oocytes and eggs, Differentiation 71:518–527.

    PubMed  Google Scholar 

  • Benediktsson, A.M., Schachtele, S.J., Green, S.H., and Dailey, M.E., 2005, Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures, J. Neurosci. Methods 141:41–53.

    PubMed  Google Scholar 

  • Berg, R.H., 2004, Evaluation of spectral imaging for plant cell analysis, J. Microsc. 214(Pt 2):174–181.

    CAS  Google Scholar 

  • Betz, W.J., Mao, F., and Bewick, G.S., 1992, Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals, J. Neurosci. 12:363–375.

    CAS  Google Scholar 

  • Block, S.M., Goldstein, L.S., and Schnapp, B.J., 1990, Bead movement by single kinesin molecules studied with optical tweezers, Nature 348:348–352.

    CAS  PubMed  Google Scholar 

  • Bloom, J.A., and Webb, W.W., 1984, Photodamage to intact erythrocyte membranes at high laser intensities: methods of assay and suppression, J. Histochem. Cytochem. 32:608–616.

    CAS  PubMed  Google Scholar 

  • Brum, G., Gonzalez, A., Rengifo, J., Shirokova, N., and Rios, E., 2000, Fast imaging in two dimensions resolves extensive sources of Ca2+ sparks in frog skeletal muscle, J. Physiol. 528:419–433.

    CAS  Google Scholar 

  • Brustein, E., Marandi, N., Kovalchuk, Y., Drapeau, P., and Konnerth, A., 2003, “In vivo” monitoring of neuronal network activity in zebrafish by twophoton Ca(2+) imaging, Pflugers Arch. 446(6):766–773.

    CAS  PubMed  Google Scholar 

  • Cahalan, M.D., Parker, I., Wei, S.H., and Miller, M.J., 2002, Two-photon tissue imaging: Seeing the immune system in a fresh light, Nat. Rev. Immunol. 2:872–880.

    CAS  PubMed  Google Scholar 

  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C., 1994, Green fluorescent protein as a marker for gene expression, Science 263:802–805.

    CAS  PubMed  Google Scholar 

  • Chen, Y., Mills, J.D., and Periasamy, A., 2003, Protein localization in living cells and tissues using FRET and FLIM, Differentiation 71:528–541.

    CAS  PubMed  Google Scholar 

  • Cechin, S.R., Gottfried, C., Prestes, C.C., Andrighetti, L., Wofchuk, S.T., and Rodnight, R., 2002, Astrocyte stellation in saline media lacking bicarbon ate: possible relation to intracellular pH and tyrosine phosphorylation, Brain Res. 946:12–23.

    CAS  PubMed  Google Scholar 

  • Cleemann, L., Wang, W., and Morad, M., 1998, Two-dimensional confocal images of organization, density and gating of focal Ca2+ release sites in rat cardiac myocytes, Proc. Natl. Acad. Sci. USA 95:10984–10989.

    CAS  PubMed  Google Scholar 

  • Cogswell, C.J., and Sheppard, C.J.R., 1991, Visualization of 3-D phase structure in confocal and conventional microscopy, Proc. SPIE. 1450:323–328.

    Google Scholar 

  • Cogswell, C.J., and Sheppard, C.J.R., 1992, Confocal differential interference contrast (DIC) microscopy: Including a theoretical analysis of conventional and confocal DIC imaging, J. Microsc. 165:81–101.

    Google Scholar 

  • Cooper, M.S., Cornell-Bell, A.H., Chernjavsky, A., Dani, J.W., and Smith, S.J., 1990, Tubulovesicular processes emerge from trans-Golgi cisternae, extend along microtubules, and interlink adjacent trans-Golgi elements into a reticulum, Cell 61:135–145.

    CAS  PubMed  Google Scholar 

  • Cooper, M.S., D’Amico, L.A., and Henry, C.A., 1999, Confocal microscopic analysis of morphogenetic movements, Methods Cell Biol. 59:179–204.

    CAS  PubMed  Google Scholar 

  • Cornell-Bell, A.H., Finkbeiner, S.M., Cooper, M.S., and Smith, S.J., 1990, Glutamate induces calcium waves in cultured astrocytes: Long-range glial signaling, Science 247:470–473.

    CAS  PubMed  Google Scholar 

  • Crittenden, S.L., and Kimble J., 1999, Confocal methods for Caenorhabditis elegans, Methods Mol Biol. 122:141–151.

    CAS  PubMed  Google Scholar 

  • Dailey, M.E., and Smith, S.J., 1993, Confocal imaging of mossy fiber growth in live hippocampal slices, Jpn. J. Physiol. 43:S183–S192.

    PubMed  Google Scholar 

  • Dailey, M.E., and Smith, S.J., 1994, Spontaneous Ca2+ transients in developing hippocampal pyramidal cells, J. Neurobiol. 25:243–251.

    CAS  Google Scholar 

  • Dailey, M.E., and Smith, S.J., 1996, The dynamics of dendritic structure in developing hippocampal slices, J. Neurosci. 16:2983–2994.

    CAS  Google Scholar 

  • Dailey, M.E., Buchanan, J., Bergles, D.E., and Smith, S.J., 1994, Mossy fiber growth and synaptogenesis in rat hippocampal slices in vitro, J. Neurosci. 14:1060–1078.

    CAS  Google Scholar 

  • Dailey, M.E., and Waite, M., 1999, Confocal imaging of microglial cell dynamics in hippocampal slice cultures, Methods 18:222–230.

    CAS  PubMed  Google Scholar 

  • Dailey, M.E., Marrs, G.S., and Kurpius, D., 2005, Maintaining live cells and tissue slices in the imaging setup, In: Imaging in Neuroscience and Development (R. Yuste and A. Konnerth, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Das, T., Payer, B., Cayouette, M., and Harris, W.A., 2003, In vivo time-lapse imaging of cell divisions during neurogenesis in the developing zebrafish retina, Neuron 37:597–609.

    CAS  PubMed  Google Scholar 

  • Delbridge, L.M., Harris, P.J., Pringle, J.T., Dally, L.J., and Morgan, T.O., 1990, A superfusion bath for single-cell recording with high-precision optical depth control, temperature regulation, and rapid solution switching, Pfluegers Arch. 416:94–97.

    CAS  Google Scholar 

  • Del Pozo, M.A., Kiosses, W.B., Alderson, N.B., Meller, N., Hahn, K.M., Schwartz, M.A., 2002, Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI, Nat. Cell Biol. 4(3):232–239.

    Google Scholar 

  • Dickinson, M.E., Bearman, G., Tille, S., Lansford, R., Fraser, S.E., 2001, Multispectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy, Biotechniques 31(6):1272, 1274–1276, 1278.

    Google Scholar 

  • Dirnagl, U., Villringer, A., and Einhaupi, K.M., 1992, In vivo confocal scanning laser microscopy of the cerebral microcirculation, J. Microsc. 165:147–157.

    CAS  Google Scholar 

  • Dixit, R., and Cyr, R., 2003, Cell damage and reactive oxygen species production induced by fluorescence microscopy: Effect on mitosis and guidelines for non-invasive fluorescence microscopy, Plant J. 36:280–290.

    CAS  PubMed  Google Scholar 

  • Dorman, G., and Prestwich, G.D., 2000, Using photolabile ligands in drug discovery and development, Trends Biotechnol. 18:64–77.

    CAS  PubMed  Google Scholar 

  • Dunn, G.A., Dobbie, I.M., Monypenny, J., Holt, M.R., and Zicha, D., 2002, Fluorescence localization after photobleaching (FLAP): Anew method for studying protein dynamics in living cells, J. Microsc. 205:109–112.

    CAS  Google Scholar 

  • Dunwiddie, T.V., 1981, Age-related differences in the in vitro rat hippocampus: Development of inhibition and the effects of hypoxia, Dev. Neurosci. 4:165–175.

    CAS  Google Scholar 

  • Dvorak, J.A., and Stotler, W.F., 1971, A controlled-environment culture system for high resolution light microscopy, Exp. Cell Res. 68:269–275.

    Google Scholar 

  • Dynes, J.L., and Ngai, J., 1998, Pathfinding of olfactory neuron axons to stereotyped glomerular targets revealed by dynamic imaging in living zebrafish embryos, Neuron 20:1081–1091.

    CAS  PubMed  Google Scholar 

  • Edwards, A.M., Silva, E., Jofre, B., Becker, M.I., and De Ioannes, A.E., 1994, Visible light effects on tumoral cells in a culture medium enriched with tryptophan and riboflavin, J. Photochem. Photobiol. B 24:179–186.

    CAS  PubMed  Google Scholar 

  • Elangovan, M., Day, R.N., and Periasamy, A., 2002, Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell, J. Microsc. 205:3–14.

    CAS  Google Scholar 

  • Ellenberg, J., Lippincott-Schwartz, J., and Presley, J.F., 1999, Dual-colour imaging with GFP variants, Trends Cell Biol. 9:52–56.

    CAS  PubMed  Google Scholar 

  • Elson, E.L., 2001, Fluorescence correlation spectroscopy measures molecular transport in cells, Traffic 2:789–796.

    CAS  PubMed  Google Scholar 

  • Fan, G.Y., Fujisaki, H., Miyawaki, A., Tsay, R.K., Tsien, R.Y., and Ellisman, M.H., 1999, Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with chameleons, Biophys. J. 76:2412–2120.

    CAS  Google Scholar 

  • Firestone, L., Cook, K., Culp, K., Talsania, N., and Preston, K. Jr., 1991, Comparison of autofocus methods for automated microscopy, Cytometry 12:195–206.

    CAS  PubMed  Google Scholar 

  • Flock, A., Flock, B., and Scarfone, E., 1998, Laser scanning confocal microscopy of the hearing organ: fluorochrome-dependent cellular damage is seen after overexposure, J. Neurocytol. 27:507–516.

    CAS  Google Scholar 

  • Forsythe, I.W., 1991, Microincubator for regulating temperature and superfusion of tissue-cultured neurons during electrophysiological or optical studies, Methods Neurosci. 4:301–318.

    Google Scholar 

  • Fraser, S.E., and O’Rourke, N.A., 1990, In situ analysis of neuronal dynamics and positional cues in the patterning of nerve connections, J. Exp. Biol. 153:61–70.

    CAS  PubMed  Google Scholar 

  • Frostig, R., ed., 2002, In Vivo Optical Imaging of Brain Function, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Gahtan, E., Sankrithi, N., Campos, J.B., and O’Malley, D.M., 2002, Evidence for a widespread brain stem escape network in larval zebrafish, J. Neurophysiol. 87(1):608–614.

    Google Scholar 

  • Gähwiler, B.H., 1984, Development of the hippocampus in vitro: Cell types, synapses, and receptors, Neuroscience 11:751–760.

    PubMed  Google Scholar 

  • Gähwiler B.H., Capogna M., Debanne D., McKinney R.A., and Thompson S.M., 1997, Organotypic slice cultures: A technique has come of age, Trends Neurosci. 20:471–477.

    PubMed  Google Scholar 

  • Gan, W.B., Kwon, E., Feng, G., Sanes, J.R., and Lichtman, J.W., 2003, Synaptic dynamism measured over minutes to months: Age-dependent decline in an autonomic ganglion, Nat. Neurosci. 6:956–960.

    CAS  Google Scholar 

  • Gerlich, D., and Ellenberg, J., 2003, 4D imaging to assay complex dynamics in live specimens, Nat. Cell Biol. 5:S14–S19.

    Google Scholar 

  • Gerlich, D., Beaudouin, J., Gebhard, M., Ellenberg, J., and Eils, R., 2001, Fourdimensional imaging and quantitative reconstruction to analyse complex spatiotemporal processes in live cells, Nat. Cell Biol. 3:852.

    CAS  PubMed  Google Scholar 

  • Gilland, E., Miller, A.L., Karplus, E., Baker. R., and Webb, S.E., 1999, Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation, Proc. Natl. Acad. Sci. USA 96:157–161.

    CAS  PubMed  Google Scholar 

  • Gleason, M.R., Higashijima, S., Dallman, J., Liu, K., Mandel, G., and Fetcho, J.R., 2003, Translocation of CaM kinase II to synaptic sites in vivo, Nat. Neurosci. 6:217–218.

    CAS  Google Scholar 

  • Goksor, M., Enger, J., and Hanstorp, D., 2004, Optical manipulation in combination with multiphoton microscopy for single-cell studies, Appl. Opt. 43:4831–4837.

    Google Scholar 

  • Gong, Y., Mo, C., and Fraser, S.E., 2004, Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation, Nature 430:689–693.

    CAS  PubMed  Google Scholar 

  • Griffin, F.M., Ashland, G., and Capizzi, R.L., 1981, Kinetics of phototoxicity of Fischer’s medium for L5178Y leukemic cells, Cancer Res. 41:2241–2248.

    CAS  PubMed  Google Scholar 

  • Grossmann, R., Stence, N., Carr, J., Fuller, L., Waite, M., and Dailey, M.E., 2002, Juxtavascular microglia migrate along brain capillaries following activation during early postnatal development, Glia 37:229–240.

    PubMed  Google Scholar 

  • Gugel, H., Bewersdorf, J., Jakobs, S., Engelhardt, J., Storz, R., and Hell, S.W., 2004, Combining 4Pi excitation and detection delivers seven-fold sharper sections in confocal imaging of live cells, Biophys. J. 87(6):4146–4152.

    CAS  Google Scholar 

  • Gustafsson, M., 1999, Extended resolution fluorescence microscopy, Curr. Opin. Struct. Biol. 9:627–634.

    CAS  PubMed  Google Scholar 

  • Hammond, A.T., and Glick, B.S., 2000, Raising the speed limits for 4D fluorescence microscopy, Traffic 1:935–40.

    CAS  PubMed  Google Scholar 

  • Hasan, M.T., Friedrich, R.W., Euler, T., Larkum, M.E., Giese, G., Both, M., Duebel, J., Waters, J., Bujard, H., Griesbeck, O., Tsien, R.Y., Nagai, T., Miyawaki, A., and Denk, W., 2004, Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control, PLoS Biol. 2:e163. Epub 2004 Jun 15.

    Google Scholar 

  • Heid, P.J., Voss, E., and Soll, D.R., 2002, 3D-DIASemb: A computer-assisted system for reconstructing and motion analyzing in 4D every cell and nucleus in a developing embryo, Dev. Biol. 245:329–347.

    CAS  Google Scholar 

  • Hell, S.W., Dyba, M., and Jakobs, S., 2004, Concepts for nanoscale resolution in fluorescence microscopy, Curr. Opin. Neurobiol. 14:599–609.

    CAS  PubMed  Google Scholar 

  • Hess, S.T., Huang, S., Heikal, A.A., and Webb, W.W., 2002, Biological and chemical applications of fluorescence correlation spectroscopy: A review, Biochemistry 41:697–705.

    CAS  PubMed  Google Scholar 

  • Hiraoka, Y., Shimi, T., and Haraguchi, T., 2002, Multispectral imaging fluorescence microscopy for living cells, Cell Struct. Funct, 27:367–374.

    Google Scholar 

  • Hollingworth, S., Soeller, C., Baylor, S.M., and Cannell, M.B., 2000, Sarcomeric Ca2+ gradients during activation of frog skeletal muscle fibres imaged with confocal and two-photon microscopy, J. Physiol. 526:551–560.

    CAS  Google Scholar 

  • Honig, M.G., and Hume, R.I., 1986, Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures, J. Cell Biol. 103:171–187.

    CAS  Google Scholar 

  • Hook, G.R., and Odeyale, C.O., 1989, Confocal scanning fluorescence microscopy: A new method for phagocytosis research, J. Leukoc. Biol. 45:277–282.

    CAS  PubMed  Google Scholar 

  • Hoppe, A.D., Swanson, J.A., 2004, Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis, Mol. Biol. Cell 15(8):3509–3519.

    CAS  PubMed  Google Scholar 

  • Ince, C., Ypey, D.L., Diesselhoff-Den Dulk, M.M., Visser, J.A., De Vos, A., and Van Furth, R., 1983, Micro-CO2-incubator for use on a microscope, J. Immun. Methods 60:269–275.

    CAS  Google Scholar 

  • Isogai, S., Lawson, N.D., Torrealday, S., Horiguchi, M., and Weinstein, B.M., 2003, Angiogenic network formation in the developing vertebrate trunk, Development 130:5281–5290.

    CAS  PubMed  Google Scholar 

  • Jester, J.V., Andrews, P.M., Petroll, W.M., Lemp, M.A., and Cavanagh, H.D., 1991, In vivo, real-time confocal imaging, J. Electron Microsc. Tech. 18:50–60.

    CAS  PubMed  Google Scholar 

  • Jester, J.V., Petroll, W.M., Garana, R.M.R., Lemp, M.A., and Cavanagh, H.D., 1992, Comparison of in vivo and ex vivo cellular structure in rabbit eyes by tandem scanning microscopy, J. Microsc. 165:169–181.

    CAS  Google Scholar 

  • Johnson, L.V., Walsh, M.L., and Chen, L.B., 1980, Localization of mitochondria in living cells with rhodamine 123, Proc. Natl. Acad. Sci. USA 77:990–994.

    CAS  PubMed  Google Scholar 

  • Jontes, J.D., Buchanan, J., and Smith, S.J., 2000, Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo, Nat. Neurosci. 3:231–237.

    CAS  Google Scholar 

  • Kim, S.A., Heinze, K.G., Waxham, M.N., and Schwille, P., 2004, Intracellular calmodulin availability accessed with two-photon cross-correlation, Proc. Natl. Acad. Sci. USA 101:105–110.

    CAS  PubMed  Google Scholar 

  • Keller, P., Toomre, D., Díaz, E., White, J., and Simons, K., 2001, Multicolour imaging of post-Golgi sorting and trafficking in live cells, Nat. Cell Biol. 3:140–149.

    CAS  Google Scholar 

  • Knebel, W., Quader, H., and Schnepf, E., 1990, Mobile and immobile endoplasmic reticulum in onion bulb epidermis cells: short- and long-term observations with a confocal laser scanning microscope, Eur. J. Cell Biol. 52:328–340.

    CAS  PubMed  Google Scholar 

  • Knight, M.M., Roberts, S.R., Lee, D.A., and Bader, D.L., 2003, Live-cell imaging using confocal microscopy induces intracellular calcium transients and cell death, Am. J. Physiol. Cell Physiol. 284:C1083–C10839.

    CAS  PubMed  Google Scholar 

  • Koppel, D.E., Axelrod, D., Schlessinger, J., Elson, E.L., and Webb, W.W., 1976, Dynamics of fluorescence marker concentration as a probe of mobility, Biophys. J. 16:1315–1329.

    CAS  Google Scholar 

  • Koster, R.W., and Fraser, S.E., 2001, Direct imaging of in vivo neuronal migration in the developing cerebellum, Curr. Biol. 11:1858–1863.

    CAS  Google Scholar 

  • Kuo, S.C., 2001, Review: Using optics to measure biological forces and mechanics, Traffic 2:757–763.

    CAS  PubMed  Google Scholar 

  • Kuo, S.C., and Sheetz, M.P., 1993, Force of single kinesin molecules measured with optical tweezers, Science 260:232–234.

    CAS  PubMed  Google Scholar 

  • Kurpius, D., and Dailey, M.E., 2005, Imaging microglia in live brain slices and slice cultures, In: Imaging in Neuroscience and Development (R. Yuste and A. Konnerth, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Lakowicz, J.R., Szmacinski, H., Nowaczyk, K., Berndt, K.W., and Johnson, M., 1992, Fluorescence lifetime imaging, Anal. Biochem. 202:316–330.

    CAS  Google Scholar 

  • Lansford, R., Bearman, G., and Fraser, S.E., 2001, Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy, J. Biomed. Opt. 6:311–318.

    CAS  PubMed  Google Scholar 

  • Lawson, N.D., and Weinstein, B.M., 2002, In vivo imaging of embryonic vascular development using transgenic zebrafish, Dev. Biol. 248:307–318.

    CAS  Google Scholar 

  • Legg, J.W., Lewis, C.A., Parsons, M., Ng, T., Isacke, C.M., 2002, Anovel PKCregulated mechanism controls CD44 ezrin association and directional cell motility, Nat. Cell Biol. 4(6):399–407.

    CAS  Google Scholar 

  • Lepe-Zuniga, J.L., Zigler, J.S. Jr., and Gery, I., 1987, Toxicity of light-exposed Hepes media, J. Immunol. Methods 103:145.

    CAS  PubMed  Google Scholar 

  • Lin, H.J., Herman, P., and Lakowicz, J.R., 2003, Fluorescence lifetimeresolved pH imaging of living cells, Cytometry 52A:77–89.

    Google Scholar 

  • Lippincott-Schwartz, J., Snapp, E., and Kenworthy, A., 2001, Studying protein dynamics in living cells, Nat. Rev. Mol. Cell. Biol. 2:444–456.

    CAS  PubMed  Google Scholar 

  • Lippincott-Schwartz, J., Altan-Bonnet, N., and Patterson, G.H., 2003, Review: Photobleaching and photoactivation: Following protein dynamics in living cells, Nat. Cell Biol. 5:S7–S14.

    Google Scholar 

  • Loew, L.M., 1993, Confocal microscopy of potentiometric fluorescent dyes, Methods Cell Biol. 38:195–209.

    CAS  PubMed  Google Scholar 

  • Lorenzl, S., Koedel, U., Dirnagl, U., Ruckdeschel, G., and Pfister, H.W., 1993, Imaging of leukocyte-endothelium interaction using in vivo confocal laser scanning microscopy during the early phase of experimental pneumococcal meningitis, J. Infect. Dis. 168:927–933.

    CAS  PubMed  Google Scholar 

  • Lucius, R., Mentlein, R., and Sievers, J., 1998, Riboflavin-mediated axonal degeneration of postnatal retinal ganglion cells in vitro is related to the formation of free radicals, Free Radic. Biol. Med. 24:798–808.

    CAS  Google Scholar 

  • Magde, D., Elson, E.L., and Webb, W.W., 1974, Fluorescence correlation spectroscopy. II. An experimental realization, Biopolymers 13:29–61.

    CAS  PubMed  Google Scholar 

  • Manders, E.M.M., Stap, J., Strackee, J., Van Driel, R., and Aten, J.A., 1996, Dynamic behavior of DNA replication domains, Exp. Cell Res. 226:328–335.

    CAS  Google Scholar 

  • Manders, E.M.M., Kimura, H., and Cook, P.R., 1999, Direct imaging of DNA in living cells reveals the dynamics of chromosome formation, J. Cell Biol. 144:813–821.

    CAS  Google Scholar 

  • Manders, E.M.M., Visser, A.E., Koppen, A., de Leeuw, W.C., van Liere, R., Brakenhoff, G.J., and van Driel, R., 2003, Four-dimensional imaging of chromatin dynamics during the assembly of the interphase nucleus, Chromosome Res. 11:537–547.

    CAS  PubMed  Google Scholar 

  • Marrs, G.S., Green, S.H., and Dailey, M.E., 2001, Rapid formation and remodeling of postsynaptic densities in developing dendrites, Nat. Neurosci. 4:1006–1013.

    CAS  Google Scholar 

  • Masters, B.R., 1992, Confocal microscopy of the in-situ crystalline lens, J. Microsc. 165:159–167.

    CAS  Google Scholar 

  • McKenna, N., and Wang, Y.L., 1986, Culturing cells on the microscope stage, Methods Cell Biol. 29:195–205.

    Google Scholar 

  • Megason, S.G., and Fraser, S.E., 2003, Digitizing life at the level of the cell: High-performance laser-scanning microscopy and image analysis for in toto imaging of development, Mechan. Dev. 120:1407–1420.

    CAS  Google Scholar 

  • Mehta, A.D., Jung, J.C., Blusberg, B.A., and Schnitzer, M.J., 2004, Fiber-optic in vivo imaging in the mammalian nervous system, Curr. Opin. Neurobiol. 14:617–628.

    CAS  PubMed  Google Scholar 

  • Meyvis, T.K., De Smedt, S.C., Van Oostveldt, P., and Demeester, J., 1999, Fluorescence recovery after photobleaching: A versatile tool for mobility and interaction measurements in pharmaceutical research, Pharm. Res. 16: 1153–1162.

    CAS  Google Scholar 

  • Miller, M.J., Wei, S.H., Parker, I., and Cahalan, M.D., 2002, Two-photon imaging of lymphocyte motility and antigen response in intact lymph node, Science 296:1869–1973.

    CAS  PubMed  Google Scholar 

  • Miller, M.J., Safrina, O., Parker, I., and Cahalan, M.D., 2004, Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes, J. Exp. Med. 200:847–856.

    CAS  PubMed  Google Scholar 

  • Minta, A., Kao, J., and Tsien, R., 1989, Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores, J. Biol Chem. 264:8171–8178.

    CAS  Google Scholar 

  • Miyawaki, A., 2003, Fluorescence imaging of physiological activity in complex systems using GFP-based probes, Curr. Opin. Neurobiol. 13:591–596.

    CAS  PubMed  Google Scholar 

  • Mizrahi, A., Crowley, J.C., Shtoyerman, E., and Katz, L.C., 2004, Highresolution in vivo imaging of hippocampal dendrites and spines, J. Neurosci. 24:3147–3151.

    CAS  Google Scholar 

  • Moné, M.J., Bernas, T., Dinant, C., Goedvree, F.A., Manders, E.M.M., Volker, M., Houtsmuller, A.B., Hoeijmakers, J.H.J., Vermeulen, W., and van Driel, R., 2004, In vivo dynamics of chromatin-associated complex formation in mammalian nucleotide excision repair, Proc. Natl. Acad. Sci. USA 101:15933–15937.

    PubMed  Google Scholar 

  • Montoya, M.C., Sancho, D., Bonello, G., Collette, P., Langlet, C., He, H.T., Aparicio, P., Alcover, A., Olive, D., and Sanchez-Madrid, F., 2002, Role of ICAM-3 in the initial interaction of T lymphocytes and APCs, Nat. Immunol. 3:159–168.

    CAS  Google Scholar 

  • Mulligan, S.J., MacVicar, B.A., 2004, Calcium transients in astrocyte endfeet cause cerebrovascular constrictions, Nature 431(7005):195–199.

    CAS  PubMed  Google Scholar 

  • Myrdal, S., and Foster, M., 1994, Time-resolved confocal analysis of antibody penetration into living, solid tumor spheroids, Scanning 16:155–167.

    CAS  PubMed  Google Scholar 

  • Nehls, S., Snapp, E.L., Cole, N.B., Zaal, K.J., Kenworthy, A.K., Robert, T.H., Ellenberg, J., Presley, J.F., Siggia, E., and Lippincott-Schwartz, J., 2000, Dynamics and retention of misfolded proteins in native ER membranes, Nat. Cell Biol. 2:288–295.

    CAS  Google Scholar 

  • Niell, C.M., Meyer, M.P., and Smith, S.J., 2004, In vivo imaging of synapse formation on a growing dendritic arbor, Nat. Neurosci. 7:254–260.

    CAS  Google Scholar 

  • Niggli, E., and Egger, M., 2004, Applications of multi-photon microscopy in cell physiology, Front Biosci. 9:1598–1610.

    CAS  PubMed  Google Scholar 

  • Noctor, S.C., Martinez-Cerdeno, V., Ivic, L., and Kriegstein, A.R., 2004, Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases, Nat. Neurosci. 7:136–144.

    CAS  Google Scholar 

  • O’Malley, D.M., Kao, Y.H., and Fetcho, J.R., 1996, Imaging the functional organization of zebrafish hindbrain segments during escape behaviors, Neuron 17:1145–1155.

    PubMed  Google Scholar 

  • O’Rourke, N.A., and Fraser, S.E., 1990, Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: An in vivo confocal microscopic study, Neuron 5:159–171.

    PubMed  Google Scholar 

  • O’Rourke, N.A., Dailey, M.E., Smith, S.J., and McConnell, S.K., 1992, Diverse migratory pathways in the developing cerebral cortex, Science 258:299–302.

    PubMed  Google Scholar 

  • Paddock, S.W., 2002, Confocal imaging of Drosophila embryos, Methods Cell Biol. 70:361–378.

    PubMed  Google Scholar 

  • Pagano, R.E., Martin, O.C., Kang, H.C., and Haugland, R.P., 1991, A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: Accumulation at the Golgi apparatus results in altered spectral properties of the sphingoid precursor, J. Cell Biol. 11:1267–1279.

    Google Scholar 

  • Park, M.K., Tepikin, A.V., and Petersen, O.H., 2002, What can we learn about cell signalling by combining optical imaging and patch clamp techniques? Pflugers Arch. 444:305–316.

    CAS  PubMed  Google Scholar 

  • Pasti, L., Zonta, M., Pozzan, T., Vicini, S., and Carmignoto, G., 2001, Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate, J. Neurosci. 21:477–484.

    CAS  Google Scholar 

  • Patterson, G.H., and Lippincott-Schwartz, J., 2002, A photoactivatable GFP for selective photolabeling of proteins and cells, Science 297:1873–1877.

    CAS  PubMed  Google Scholar 

  • Patterson, G.H., and Lippincott-Schwartz, J., 2004, Selective photolabeling of proteins using photoactivatable GFP, Methods 32:445–450.

    CAS  PubMed  Google Scholar 

  • Pepperkok, R., Squire, A., Geley, S., and Bastiaens, P.I., 1999, Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy, Curr. Biol. 9:269–272.

    CAS  Google Scholar 

  • Periasamy, A., and Day, R.N., 1999, Visualizing protein interactions in living cells using digitized GFP imaging and FRET microscopy, Methods Cell Biol. 58:293–314.

    CAS  PubMed  Google Scholar 

  • Periasamy, A., Elangovan, M., Elliott, E., and Brautigan, D.L., 2002, Fluorescence lifetime imaging (FLIM) of green fluorescent fusion proteins in living cells, Methods Mol. Biol. 183:89–100.

    CAS  Google Scholar 

  • Peter, M., Ameer-Beg, S.M., 2004, Imaging molecular interactions by multiphoton FLIM, Biol. Cell. 96(3):231–236.

    CAS  Google Scholar 

  • Petersen, M., and Dailey, M.E., 2004, Diverse microglial motility behaviors during clearance of dead cells in hippocampal slices, Glia 46:195–206.

    PubMed  Google Scholar 

  • Petran, M., Hadravsky, M., Benes, J., and Boyde, A., 1986, In vivo microscopy using the tandem scanning microscope, Ann. N.Y. Acad. Sci. 483:440–447.

    CAS  Google Scholar 

  • Petroll, W.M., Cavanagh, H.D., Lemp, M.A., Andrews, P.M., and Jester, J.V., 1992, Digital image acquisition in in vivo confocal microscopy, J. Microsc. 165:61–69.

    CAS  Google Scholar 

  • Petroll, W.M., Cavanagh, H.D., and Jester, J.V., 1993, Three-dimensional imaging of corneal cells using in vivo confocal microscopy, J. Microsc. 170:213–219.

    CAS  Google Scholar 

  • Politz, J.C., 1999, Use of caged fluorochromes to track macromolecular movement in living cells, Trends Cell Biol. 9:284–287.

    CAS  PubMed  Google Scholar 

  • Pologruto, T.A., Yasuda, R., and Svoboda, K., 2004, Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators, J. Neurosci. 24:9572–9579.

    CAS  Google Scholar 

  • Poole, C.A., Brookes, N.H., and Clover, G.M., 1993, Keratocyte networks visualized in the living cornea using vital dyes, J. Cell Sci. 106:685–692.

    Google Scholar 

  • Potter, S. M., 2004. Two-photon microscopy for 4D imaging of living neurons, In: Imaging in Neuroscience and Development: A Laboratory Manual, 2nd ed., (R. Yuste and A. Konnerth, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 8.1–8.12.

    Google Scholar 

  • Potter, S.M., and DeMarse, T.B., 2001, A new approach to neural cell culture for long-term studies, J. Neurosci. Methods 110:17–24.

    CAS  PubMed  Google Scholar 

  • Reits, E.A., and Neefjes, J.J., 2001, From fixed to FRAP: measuring protein mobility and activity in living cells. Nat. Cell Biol. 3(6):E145–E147.

    CAS  PubMed  Google Scholar 

  • Rios, E., Shirokova, N., Kirsch, W.G., Pizarro, G., Stern, M.D., Cheng, H., and Gonzalez, A., 2001, A preferred amplitude of calcium sparks in skeletal muscle, Biophys. J. 80:169–183.

    CAS  Google Scholar 

  • Robb, D.L., and Wylie, C., 1999, Confocal microscopy on Xenopus laevis oocytes and embryos, Methods Mol. Biol. 122:173–183.

    CAS  Google Scholar 

  • Rubart, M., 2004, Two-photon microscopy of cells and tissue, Circ. Res. 95:1154–1166.

    CAS  Google Scholar 

  • Salmon, W.C., Adams, M.C., and Waterman-Storer, C.M., 2002, Dual-wavelength fluorescent speckle microscopy reveals coupling of microtubule and actin movements in migrating cells, J. Cell Biol. 158:31–37.

    CAS  Google Scholar 

  • Schmidt, C.E., Horwitz, A.F., Lauffenburger, D.A., and Sheetz, M.P., 1993, Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated, J. Cell Biol. 123:977–991.

    CAS  Google Scholar 

  • Schwarzbauer, J.E., 1997, Cell migration: may the force be with you, Curr. Biol. 7(5):R292–R294.

    CAS  Google Scholar 

  • Sekar, R.B., and Periasamy, A., 2003, Fluorescence resonance energy transfer (FRET) microscopy imaging of live-cell protein localizations, J. Cell Biol. 160:629–633.

    CAS  Google Scholar 

  • Seyfried, V., Birk, H., Storz, R., and Ulrich, H., 2003, Advances in multispectral confocal imaging, Progress in Biomedical Optics and Imaging 5139:146–157.

    Google Scholar 

  • Sheetz, M.P., ed., 1998, Laser Tweezers in Cell Biology, Academic Press, San Diego, California.

    Google Scholar 

  • Siegel, W.H., and Pritchett, T., 2000, Tutorial: Examining the relationship between media and light, Biopharmaceuticals 13:65–66.

    Google Scholar 

  • Silva, E., Salim-Hanna, M., Edwards, A.M., Becker, M.I., and De Ioannes, A.E., 1991, A light-induced tryptophan-riboflavin binding: biological implications, Adv. Exp. Med. Biol. 289:33–48.

    CAS  PubMed  Google Scholar 

  • Silva, E., and Godoy, J., 1994, Riboflavin sensitized photooxidation of tyrosine, Int. J. Vitam. Nutr. Res. 64:253–256.

    CAS  PubMed  Google Scholar 

  • Smith, S.J., Cooper, M., and Waxman, A., 1990, Laser microscopy of subcellular structure in living neocortex: Can one see dendritic spines twitch? In: XYIII Symposia Medica Hoechst, Biology of Memory (L. Squire and E. Lindenlaub, eds.), Schattauer, Stuttgart, Germany, pp. 49–71.

    Google Scholar 

  • Soll, D., 1995, The use of computers in understanding how animal cells crawl, Int. Rev. Cytol. 163:43–104.

    CAS  PubMed  Google Scholar 

  • Soll, D.R., 1999, Computer-assisted three-dimensional reconstruction and motion analysis of living, crawling cells, Comput. Med. Imaging Graphics 23:3–14.

    CAS  Google Scholar 

  • Spierenburg, G.T., Oerlemans, F.T., van Laarhoven, J.P., and de Bruyn, C.H., 1984, Phototoxicity of N-2-hydroxyethylpiperazine-N¢-2-ethanesulfonic acid-buffered culture media for human leukemic cell lines, Cancer Res. 44:2253–2254.

    CAS  PubMed  Google Scholar 

  • Stence, N., Waite, M., and Dailey, M.E., 2001, Dynamics of microglial activation: A confocal time-lapse analysis in hippocampal slices, Glia 33:256–266.

    CAS  PubMed  Google Scholar 

  • Stoll, S., Delon, J., Brotz, T.M., and Germain, R.N., 2002, Dynamic imaging of T cell-dendritic cell interactions in lymph nodes, Science 296:1873–1876.

    PubMed  Google Scholar 

  • Stoppini, L., Buchs, P.A., and Muller, D., 1991, A simple method for organotypic cultures of nervous tissue, J. Neurosci. Methods 37:173–182.

    CAS  PubMed  Google Scholar 

  • Strange, K., and Spring, K.R., 1986, Methods for imaging renal tubule cells, Kidney Int. 30:192–200.

    CAS  PubMed  Google Scholar 

  • Streit, W.J., and Kreutzberg, G.W., 1987, Lectin binding by resting and reactive microglia, J. Neurocytol. 16:249–260.

    CAS  Google Scholar 

  • Stricker, S.A., 2004, Dual-channel confocal ratioing of calcium dynamics in living eggs and oocytes, Methods Mol. Biol. 254:137–148.

    CAS  Google Scholar 

  • Stryer, L., 1978, Fluorescence energy transfer as a spectroscopic ruler, Annu. Rev. Biochem. 47:819–846.

    CAS  PubMed  Google Scholar 

  • Sullivan, W., Daily, D.R., Fogarty, P., Yook, K.J., and Pimpinelli, S., 1993, Delays in anaphase initiation occur in individual nuclei of the syncytial Drosophila embryo, Mol. Biol. Cell 4:885–896.

    CAS  PubMed  Google Scholar 

  • Svoboda, K., Denk, W., Kleinfeld, D., and Tank, D., 1997, In vivo dendritic calcium dynamics in neocortical pyramidal neurons, Nature 385:161–165.

    CAS  PubMed  Google Scholar 

  • Tauer, U., 2002, Advantages and risks of multiphoton microscopy in physiology, Exp. Physiol. 87:709–714.

    Google Scholar 

  • Terasaki, M., Song, J., Wong, J.R., Weiss, M.J., and Chen, L.B., 1984, Localization of endoplasmic reticulum in living and glutaraldehyde fixed cells with fluorescent dyes, Cell 8:101–108.

    Google Scholar 

  • Thomas, C.F., and White, J.G., 1998, Four-dimensional imaging: The exploration of space and time, Trends Biotechnol. 16:175–182.

    CAS  PubMed  Google Scholar 

  • Thompson, N.L., 1991, Fluorescence correlation spectroscopy, In: Topics in Fluorescence Spectroscopy, Vol. 1 (J. R. Lakowicz, ed.), Plenum Press, New York, pp. 337–378.

    Google Scholar 

  • Trachtenberg, J.T., Chen, B.E., Knott, G.W., Feng, G., Sanes, J.R., Welker, E., and Svoboda, K., 2002, Long-term in vivo imaging of experiencedependent synaptic plasticity in adult cortex, Nature 420:788–794.

    CAS  PubMed  Google Scholar 

  • Tsurui, H., Nishimura, H., Hattori, S., Hirose, S., Okumura, K., and Shirai, T., 2000, Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition, J. Histochem. Cytochem. 48:653–662.

    CAS  PubMed  Google Scholar 

  • Verschure, P.J., van der Kraan, I., Manders, E.M., and van Driel, R., 1999, Spatial relationship between transcription sites and chromosome territories, J. Cell Biol. 147:13–24.

    CAS  Google Scholar 

  • Vesely, P., Maly, J., Cumpelik, J., Pluta, M., and Tuma V., 1982, Improved spatial and temporal resolution in an apparatus for time-lapse, phase contrast cine light micrography of cells in vitro, J. Microsc. 125:67–76.

    CAS  Google Scholar 

  • Visscher, K., and Brakenhoff, G.J., 1991, Single beam optical trapping integrated in a confocal microscope for biological applications, Cytometry 12:486–491.

    CAS  PubMed  Google Scholar 

  • Walcerz, D.B., and Diller, K.R., 1991, Quantitative light microscopy of combined perfusion and freezing processes, J. Microsc. 161:297–311, and US Patent 5,257,128.

    Google Scholar 

  • Wang, S.Q., Wei, C., Zhao, G., Brochet, D.X., Shen, J., Song, L.S., Wang, W., Yang, D., and Cheng, H., 2004, Imaging microdomain Ca2+ in muscle cells, Circ. Res. 94:1011–1022.

    CAS  Google Scholar 

  • Waterman-Storer, C.M., Sanger, J.W., and Sanger, J.M., 1993, Dynamics of organelles in the mitotic spindles of living cells: Membrane and microtubule interactions, Cell Motil. Cytosketelon 26:19–39.

    CAS  Google Scholar 

  • Waterman-Storer, C.M., Desai, A., Bulinski, J.C., and Salmon, E.D., 1998, Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells, Curr. Biol. 8:1227–1230.

    CAS  Google Scholar 

  • Weiss, M., 2004, Challenges and artifacts in quantitative photobleaching experiments, Traffic 5:662–671.

    CAS  PubMed  Google Scholar 

  • Wiseman, P.W., and Petersen, N.O., 1999, Image correlation spectroscopy. II. Optimization for ultrasensitive detection of preexisting platelet-derived growth factor-beta receptor oligomers on intact cells, Biophys. J. 76:963–977.

    CAS  PubMed  Google Scholar 

  • Wiseman, P.W., Squier, J.A., Ellisman, M.H., and Wilson, K.R., 2000, Twophoton image correlation spectroscopy and image cross-correlation spectroscopy, J. Microsc. 200:14–25.

    CAS  Google Scholar 

  • Wood, C., Kabat, E.A., Murphy, L.A., and Goldstein, I.J., 1979, Immunochemical studies of the combining sites of the two isolectins, A4 and B4, isolated from Bandeiraea simplicifolia, Arch. Biochem. Biophys. 198:1–11.

    CAS  PubMed  Google Scholar 

  • Wouters, F.S., Verveer, P.J., and Bastiaens, P.I.H., 2001, Imaging biochemistry inside cells, Trends Cell Biol. 11:203–211.

    CAS  PubMed  Google Scholar 

  • Yoder, E.J., and Kleinfeld, D., 2002, Cortical imaging through the intact mouse skull using two-photon excitation laser scanning microscopy, Microsc. Res. Techn. 56:304–305.

    Google Scholar 

  • Zhang, S., Boyd, J., Delaney, K., Murphy, T.H., 2005, Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia, J. Neurosci. 25(22):5333–5338.

    CAS  Google Scholar 

  • Zicha, D., Dobbie, I.M., Holt, M.R., Monypenny, J., Soong, D.Y., Gray, C., and Dunn, G.A., 2003, Rapid actin transport during cell protrusion, Science 300:142–145.

    CAS  PubMed  Google Scholar 

  • Zieger, M.A., Glofcheski, D.J., Lepock, J.R., and Kruuv, J., 1991, Factors influencing survival of mammalian cells exposed to hypothermia. V. Effects of hepes, free radicals, and H2O2 under light and dark conditions, Cryobiology 28:8–17.

    CAS  PubMed  Google Scholar 

  • Zigler, J.S. Jr., Lepe-Zuniga, J.L., Vistica, B., and Gery, I., 1985, Analysis of the cytotoxic effects of light-exposed HEPES-containing culture medium, In Vitro Cell Dev. Biol. 21:282–287.

    CAS  Google Scholar 

  • Zimmermann, T., Rietdorf, J., Girod, A., Georget, V., and Pepperkok, R., 2002, Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair, FEBS Lett. 531:245–249.

    CAS  PubMed  Google Scholar 

  • Zimmermann, T., Rietdorf, J., and Pepperkok, R., 2003, Spectral imaging and its applications in live-cell microscopy, FEBS Lett. 546:87–92.

    CAS  PubMed  Google Scholar 

  • Zuo, Y., Lubischer, J.L., Kang, H., Tian, L., Mikesh, M., Marks, A., Scofield, V.L., Maika, S., Newman, C., Krieg, P., and Thompson, W.J., 2004. Fluorescent proteins expressed in mouse transgenic lines mark subsets of glia, neurons, macrophages, and dendritic cells for vital examination, J. Neurosci. 24:10999–11009.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dailey, M.E., Manders, E., Soll, D.R., Terasaki, M. (2006). Confocal Microscopy of Living Cells. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_19

Download citation

Publish with us

Policies and ethics