Skip to main content

Laser Sources for Confocal Microscopy

  • Chapter
Handbook Of Biological Confocal Microscopy

Abstract

Laser assisted confocal microscopy has made a lot of progress over the past few years. Laser systems have become more modular and compact. There is an ever-increasing number of available laser excitation lines as well as an improvement in user friendliness and ease of use. At the same time, expansion of Web resources has provided easy access to a wealth of information. Our goal is both to aid the experienced and novice microscopist in quickly locating and sorting through the relevant laser information and to provide a means of avoiding common problems and pitfalls in the use of laser excitation in the various fluorescence techniques such as fluorescence correlation spectroscopy (FCS), fluorescence lifetime imaging microscopy (FLIM), fluorescence loss in photobleaching (FLIP), fluorescence recovery after photobleaching (FRAP), optical coherence tomography (OCT), second harmonic generation (SHG), single molecule detection (SMD), and single particle tracking (SPT). In this chapter we describe the characteristic properties of a number of lasers commonly used in fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhav, R.S., 1986, Data sheet 714. Sum frequency mixing and second harmonic generation. Quantum Technology, Inc., Lake Mary, FL January: (407-323-7750).

    Google Scholar 

  • Aghassi, D., Gonzalez, E., Anderson, R.R., Rajadhyaksha, M., and Gonzalez, S., 2000, Elucidating the pulsed dye laser treatment of sebaceous hyperplasia in vivo with real-time confocal scanning laser microscopy, J. Am. Acad. Dermatol. 43:49–53.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, S.G., 1993, Commercial OPO produces high-energy tunable output, Laser Focus World April:16–22.

    Google Scholar 

  • Anderson, S.G., 1994a, Narrow-linewidth OPO uses extraordinary resonance, Laser Focus World April:15–18.

    Google Scholar 

  • Anderson, S.G., 1994b, New material promises tunable UV output, Laser Focus World May:20–23.

    Google Scholar 

  • ANSI Z-136.3-1993, ANSI Standard for the safe use of lasers. Laser Institute of America (LIA), Orlando, Florida.

    Google Scholar 

  • Arecchi, F.T., and Schultz-Dubois, E.O., 1972, Laser Handbook, Vol. 1, North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Arrigoni, M., 2004a, Femtosecond laser pulses in biology: From microscopy to ablation and micromanipulation, Biophotonics Intl. June:48–51.

    Google Scholar 

  • Arrigoni, M., 2004b, The power of the pump. SPIE’s oemagazine October:29–30.

    Google Scholar 

  • Austin, L., Scaggs, M., Sowada, U., and Kahlert, H-J., 1989, A UV beamdelivery system designed for excimers, Photonics Spectra May:89–96.

    Google Scholar 

  • Art, J.J., and Goodman, M.B., 1993, Chapter 2 Rapid Scanning Confocal Microscopy, In: Cell Biological Applications of Confocal Microscopy.

    Google Scholar 

  • Methods in Cell Biology, (B. Matsumoto, ed.), Acad. Press, San Diego, pp. 53–58.

    Google Scholar 

  • Ashkin, A., and Dziedzic, J.M., 1987, Optical trapping and manipulation of viruses and bacteria, Science 235:1517.

    Article  CAS  PubMed  Google Scholar 

  • Aubourg, Ph., 2002, Laser damage: What is it?, Europhotonics June/July:46–47.

    Google Scholar 

  • Baer, T.M., 1986, Diode Laser Pumping of Solid State Lasers, Laser Focus/Electro Optics June:82–92.

    Google Scholar 

  • Bains, S., 1993, Holographic optics for when less is more, Laser Focus World April:151–154.

    Google Scholar 

  • Bass, M., and Stitch, M.L., 1985, Laser Handbook, Vol. 5, North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Beach, R.J., Krupke, W.F., Kanz, V.K., Payne, S.A., Dubinskii, M.A., and Merkle, L.D., 2004, End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling, JOSA B, 21:2151–2163.

    Google Scholar 

  • Beausoleil, R.G., 1992, Highly efficient second harmonic generation, Lasers & Optronics May:17–21.

    Google Scholar 

  • Bechhoefer, J., and Wilson, S., 2002, Faster, cheaper, safer optical tweezers for the undergraduate laboratory, Am. J. Phys. 70:393–400.

    Article  CAS  Google Scholar 

  • Bertolotti, M., 1983. Masers and Lasers. An historical Approach, Adam Hilger Ltd., Bristol.

    Google Scholar 

  • Bloom. A.L., 1968. Gas lasers, John Wiley and Sons, New York.

    Google Scholar 

  • Boas, G., 2003, Model pinpoints heating effects in optical tweezer experiments: Accurate measurements may improve calibration, Biophotonics Intl. April:59–60.

    Google Scholar 

  • Brelje, T.C., Wessendorf, M.W., and Sorenson, R.L., 1993, Chapter 4, Multicolor Laser Scanning Confocal Immunofluorescence Microscopy: Practical Application and Limitations. In: Cell Biological Applications of Confocal Microscopy. Methods in Cell Biology, (B. Matsumoto, ed.), Academic Press, San Diego, pp. 120–123.

    Google Scholar 

  • Brocas, A., Canioni, L., and Sarger, L., 2004, Efficient selection of focusing optics in non linear microscopy design through THG analysis, Opt. Express, 12:2317–2326.

    Article  PubMed  Google Scholar 

  • Brown, D.C., 1981. High-Peak-Power Nd-Glass Laser Systems, In: Springer Series in Optical Sciences, Springer-Verlag, Berlin, Vol. 25 pp. 1–276.

    Google Scholar 

  • Burgess, D.S., 2004, Laser microdissectionL Making inroads in research, Biophotonics Intl., September:46–49.

    Google Scholar 

  • Butcher, S. 1994, Optical parametric oscillators open new doors to researchers, Photonics Spectra, May:133–138.

    Google Scholar 

  • Burgin, C.D., 1988. A guide for eyeware for protection from laser light, LLLTB-87, LLNL, P.O. Box 808, Livermore, California.

    Google Scholar 

  • Carts, Y.A., 1994, Gradient-index lens tames spherical aberrations, Laser Focus World January:142–143.

    Google Scholar 

  • Casperson, L.W., 1994, How phase plates transform and control laser beams, Laser Focus World May:223–228.

    Google Scholar 

  • Chenard, F., 1994, New applications abound for rare-earth doped fibers, Photonics Spectra May:124–130.

    Google Scholar 

  • Chu, S.-W., Liu, T.-M, Sun, C.-K., Lin, C.-Y., and Tsai, H.-J., 2003, Real-time second-harmonic generation microscopy based on a 2 –GHz repetition rate Ti:sapphire laser, OpticsExpress 11:932–938.

    Google Scholar 

  • Cogwell, C.J., Hamilton, D.K., and Sheppard, C.J.R., 1992a, True color confocal reflection microscope: 442 He-Cd, 532 of freq. doubled Nd-YAG with 633 nm from He-Ne laser, J. Microscopy 165:49–60.

    Google Scholar 

  • Cogwell, C.J., Hamilton, D.K., and Sheppard, C.J.R., 1992b, Colour confocal reflection microscopy using red, green and blue lasers, J. Microscopy 165:103–117.

    Google Scholar 

  • Connor Davenport, C.M., and Gmitro, A.F., 1992, Angioscopic fluorescence imaging system, in Optical Fibers in Medicine VII, Ed. A. Katzir, SPIE Proceedings, Los Angeles, California, SPIE 1649:192–202.

    Google Scholar 

  • Cunningham, R., 1993, Vertical-cavity diode lasers, Lasers & Optronics December:19–20.

    Google Scholar 

  • Dantus, M., 2003, Pulse shaping helps achieve selective two-photon excitation, Biophotonics Intl. September:61–62.

    Google Scholar 

  • Day, T., and Li Dessau, K.D., 1994, Narrow band tunable external-cavity diode lasers offer new tools for researchers. Photonics Spectra March:99–103.

    Google Scholar 

  • Dela Cruz, J.M., Pastrirk, I, Lozovoy, V.V., Walowicz, K.A., and Dantus, M., 2004, Multiphoton intrapulse interference 3: Probing microscopic chemical environments, J. Phys. Chem. A. 108:53–58.

    Article  CAS  Google Scholar 

  • Demtröder, W., 1996, Laser spectroscopy. Basic concepts and instrumentation. 2nd edition. In: Springer Series in Chemical Physics, Springer-Verlag, Berlin, Vol. 5, pp. 1–924.

    Google Scholar 

  • Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.

    Article  CAS  PubMed  Google Scholar 

  • Duling III, I.N., 1993, Compact fiber soliton lasers produce ultrashort pulses, Laser Focus World April:213–220.

    Google Scholar 

  • Duling III, I.N., 1995, Compact sources of ultrashort pulses. Cambridge University Press, ISBN 0521461928.

    Book  Google Scholar 

  • Dunning, F.B., 1978, Tunable-ultraviolet generation by sum-frequency mixing, Laser Focus Magazine May:72–76.

    Google Scholar 

  • Dunsby, C., Lanigan, P.M.P., McGinty, J., Elson, D.S., Requejo-Isidro, J., Munro, I., Galletly, N., McCann, F., Treanor, B., Önfet, B., Davis, D.M., Neil, M.A.A., and French, P.M.W., 2004, An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy, J. Phys. D: Appl.Phys. 37:3296–3303.

    Article  CAS  Google Scholar 

  • Draaijer, A., and Houpt, P.M., 1988, A standard video-rate confocal laserscanning reflection and fluorescence microscope, Scanning 10:139–145.

    Google Scholar 

  • Driscoll, W.G., and Vaughan W., 1977, Handbook of Optics, McGraw-Hill Book Co., New York.

    Google Scholar 

  • Eden, J.G., 1988, UV and VUV lasers: Prospects and Applications, Optics News April:14–27.

    Google Scholar 

  • Ellis, G.W. 1979, A fiber-optic phase-randomizer for microscope illumination by a laser. J. Cell Biol. 83:303a.

    Google Scholar 

  • Ellis, G.W., 1988, Scanned aperture light microscopy, in Proceedings of the 46th Annual Meeting of EMSA. San Francisco Press Inc., San Francisco, pp. 48–49.

    Google Scholar 

  • Espinase, Ph., 2004, Microstructured Fibers Enable Supercontinuum Generation, SPIE OEMagazine, August:11.

    Google Scholar 

  • Erlandson, A.C., and Powell, H.T., 1991, Ten thousand flashlamps will drive the most-powerful laser, Laser Focus World August:95–100.

    Google Scholar 

  • Fermann, M.E., Galvanauskas, A., and Sucha, G., 2002, Ultrafast lasers: Technology and applications, Marcel Dekker, Inc., New York.

    Book  Google Scholar 

  • Figueroa, J., 2002, High-power semiconductor lasers. The photonics design and applications handbook, H-219-H-222, Laurin Publ. Co. Inc., Pittsfield, Massachusetts.

    Google Scholar 

  • Folkenberg, J.R., and Broeng, J., 2004, Photonic crystal fibers accommodate high powers. Photonics Spectra September:82–86.

    Google Scholar 

  • Forrester, S., 1994a, DC/DC converters: Theory of operation, Part 1, Sensors January:28–35.

    Google Scholar 

  • Forrester, S., 1994b, DC/DC converters: Theory of operation, Part 2, Sensors February:64–69.

    Google Scholar 

  • Fork, R.L., Martinez, O.E., and Gordon, J.P., 1984, Negative dispersion using pairs of prisms, Opt. Lett. 9:150.

    Article  CAS  PubMed  Google Scholar 

  • Franceschini, M.A., Fantini, S., and Gratton, E., 1994, LED’s in frequency domain spectroscopy of tissues (J.R. Lacowicz). SPIE Proceedings. In: Advances in laser and light spectroscopy to diagnose cancer and other diseases (R.R. Alfano, ed.), Los Angeles, Vol. 2135, pp. 300–306.

    Google Scholar 

  • Friebele, E.J., and Kersey, A.D., 1994, Fiberoptic sensors measure up for smart structures, Laser Focus World May:165–171.

    Google Scholar 

  • Gabler, V., 2004, Miniature fibre lasers aim to modernize visible applications, Europhotonics August/September:28–29.

    Google Scholar 

  • Galvanauskas, A., and Samson, B., 2004, Large-mode-area designs enhance fiber laser performance, SPIE’s oemagazine July:15–17.

    Google Scholar 

  • Gibson, J., 1988, Laser Cooling Water. The key to Improved Reliability, Photonics Spectra Nov:117–124.

    Google Scholar 

  • Gibson, J., 1989, Laser water cooling loops deserve attention, Laser Focus World April:123–129.

    Google Scholar 

  • Ginouves, P., 2002, Ion lasers, still a practical choice. The photonics design and applications handbook, H-206–208, Laurin Publ. Co. Inc., Pittsfield, Massachusetts.

    Google Scholar 

  • Goldman, R.D., 1993, Air-to-liquid closed-loop cooling system meet the cost performance goals of today’s laser market, Laser and Optronics February: 15–17.

    Google Scholar 

  • Günther, A.H., 1993, Optics damage constrains laser design and performance, Laser Focus World February:83–87.

    Google Scholar 

  • Guy, M., and Painchaud, Y., 2004, Fiber Bragg gratings: A versatile approach to dispersion compensation, Photonics Spectra August:96–101.

    Google Scholar 

  • Hammerling, P., Budgor, A.B., and Pinto, A., 1985, Tunable Solid-State Lasers, In: Proceedings of the First International Conference, La Jolla, California, June:13–15, 1984, Springer-Verlag, Berlin.

    Google Scholar 

  • Hard, R., Zeh, R.D., and Allen, R.D., 1977, Phase-randomized laser illumination for microscopy, J. Cell Sci. 23:335–343.

    CAS  PubMed  Google Scholar 

  • Häring, R., and Gerster, E., 2003, Semiconductor laser system fills yelloworange gap, Europhotonics August/September:38–39.

    Google Scholar 

  • Hecht, E., and Zajac A., 2003, Optics, 4th Ed., Addison-Wesley Publishing Co., Reading, Pennsylvania.

    Google Scholar 

  • Hecht, J., 1992, Ion lasers deliver power at visible and UV wavelengths, Laser Focus World December:97–105.

    Google Scholar 

  • Hecht, J., 1993a, Laser action in fibers promises a revolution in communications, Laser Focus World February:75–81.

    Google Scholar 

  • Hecht, J., 1993b, Nitrogen lasers produce ultraviolet light simply, Laser Focus World May:87–91.

    Google Scholar 

  • Hecht, J., 1993c, HeCd lasers offer economical blue and ultraviolet light, Laser Focus World August:67–71.

    Google Scholar 

  • Hecht, J., 1993d, Copper-vapor lasers find specialized applications, Laser Focus World October:99–103.

    Google Scholar 

  • Hell, S., Witting, S., Schickfus, M.V., Wijnaendts van Resandt, A.W.; Hunklinger, S., Smolka, E., and Neiger M., 1991, A confocal beam scanning white-light microscope, J. of Microscopy 163:179–1876.

    Google Scholar 

  • Herrmann, J., and Wilhelmi, B., 1987, Lasers for Ultrashort Light Pulses. North-Holland, Amsterdam.

    Google Scholar 

  • Hess, S.T., and Webb, W.W., 2002, Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy, Biophys. J., 60: 2900–2917.

    Google Scholar 

  • Higgins, T.V.. 1992, Nonlinear crystals: where the colors of the rainbow begin, Laser Focus World January:125–133.

    Google Scholar 

  • Hitz, B., 2004a, Something old, something new: German lab marries ring and disk, Photonics Spectra September:22–23.

    Google Scholar 

  • Hitz, B., 2004b, Thulium laser enables single-frequency oscillation in new spectral region, Photonics Spectra September:28–303.

    Google Scholar 

  • Hitz, B., 2004c, Hollow fiber delivers distortion-free femtosecond pulses, Photonics Spectra August:113–114.

    Google Scholar 

  • Hitz, B., 2004d, Fiber laser system produces femtosecond pulses at 25W of average power, Photonics Spectra November:88–89.

    Google Scholar 

  • Hobbs, J.R., 1993, Semiconductor lasers diversify, Laser Focus World CLEO April:116.

    Google Scholar 

  • Hobbs, J.R., 1994, Offset-plane mirrors transform laser beams, Laser Focus World May:46–50.

    Google Scholar 

  • Hodgson, D.J., 1994, How power-supply selection can improve laser-diode performance. Laser Focus World January:129–137.

    Google Scholar 

  • Hodgson, N., and Weber, H., 2005, Laser resonators and beam propagation. 2nd ed., Springer series in optical sciences, Vol. 108.

    Google Scholar 

  • Hoffmann, A., Meyer zu Hörste, G., Pilarczyk, G., Monajembashi, S., Uhl, V., and Gruelich, K.O., 2000, Optical tweezers for confocal microscopy, Appl. Phys. B. 71:747–753.

    Google Scholar 

  • Hogan, H., 2004, Imaging with three-part harmony, Biophotonics Intl. September: 62–63.

    Google Scholar 

  • Homburg, O., Finke, B., and Harten, P., 2003, High-precision homogenizers shape beams, EuroPhotonics August/September:34–35.

    Google Scholar 

  • Huth, B.G., and Kuizenga, D., 1987, Green light from doubled Nd-YAG lasers, Lasers & Optronics October:59–61.

    Google Scholar 

  • Kaiser, W., 1988, Ultrashort laser pulses and applications, Vol. 60, in Topics in Applied Physics, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Kaminskii, A.A., 1981, Laser Crystals Their Physics and Properties (translation; H.F. Ivey ed.), Vol. 14, Springer Series in Optical Sciences, Springer- Verlag, Berlin.

    Google Scholar 

  • Kiat, L.S., Tanaka, K., Tsumanuma, T., and Sanada, K., 1992, Ultrathin singlemode imagefiber for medical usage, In: Optical Fibers in Medicine VII, (A. Katzir, ed,), SPIE Proceedings, Los Angeles, California. SPIE 1649:208–217.

    Article  Google Scholar 

  • König, K., Liang, H., Berns, M.W., and Tromberg, B.J., 1996, Cell damage in near-infrared multimode optical traps as a result of multipoint absorption, Optics. Lett. 1090–1092.

    Google Scholar 

  • König, K., Becler, T.W., Fischer, P., Riemann, I., and Halbhuber, K.-J., 1999, Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes, Optics Lett. 24:113–115.

    Article  Google Scholar 

  • Kraft, T., 2004, Compact, robust lasers suit biotechnology applications, Biophotonics Intl. July: 44–46.

    Google Scholar 

  • Krueger, A., and Féru, Ph., 2004, Ytterbium Tungstate revolutionizes the field of high-power ultrafast lasers, Photonics Spectra March:46–51.

    Google Scholar 

  • Kudryashov, A.V., and Weber, H., 1999, Laser resonators: Novel design and development, SPIE Monographs PM67, pp. 1–317.

    Google Scholar 

  • Krupke, W.F., 2004, Diode-pumped visible wavelength alkali laser, US Patent 6693942.

    Google Scholar 

  • Landgraf, S., 2001, Application of semiconductor light sources for investigations of photochemical reactions, Spectrochim. Acta A, 57:2029–2048.

    Article  CAS  Google Scholar 

  • Landgraf, S., 2003, Handbook of Luminescence, Display Materials and Devices, Vol. 3, Chapter 9, pp. 371–398, ISBN:1–58883–032–2., American Scientific Publishers (ASP), Stevenson Ranch, California.

    Google Scholar 

  • Leitz, G., Fallman, E., Tuck, S., and Axner, O., 2002, Stress Response in Caenorhabditis elegans Caused by Optical Tweezers: Wavelength, Power, and Time Dependence. Biophys. J. 82:2224–2231.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, R.R., Naylor, G.A., and Kearsley, A.J., 1988, Copper Vapor Lasers Reach High Power, Laser Focus/Electro Optics April;92–96.

    Google Scholar 

  • Limpert, J., Liem, A., Schreiber, T., Röser, F., Zellmar, H., and Tünnermann, A., 2004, Scaling single-mode photonic crystal fiber lasers to kilowatts, Photonics Spectra May:54–63.

    Google Scholar 

  • Lin, J.T., and Chen, C., 1987, Choosing a Non-linear Crystal, Lasers & Optronics November:59–63

    Google Scholar 

  • Liu, T.-M., Chu, S.-W., Sun, C.-K., Lin, B.-L., Cheng, P.-C., and Johnson, I., 2001. Multiphoton confocal microscopy using a femtosecond Cr:Forsterite laser, J. Scanning Microscopies 23:249–254.

    Article  CAS  Google Scholar 

  • Littlechild, J., and Mossler, D., 1988, Knowledge of Arc-Lamp Aging and Lifetime Effects Can Help to Avoid Unpleasant Surprises, Laser Focus/Electro Optics November:67–76.

    Google Scholar 

  • MacMullin, T., 2004, Safety first, SPIE’s oemagazine June:27–29.

    Google Scholar 

  • Malzahn, U., 2004, Driving diode lasers is straightforward, Europhotonics August/September:22–23.

    Google Scholar 

  • Marshall, L., 1994, Biological monitoring foreseen with ultraviolet light source, Laser Focus World April:83–87.

    Google Scholar 

  • McConnell, G., 2004, Confocal laser scanning fluorescence microscopy with a visible continuum source, OpticsExpress 12:2844–2850.

    Google Scholar 

  • Miller, P.J., 1991, Taming Laser Noise: Methods and Applications, Photonics Spectra April:183–187.

    Google Scholar 

  • Miller, P., and Hoyt, C., 1986, Turning Down Laser Noise with Power Stabilizers, Photonics Spectra June:129–134.

    Google Scholar 

  • Mollenauer, L.F., and White, J.C., 1987, Tunable Lasers, Vol. 59. Topics in Applied Physics, Springer-Verlag, Berlin.

    Google Scholar 

  • Mooradian, A., 1993. External cavity tunable diode lasers, Lasers & Optronics May:35–37.

    Google Scholar 

  • Moreaux, L., Sandre, O., and Mertz, J. 2000, Membrane imaging by secondharmonic generation microscopy, JOSA B 17:1685–1694.

    Article  CAS  Google Scholar 

  • Mortensen, P., 1994, Solid state lasers: Russians commercialize femtosecond laser, Laser Focus World April:36–38.

    Google Scholar 

  • Muckenheim, W., Austin, L., and Basting, D., 1988, The pulsed dye Laser: Today’s Technology, Today’s Uses, Photonics Spectra June:79–84.

    Google Scholar 

  • Nan, X., Yang, W.-Y., and Xie, X.S., 2004, CARS microscopy lights up lipids in living cells, Biophotonics Intl. August:44–47.

    Google Scholar 

  • Neuman, C., Chadd, E.H., Liou, G.F., Bergman, K., and Block, S.M., 1999, Characterization of Photodamage to Escherichia coli in Optical Traps, Biophys. J. 77:2856–2863.

    Article  CAS  PubMed  Google Scholar 

  • Nordborg, J., and Karlsson, H., 2004, Multi DPSS lasers — a true Ar-ion alternative, Europhotonics June/July:28–29.

    Google Scholar 

  • Okhotnikov, O.G., Gomes, L.A., Xiang, N., Joukti, T., Chin, A.K., Singh, R., and Grudinin, A.B., 2003, 980-nm picosecond fiber laser, IEEE Photonics Technol. Lett. 15:1519–1521.

    Article  Google Scholar 

  • Perry, M.D., Payne, S.A., Ditmire, T., and Beach, R., 1993, Better materials trigger Cr:LiSAF laser development, Laser Focus World September: 29:85–92.

    Google Scholar 

  • Peterman, E.J.G., Gittes, F., and Schmidt, C.F., 2003, Laser induced heating in optical traps, Biophys. J. 84:1308–1316.

    Article  CAS  PubMed  Google Scholar 

  • Peuse, B., 1988, Active stabilization of ion laser resonators. Active stabilization offers advantages in several areas, Lasers & Optronics November: 61–65.

    Google Scholar 

  • Piehler, D., 1993, Upconversion process creates compact blue/green lasers, Laser Focus World November:95–102.

    Google Scholar 

  • Piston, D.W., Sandison, D.R., and Webb, W.W., 1992, Time-resolved fluorescence imaging and background rejection by two-photon excitation in laser scanning microscopy. In: Time-Resolved Laser Spectroscopy in Biochemistry III (J.R. Lakowicz, ed.), SPIE Proceedings Los Angeles, California, 1640:379–389.

    Google Scholar 

  • Piston, D.W., Kirby, M., Cheng, H., Lederer, W.J., and Webb, W.W., 1994, Three dimensional imaging of intracellular calcium activity by two-photon excitation laser scanning microscopy, Appl. Optics. February:33:662–669.

    Google Scholar 

  • Potma, E.O, de Boeij, W.P., Pshenichnikov, M.S., and Wiersman, D.A., 1998, A 30-fs cavity-dumped optical parametric oscillator, Opt. Lett. 23:1763–1765.

    Article  CAS  PubMed  Google Scholar 

  • Radunsky, M.BV., 2002, The OPO: A research tool and more. The photonics design and applications handbook book 3, H-261–H264, Laurin Publ. Co. Inc., Pittsfield, Massachusetts.

    Google Scholar 

  • Rapp, E.W., 1988, Design your cooling system for good laser performance, Laser Focus/Electro Optics September:65–70.

    Google Scholar 

  • Reichle, C., Sparbier, K., Müller, T., Schnelle, Th., Walden, P., and Fuhr, G., 2001, Combined laser tweezers and dielectric field cage for the analysis of receptor-ligand interactions on single cells, Electrophoresis 22:272–282.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, K., 1998, Training and equipment help ensure laser safety, Biophotonics Intl. November/December:42–47.

    Google Scholar 

  • Rockwell Associates Inc., 1983, Laser Safety Training Manual, 6th ed., Rockwell Associates Inc., Cincinnati, Ohio.

    Google Scholar 

  • Rockwell, R.J. Jr., 1986, An introduction to exposure hazards and the evaluation of nominal hazard zones, Lasers & Applications May:97–103.

    Google Scholar 

  • Rusu, M., Karirinne, S., Guina, M., Grudinin, A.B., and Okhotnikov, O.G., 2004, Femtosecond Neodymium-doped fiber laser operating in the 894-909-nm spectral range, IEEE Photonics Technol. Lett. 16:1029–1031.

    Article  CAS  Google Scholar 

  • Schneider, D.J., and Williams, D.C., 1993, Fighting corrosion in laser cooling systems, Laser Focus World December:110.

    Google Scholar 

  • Schulmeister, K., 1994, Safety regulations changes, Biophotonics Intl. August:38–42.

    Google Scholar 

  • Scifres, D.R., 1994, Diode lasers ride the wave of progress, Photonics Spectra 84–85.

    Google Scholar 

  • Silfvast, W.T., 2004, Laser Fundamentals, 2nd ed. Cambridge University Press, New York.

    Google Scholar 

  • Sivers, N.L., Van de Workeen, B.C., and Lee, S.M., 2004, Improving fluorescence confocal microscopy with cryogenically-cooled diode lasers, Optics Express 12:4157–4165.

    Article  PubMed  Google Scholar 

  • Sliney, D.H., 1986, Laser Safety. The newest face on an old standard, Photonics Spectra April:83–96.

    Google Scholar 

  • Sliney, D., and Wolbarsht, M., 1980, Safety with lasers and other optical sources. A comprehensive handbook, Plenum Press, New York.

    Google Scholar 

  • Sliney, D.H., 1994, Laser safety concepts are changing, Laser Focus World May:185–192.

    Google Scholar 

  • Smith, B., 1986, Lamps for Pumping Solid-state Lasers: Performance and Optimization, Laser Focus/Electro Optics September:58–73.

    Google Scholar 

  • Smith, K., and Lucek, J.K., 1993, Modelocked fiber lasers promise high-speed data networks, Laser Focus World October:85–91.

    Google Scholar 

  • Smith, S.P., Bhalotra, S.R., Brody, A.L., Brown, B.L., Boyda, E.K., and Prentiss, M., 1999, Inexpensive optical tweezers for undergraduate laboratories, Am. J. Phys. 67:26–35.

    Article  Google Scholar 

  • Snyder, J.J., and Cable, A.E., 1993, Cylindrical microlenses improve laserdiode beams, Laser Focus World February:97–100.

    Google Scholar 

  • Soileau, M.J., 1987, Laser-Induced Damage, Photonics Spectra November: 109–114.

    Google Scholar 

  • Stry, S., Knispel, R., Hildebrandt, L., and Sacher, J., 2004, Tunable external cavity diode laser tackles high-power applications, EuroPhotonics February/March:26–27.

    Google Scholar 

  • Stitch, M.L., 1979, Laser Handbook, Vol. 3, North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Szarowski, D.H., Smith, K.L, Herchenroder, A., Matuszek, G., Swann, J.W., and Turner, J.N., 1992, Optimized reflection imaging in laser confocal microscopy and its application to neurobiology, Scanning 14:104–111.

    Google Scholar 

  • Tai, S.-P., Chan, M.-C., Tsai, T.-H., Guol, S.-H., Chen, L.-J., and Sun, C.-K., 2004, Two-photon fluorescence microscope with a hollow-core photonic crystal fiber, Optics Express 12:6122–6128.

    Article  PubMed  Google Scholar 

  • Tebo, A.R., 1988, Scientists develop Useful Optical Materials, Laser Focus/Electro Optics August:103–110.

    Google Scholar 

  • Tozer, B.A., 2001, Revised safety standards to benefit laser design and use, Laser Focus World March:81–82.

    Google Scholar 

  • Unger, B., 1994, Device saves laser diodes from electrostatic-discharge damage. Laser Focus World May:238–240.

    Google Scholar 

  • Wang, X.F., Kitajima, S., Uchida, T., Coleman, D.M., and Minami, S., 1990, Time-resolved fluorescence microscopy using multichannel photon counting, Appl. Spectrosc. 44:25–30.

    Article  CAS  Google Scholar 

  • Wang, X.F., 1990, Fundamental studies on time-resolved fluorescence image spectroscopy techniques. Dissertation, Osaka University.

    Google Scholar 

  • Wang, X.F., Periasamy, A., Herman, B., and Coleman, D.M., 1992, Fluorescence lifetime imaging microscopy (FLIM): Instrumentation and applications. Critical Reviews in Analytical Chem. 23:369–395.

    Article  CAS  Google Scholar 

  • Weast, R.C., and Tuve, G.L., 1971, Handbook of lasers with selected data on optical technology, CRC Press. The Chemical Rubber Co., Cleveland, Ohio.

    Google Scholar 

  • Webb, C.E., and Jones, J.D.C., 2004, Handbook of laser technology and applications. Vol.1, Principles, Vol. 2, Laser design and laser optics, Vol. 3, Applications, IOP Publ., Bristol, UK.

    Book  Google Scholar 

  • Weber, M.J., 1999, Handbook of laser wavelengths, CRC Press, New York.

    Google Scholar 

  • Winburn, D.C., 1985, Practical laser safety, Marcel Dekker Inc., New York.

    Google Scholar 

  • Wisdom, J., and Digonnet, M., 2004, Ceramic lasers: Ready for action, Photonics Spectra February:50–56.

    Google Scholar 

  • Woods, S., 2003. Fiber lasers offer alternative for analytical applications, Biophotonics Intl. December:48.

    Google Scholar 

  • Yang, C., and Mertz, J., 2003, Transmission confocal laser scanning microscopy with a virtual pinhole based on non-linear detection, Optics Lett. 28:224–226.

    Article  CAS  Google Scholar 

  • Yelin, D., Oron, D., Korkotian, E., Segal, M., and Silberberg, Y., 2002, Third-harmonic microscopy with a titanium-sapphire laser, Appl. Phys. B. 74:S97.

    Article  CAS  Google Scholar 

  • Zeek, E., Maginnis, K., Backus, S., Russek, U., Murmane, M., and Vdovin, G., 1999, Pulse compression by use of deformable mirrors, Opt. Lett. 24:493–495.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z.X., Sonek, G.J., Wei, X.B., Sun, C., Berns, M.W., and Tromberg, B.J., 1999, Cell viability and DNA measurements by two-photon fluorescence excitation in CW Al:GaAs diode laser optical traps, J. Biomed. Optics 4:256–259.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gratton, E., vandeVen, M.J. (2006). Laser Sources for Confocal Microscopy. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_5

Download citation

Publish with us

Policies and ethics