Skip to main content

Precursors of Vulvovaginal Squamous Cell Carcinoma

  • Chapter
  • First Online:
Pathology of the Vulva and Vagina

Abstract

The current classification of intraepithelial lesions of the vulva defines two distinct types of vulvar intraepithelial neoplasia (VIN), termed usual-type VIN (uVIN) and differentiated-type VIN (dVIN). uVIN occurs in younger women, is typically associated with high-risk HPV infection and hence with neoplasia at other anogenital sites. Vaginal intraepithelial neoplasia (VaIN) is also strongly related to HPV infection and is classified morphologically in a similar way to uVIN. Associated carcinomas are generally of warty or basaloid type. By contrast, dVIN occurs in older women, is not typically associated with HPV infection but rather shows a clinicopathological association with lichen sclerosus and HPV-negative keratinizing squamous cell carcinoma. This chapter describes these entities, highlighting the role played by HPV infection in the development of uVIN and VaIN, and discusses whether HPV-associated and non-HPV-associated VIN lesions equate to uVIN and dVIN, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richart RM. Natural history of cervical intraepithelial neoplasia. Clin Obstet Gynecol. 1967;10(4):748–84.

    Google Scholar 

  2. Herrington CS, Wells M. Premalignant and malignant squamous lesions of the cervix. In: Fox H, Wells M, editors. Haines and Taylor obstetrical and gynaecological pathology. 4th ed. Edinburgh: Churchill Livingstone; 2002.

    Google Scholar 

  3. Tavassoli F, Devilee P, editors. Pathology and genetics of tumours of the breast and female genital organs. Lyon: IARC Press; 2003.

    Google Scholar 

  4. Henry MR. The Bethesda system 2001: an update of new terminology for gynecologic cytology. Clin Lab Med. 2003;23(3):585–603.

    PubMed  Google Scholar 

  5. Wilson G. The classification of cervical intraepithelial neoplasia. Histopathology. 2002;40(4):380–5.

    Google Scholar 

  6. Ismail S, Fiander A. Grading cervical intraepithelial neoplasia. Histopathology. 2002;40(4):385–90.

    Google Scholar 

  7. Heatley MK. How should we grade CIN? Histopa­thology. 2002;40(4):377–80.

    PubMed  CAS  Google Scholar 

  8. Srodon M, Stoler MH, Baber GB, Kurman RJ. The distribution of low and high-risk HPV types in vulvar and vaginal intraepithelial neoplasia (VIN and VaIN). Am J Surg Pathol. 2006;30(12):1513–8.

    PubMed  Google Scholar 

  9. De Vuyst H, Clifford GM, Nascimento MC, Madeleine MM, Franceschi S. Prevalence and type distribution of human papillomavirus in carcinoma and intraepithelial neoplasia of the vulva, vagina and anus: a meta-analysis. Int J Cancer. 2009;124(7):1626–36.

    PubMed  Google Scholar 

  10. Crum CP, Fu YS, Levine RU, Richart RM, Townsend DE, Fenoglio CM. Intraepithelial squamous lesions of the vulva: biologic and histologic criteria for the distinction of condylomas from vulvar intraepithelial neoplasia. Am J Obstet Gynecol. 1982;144(1):77–83.

    PubMed  CAS  Google Scholar 

  11. Crum CP, Braun LA, Shah KV, Fu YS, Levine RU, Fenoglio CM, et al. Vulvar intraepithelial neoplasia: correlation of nuclear DNA content and the presence of a human papilloma virus (HPV) structural antigen. Cancer. 1982;49(3):468–71.

    PubMed  CAS  Google Scholar 

  12. Crum CP. Vulvar intraepithelial neoplasia: the concept and its application. Hum Pathol. 1982;13(3):187–9.

    PubMed  CAS  Google Scholar 

  13. Crum CP, Liskow A, Petras P, Keng WC, Frick HC. Vulvar intraepithelial neoplasia (severe atypia and carcinoma in situ). A clinicopathologic analysis of 41 cases. Cancer. 1984;54(7):1429–34.

    PubMed  CAS  Google Scholar 

  14. Hart WR. Vulvar intraepithelial neoplasia: historical aspects and current status. Int J Gynecol Pathol. 2001;20(1):16–30.

    PubMed  CAS  Google Scholar 

  15. Wilkinson E, Kneale B, Lunch P. Report of the ISSVD terminology committee. J Reprod Med. 1986;31(10):973–4.

    Google Scholar 

  16. Wilkinson EJ. Normal histology and nomenclature of the vulva, and malignant neoplasms, including VIN. Dermatol Clin. 1992;10(2):283–96.

    PubMed  CAS  Google Scholar 

  17. Scully R, Bonfiglio T, Kurman R, Silverberg S, Wilkinsonm E. Histologic typing of female genital tract tumours. In: Scully R, Poulsen H, Sobin L, editors. World health organisation international histological classification of tumours. Berlin: Springer; 2004.

    Google Scholar 

  18. Scurry J, Campion M, Scurry B, Kim SN, Hacker N. Pathologic audit of 164 consecutive cases of vulvar intraepithelial neoplasia. Int J Gynecol Pathol. 2006;25(2):176–81.

    PubMed  Google Scholar 

  19. Scurry J, Wilkinson EJ. Review of terminology of precursors of vulvar squamous cell carcinoma. J Low Genit Tract Dis. 2006;10(3):161–9.

    PubMed  Google Scholar 

  20. Logani S, Lu D, Quint WGV, Ellenson LH, Pirog EC. Low-grade vulvar and vaginal intraepithelial neoplasia: correlation of histologic features with human papillomavirus DNA detection and MIB-1 immunostaining. Mod Pathol. 2003;16(8):735–41.

    PubMed  Google Scholar 

  21. Sideri M, Jones RW, Wilkinson EJ, Preti M, Heller DS, Scurry J, et al. Squamous vulvar intraepithelial neoplasia: 2004 modified terminology, ISSVD Vulvar Oncology Subcommittee. J Reprod Med. 2005;50(11):807–10.

    PubMed  Google Scholar 

  22. Park JS, Jones RW, McLean MR, Currie JL, Woodruff JD, Shah KV, et al. Possible etiologic heterogeneity of vulvar intraepithelial neoplasia. A correlation of pathologic characteristics with human papillomavirus detection by in situ hybridization and polymerase chain reaction. Cancer. 1991;67(6):1599–607.

    PubMed  CAS  Google Scholar 

  23. Haefner HK, Tate JE, McLachlin CM, Crum CP. Vulvar intraepithelial neoplasia: age, morphological phenotype, papillomavirus DNA, and coexisting invasive carcinoma. Hum Pathol. 1995;26(2):147–54.

    PubMed  CAS  Google Scholar 

  24. Hørding U, Junge J, Poulsen H, Lundvall F. Vulvar intraepithelial neoplasia III: a viral disease of undetermined progressive potential. Gynecol Oncol. 1995;56(2):276–9.

    PubMed  Google Scholar 

  25. van Beurden M, ten Kate FJ, Smits HL, Berkhout RJ, de Craen AJ, van der Vange N, et al. Multifocal vulvar intraepithelial neoplasia grade III and multicentric lower genital tract neoplasia is associated with transcriptionally active human papillomavirus. Cancer. 1995;75(12):2879–84.

    PubMed  Google Scholar 

  26. Yang B, Hart WR. Vulvar intraepithelial neoplasia of the simplex (differentiated) type: a clinicopathologic study including analysis of HPV and p53 expression. Am J Surg Pathol. 2000;24(3):429–41.

    PubMed  CAS  Google Scholar 

  27. Medeiros F, Nascimento AF, Crum CP. Early vulvar squamous neoplasia: advances in classification, diagnosis, and differential diagnosis. Adv Anat Pathol. 2005;12(1):20–6.

    PubMed  Google Scholar 

  28. Micheletti L, Barbero M, Preti M, Zanotto Valentino MC, Chiringhello B, Pippione M. Vulvar intraepithelial neoplasia of low grade: a challenging diagnosis. Eur J Gynaecol Oncol. 1994;15(1):70–4.

    PubMed  CAS  Google Scholar 

  29. Abell MR. Intraepithelial carcinomas of epidermis and squamous mucosa of vulva and perineum. Surg Clin North Am. 1965;45(5):1179–98.

    PubMed  CAS  Google Scholar 

  30. Kruse A-J, Bottenberg MJH, Tosserams J, Slangen B, van Marion AMW, van Trappen PO. The absence of high-risk HPV combined with specific p53 and p16INK4a expression patterns points to the HPV-independent pathway as the causative agent for vulvar squamous cell carcinoma and its precursor simplex VIN in a young patient. Int J Gynecol Pathol. 2008;27(4):591–5.

    PubMed  Google Scholar 

  31. van de Nieuwenhof HP, van der Avoort IAM, de Hullu JA. Review of squamous premalignant vulvar lesions. Crit Rev Oncol Hematol. 2008;68(2):131–56.

    PubMed  Google Scholar 

  32. van de Nieuwenhof HP, Bulten J, Hollema H, Dommerholt RG, Massuger LFAG, van der Zee AGJ, et al. Differentiated vulvar intraepithelial neoplasia is often found in lesions, previously diagnosed as lichen sclerosus, which have progressed to vulvar squamous cell carcinoma. Mod Pathol. 2011;24(2):297–305.

    PubMed  Google Scholar 

  33. Klaes R, Benner A, Friedrich T, Ridder R, Herrington S, Jenkins D, et al. p16INK4a immunohistochemistry improves interobserver agreement in the diagnosis of cervical intraepithelial neoplasia. Am J Surg Pathol. 2002;26(11):1389–99.

    PubMed  Google Scholar 

  34. Riethdorf S, Neffen EF, Cviko A, Löning T, Crum CP, Riethdorf L. p16INK4A expression as biomarker for HPV 16-related vulvar neoplasias. Hum Pathol. 2004;35(12):1477–83.

    PubMed  CAS  Google Scholar 

  35. Hoevenaars BM, van der Avoort IAM, de Wilde PCM, Massuger LFAG, Melchers WJG, de Hullu JA, et al. A panel of p16(INK4A), MIB1 and p53 proteins can distinguish between the 2 pathways leading to vulvar squamous cell carcinoma. Int J Cancer. 2008;123(12):2767–73.

    PubMed  CAS  Google Scholar 

  36. Kong C, Balzer B, Troxell M, Patterson B, Longacre T. p16INK4A immunohistochemistry is superior to HPV in situ hybridization for the detection of high-risk HPV in atypical squamous metaplasia. Am J Surg Pathol. 2007;31(1):33–43.

    PubMed  Google Scholar 

  37. Kong CS, Beck AH, Longacre TA. A panel of 3 markers including p16, ProExC, or HPV ISH is optimal for distinguishing between primary endometrial and endocervical adenocarcinomas. Am J Surg Pathol. 2010;34(7):915–26.

    PubMed  Google Scholar 

  38. van der Avoort IAM, van der Laak JAWM, Paffen A, Grefte JMM, Massuger LFAG, de Wilde PCM, et al. MIB1 expression in basal cell layer: a diagnostic tool to identify premalignancies of the vulva. Mod Pathol. 2007;20(7):770–8.

    PubMed  Google Scholar 

  39. Chen H, Gonzalez JL, Brennick JB, Liu M, Yan S. Immunohistochemical patterns of ProEx C in vulvar squamous lesions: detection of overexpression of MCM2 and TOP2A. Am J Surg Pathol. 2010;34(9):1250–7.

    PubMed  Google Scholar 

  40. Ruhul Quddus M, Xu C, Steinhoff MM, Zhang C, Lawrence WD, Sung CJ. Simplex (differentiated) type VIN: absence of p16INK4 supports its weak association with HPV and its probable precursor role in non-HPV related vulvar squamous cancers. Histopathology. 2005;46(6):718–20.

    PubMed  CAS  Google Scholar 

  41. Liegl B, Regauer S. p53 immunostaining in lichen sclerosus is related to ischaemic stress and is not a marker of differentiated vulvar intraepithelial neoplasia (d-VIN). Histopathology. 2006;48(3):268–74.

    PubMed  CAS  Google Scholar 

  42. Skapa P, Zamecnik J, Hamsikova E, Salakova M, Smahelova J, Jandova K, et al. Human papillomavirus (HPV) profiles of vulvar lesions: possible implications for the classification of vulvar squamous cell carcinoma precursors and for the efficacy of prophylactic HPV vaccination. Am J Surg Pathol. 2007;31(12):1834–43.

    PubMed  Google Scholar 

  43. Ordi J, Alejo M, Fusté V, Lloveras B, del Pino M, Alonso I, et al. HPV-negative vulvar intraepithelial neoplasia (VIN) with basaloid histologic pattern: an unrecognized variant of simplex (differentiated) VIN. Am J Surg Pathol. 2009;33(11):1659–65.

    PubMed  Google Scholar 

  44. Rigoni-Stern D. Fatti statistica relativi alle malattie cancerose. Giornale per servire ai progressi della Paologica e della Terapoa. 1842;2:507–17.

    Google Scholar 

  45. Hausen zur H. Condylomata acuminata and human genital cancer. Cancer Res. 1976;36:794.

    Google Scholar 

  46. Hausen zur H. Human papillomaviruses and their possible role in squamous cell carcinomas. Curr Top Microbiol Immunol. 1977;78:1–30.

    Google Scholar 

  47. Dürst M, Gissmann L, Ikenberg H, Hausen zur H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA. 1983;80(12):3812–5.

    PubMed  Google Scholar 

  48. Zitz JC, McLachlin CM, Tate JE, Mutter GL, Crum CP. Restriction fragment length polymorphism ­analysis of isotype-labeled polymerase chain reaction-amplified human papillomavirus DNA combines sensitivity with built-in contaminant detection. Mod Pathol. 1994;7(3):407–11.

    PubMed  CAS  Google Scholar 

  49. Walboomers J, Jacobs M, Manos M, Bosch F, Kummer J, Shah K, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9.

    PubMed  CAS  Google Scholar 

  50. Joura E, Leodolter S, Hernandez-Avila M, Wheeler C, Perez G, Koutsky L, et al. Efficacy of a quadrivalent prophylactic human papillomavirus (types 6, 11, 16, and 18) L1 virus-like-particle vaccine against high-grade vulval and vaginal lesions: a combined analysis of three randomised clinical trials. Lancet. 2007;369(9574):1693–702.

    PubMed  CAS  Google Scholar 

  51. Medeiros LR, Rosa DD, Da Rosa MI, Bozzetti MC, Zanini RR. Efficacy of human papillomavirus vaccines: a systematic quantitative review. Int J Gynecol Cancer. 2009;19(7):1166–76.

    PubMed  Google Scholar 

  52. de Villiers E-M, Fauquet C, Broker TR, Bernard H-U, Hausen zur H. Classification of papillomaviruses. Virology. 2004;324(1):17–27.

    PubMed  Google Scholar 

  53. Bernard H-U, Burk RD, Chen Z, van Doorslaer K, Hausen zur H, de Villiers E-M. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010;40(1):70–9.

    Google Scholar 

  54. de Koning MNC, Quint WGV, Pirog EC. Prevalence of mucosal and cutaneous human papillomaviruses in different histologic subtypes of vulvar carcinoma. Mod Pathol. 2008;21(3):334–44.

    PubMed  Google Scholar 

  55. Hebner CM, Laimins LA. Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol. 2006;16(2):83–97.

    PubMed  CAS  Google Scholar 

  56. Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci. 2006;110(5):525–41.

    PubMed  CAS  Google Scholar 

  57. Moodley M, Sewart S, Herrington CS, Chetty R, Pegoraro R, Moodley J. The interaction between steroid hormones, human papillomavirus type 16, E6 oncogene expression, and cervical cancer. Int J Gynecol Cancer. 2003;13(6):834–42.

    PubMed  CAS  Google Scholar 

  58. Chiang CM, Ustav M, Stenlund A, Ho TF, Broker TR, Chow LT. Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proc Natl Acad Sci USA. 1992;89(13):5799–803.

    PubMed  CAS  Google Scholar 

  59. Wilson VG, West M, Woytek K, Rangasamy D. Papillomavirus E1 proteins: form, function, and features. Virus Genes. 2002;24(3):275–90.

    PubMed  CAS  Google Scholar 

  60. Longworth MS, Laimins LA. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev. 2004;68(2):362–72.

    PubMed  CAS  Google Scholar 

  61. Fang L, Budgeon LR, Doorbar J, Briggs ER, Howett MK. The human papillomavirus type 11 E1^E4 protein is not essential for viral genome amplification. Virology. 2006;351(2):271–9.

    PubMed  CAS  Google Scholar 

  62. Wilson R, Ryan GB, Knight GL, Laimins LA, Roberts S. The full-length E1E4 protein of human papillomavirus type 18 modulates differentiation-dependent viral DNA amplification and late gene expression. Virology. 2007;362(2):453–60.

    PubMed  CAS  Google Scholar 

  63. Khan J, Davy CE, McIntosh PB, Jackson DJ, Hinz S, Wang Q, et al. Role of calpain in the formation of human papillomavirus type 16 e1^e4 amyloid fibers and reorganization of the keratin network. J Virol. 2011;85(19):9984–97.

    PubMed  CAS  Google Scholar 

  64. DiMaio D, Mattoon D. Mechanisms of cell transformation by papillomavirus E5 proteins. Oncogene. 2001;20(54):7866–73.

    PubMed  CAS  Google Scholar 

  65. Krawczyk E, Suprynowicz FA, Hebert JD, Kamonjoh CM, Schlegel R. The HPV-16 E5 oncoprotein translocates calpactin I to the perinuclear region. J Virol. 2011;85:10968–75.

    PubMed  CAS  Google Scholar 

  66. Campo MS, Graham SV, Cortese MS, Ashrafi GH, Araibi EH, Dornan ES, et al. HPV-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells. Virology. 2010;407(1):137–42.

    PubMed  CAS  Google Scholar 

  67. Zhou J, Frazer I. Papovaviridae: capsid structure and capsid protein function. In: Lacey C, editor. Papillomavirus reviews: current research on papillomaviruses. Leeds: Leeds University Press; 1996. p. 93–100.

    Google Scholar 

  68. Cutts F, Franceschi S, Goldie S, Castellsague X, de Sanjose S, Garnett G, et al. Human papillomavirus and HPV vaccines: a review. Bull World Health Organ. 2007;85(9):719–26.

    PubMed  CAS  Google Scholar 

  69. Schiller JT, Day PM, Kines RC. Current understanding of the mechanism of HPV infection. Gynecol Oncol. 2010;118:S12–7.

    PubMed  CAS  Google Scholar 

  70. McMillan NA, Payne E, Frazer IH, Evander M. Expression of the alpha6 integrin confers papillomavirus binding upon receptor-negative B-cells. Virology. 1999;261(2):271–9.

    PubMed  CAS  Google Scholar 

  71. Oliveira JG, Colf LA, McBride AA. Variations in the association of papillomavirus E2 proteins with mitotic chromosomes. Proc Natl Acad Sci USA. 2006;103(4):1047–52.

    PubMed  CAS  Google Scholar 

  72. Conway MJ, Meyers C. Replication and assembly of human papillomaviruses. J Dent Res. 2009;88(4):307–17.

    PubMed  CAS  Google Scholar 

  73. Southern S, Herrington CS. Disruption of cell cycle control by human papillomaviruses with special reference to cervical carcinoma. Int J Gynecol Cancer. 2000;10(4):263–74.

    PubMed  Google Scholar 

  74. Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990;248(4951):76–9.

    PubMed  CAS  Google Scholar 

  75. Massimi P, Shai A, Lambert P, Banks L. HPV E6 degradation of p53 and PDZ containing substrates in an E6AP null background. Oncogene. 2008;27(12):1800–4.

    PubMed  CAS  Google Scholar 

  76. Thomas J, Laimins L, Ruesch M. Perturbation of cell cycle control by E6 and E7 oncoproteins of human papillomaviruses. Papillomavirus Rep. 1998;9:59–64.

    Google Scholar 

  77. Klingelhutz AJ, Foster SA, McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature. 1996;380(6569):79–82.

    PubMed  CAS  Google Scholar 

  78. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature. 1998;396(6706):84–8.

    PubMed  CAS  Google Scholar 

  79. Liu X, Roberts J, Dakic A, Zhang Y, Schlegel R. HPV E7 contributes to the telomerase activity of immortalized and tumorigenic cells and augments E6-induced hTERT promoter function. Virology. 2008;375(2):611–23.

    PubMed  CAS  Google Scholar 

  80. Munger K, Basile J, Duensing S, Eichten A, Gonzalez S, Grace M, et al. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene. 2001;20(54):7888–98.

    PubMed  CAS  Google Scholar 

  81. Helt A-M, Galloway DA. Mechanisms by which DNA tumor virus oncoproteins target the Rb family of pocket proteins. Carcinogenesis. 2003;24(2):159–69.

    PubMed  CAS  Google Scholar 

  82. Classon M, Dyson N. p107 and p130: versatile proteins with interesting pockets. Exp Cell Res. 2001;264(1):135–47.

    PubMed  CAS  Google Scholar 

  83. Hwang SG, Lee D, Kim J, Seo T, Choe J. Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J Biol Chem. 2002;277(4):2923–30.

    PubMed  CAS  Google Scholar 

  84. Massimi P, Pim D, Banks L. Human papillomavirus type 16 E7 binds to the conserved carboxy-terminal region of the TATA box binding protein and this contributes to E7 transforming activity. J Gen Virol. 1997;78(10):2607–13.

    PubMed  CAS  Google Scholar 

  85. Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz JW, Jansen-Dürr P. Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene. 1996;13(11):2323–30.

    PubMed  CAS  Google Scholar 

  86. Jones DL, Alani RM, Münger K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev. 1997;11(16):2101–11.

    PubMed  CAS  Google Scholar 

  87. Li Y, Nichols MA, Shay JW, Xiong Y. Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res. 1994;54(23):6078–82.

    PubMed  CAS  Google Scholar 

  88. Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petry U, et al. Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer. 2001;92(2):276–84.

    PubMed  CAS  Google Scholar 

  89. Jackson S, Harwood C, Thomas M, Banks L, Storey A. Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes Dev. 2000;14(23):3065–73.

    PubMed  CAS  Google Scholar 

  90. Filippova M, Parkhurst L, Duerksen-Hughes PJ. The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J Biol Chem. 2004;279(24):25729–44.

    PubMed  CAS  Google Scholar 

  91. Duensing S, Münger K. Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int J Cancer. 2004;109(2):157–62.

    PubMed  CAS  Google Scholar 

  92. Gray LJ, Bjelogrlic P, Appleyard VCL, Thompson AM, Jolly CE, Lain S, et al. Selective induction of apoptosis by leptomycin B in keratinocytes expressing HPV oncogenes. Int J Cancer. 2007;120(11):2317–24.

    PubMed  CAS  Google Scholar 

  93. Jolly CE, Gray LJ, Parish JL, Lain S, Herrington CS. Leptomycin B induces apoptosis in cells containing the whole HPV 16 genome. Int J Oncol. 2009;35(3):649–56.

    PubMed  CAS  Google Scholar 

  94. Bryan JT, Brown DR. Association of the human papillomavirus type 11 E1^E4 protein with cornified cell envelopes derived from infected genital epithelium. Virology. 2000;277(2):262–9.

    PubMed  CAS  Google Scholar 

  95. Raj K, Berguerand S, Southern S, Doorbar J, Beard P. E1^E4 Protein of human papillomavirus type 16 associates with mitochondria. J Virol. 2004;78(13):7199–207.

    PubMed  CAS  Google Scholar 

  96. Pim D, Banks L. HPV-18 E6*I protein modulates the E6-directed degradation of p53 by binding to ­full-length HPV-18 E6. Oncogene. 1999;18(52):7403–8.

    PubMed  CAS  Google Scholar 

  97. Webster K, Parish J, Pandya M, Stern PL, Clarke AR, Gaston K. The human papillomavirus (HPV) 16 E2 protein induces apoptosis in the absence of other HPV proteins and via a p53-dependent pathway. J Biol Chem. 2000;275(1):87–94.

    PubMed  CAS  Google Scholar 

  98. Demeret C, Garcia-Carranca A, Thierry F. Transcription-independent triggering of the extrinsic pathway of apoptosis by human papillomavirus 18 E2 protein. Oncogene. 2003;22(2):168–75.

    PubMed  CAS  Google Scholar 

  99. Winder D, Pett M, Foster N, Shivji M, Herdman M, Stanley M, et al. An increase in DNA double-strand breaks, induced by Ku70 depletion, is associated with human papillomavirus 16 episome loss and de novo viral integration events. J Pathol. 2007;213(1):27–34.

    PubMed  CAS  Google Scholar 

  100. Pett M, Coleman N. Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol. 2007;212(4):356–67.

    PubMed  CAS  Google Scholar 

  101. Hiller T, Poppelreuther S, Stubenrauch F, Iftner T. Comparative analysis of 19 genital human papillomavirus types with regard to p53 degradation, immortalization, phylogeny, and epidemiologic risk classification. Cancer Epidemiol Biomarkers Prev. 2006;15(7):1262–7.

    PubMed  CAS  Google Scholar 

  102. Münger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 1989;8(13):4099–105.

    PubMed  Google Scholar 

  103. Watson RA, Thomas M, Banks L, Roberts S. Activity of the human papillomavirus E6 PDZ-binding motif correlates with an enhanced morphological transformation of immortalized human keratinocytes. J Cell Sci. 2003;116(24):4925–34.

    PubMed  CAS  Google Scholar 

  104. Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S, et al. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci USA. 2000;97(18):10002–7.

    PubMed  CAS  Google Scholar 

  105. Scurry J. Does lichen sclerosus play a central role in the pathogenesis of human papillomavirus negative vulvar squamous cell carcinoma? The itch-scratch-lichen sclerosus hypothesis. Int J Gynecol Cancer. 1999;9(2):89–97.

    PubMed  Google Scholar 

  106. Eva LJ, Ganesan R, Chan KK, Honest H, Luesley DM. Differentiated-type vulval intraepithelial neoplasia has a high-risk association with vulval squamous cell carcinoma. Int J Gynecol Cancer. 2009;19(4):741–4.

    PubMed  Google Scholar 

  107. Eva LJ, Ganesan R, Chan KK, Honest H, Malik S, Luesley DM. Vulval squamous cell carcinoma occurring on a background of differentiated vulval intraepithelial neoplasia is more likely to recur: a review of 154 cases. J Reprod Med. 2008;53(6):397–401.

    PubMed  Google Scholar 

  108. Roma AA, Hart WR. Progression of simplex (differentiated) vulvar intraepithelial neoplasia to invasive squamous cell carcinoma: a prospective case study confirming its precursor role in the pathogenesis of vulvar cancer. Int J Gynecol Pathol. 2007;26(3):248–53.

    PubMed  Google Scholar 

  109. van de Nieuwenhof HP, van Kempen LCLT, de Hullu JA, Bekkers RLM, Bulten J, Melchers WJG, et al. The etiologic role of HPV in vulvar squamous cell carcinoma fine tuned. Cancer Epidemiol Biomarkers Prev. 2009;18(7):2061–7.

    PubMed  Google Scholar 

  110. Pinto AP, Miron A, Yassin Y, Monte N, Woo TYC, Mehra KK, et al. Differentiated vulvar intraepithelial neoplasia contains TP53 mutations and is genetically linked to vulvar squamous cell carcinoma. Mod Pathol. 2010;23(3):404–12.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Simon Herrington MA., MBBS, DPhil, FRCP, FRCPath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Oparka, R., Herrington, C.S. (2013). Precursors of Vulvovaginal Squamous Cell Carcinoma. In: Brown, L. (eds) Pathology of the Vulva and Vagina. Essentials of Diagnostic Gynecological Pathology. Springer, London. https://doi.org/10.1007/978-0-85729-757-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-757-0_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-756-3

  • Online ISBN: 978-0-85729-757-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics