Skip to main content

Estimation of the Mortalities of the Immature Stages

  • Chapter
Mosquito Ecology

Preceding chapters have described various methods for sampling the different developmental stages and age groups of mosquito populations. This and subsequent chapters are concerned with analysing the numerical changes that occur in population size during the life-cycle of mosquitoes, identifying the causes of mortalities, and determining the age structure and survival rates of pre-imaginal and adult populations. A comprehension of the growth and regulation of mosquito populations is essential for understanding their population dynamics. Measurement of the mortality that necessarily occurs during the lifecycle from egg to ovipositing female has interested ecologists and statisticians alike, and many of the techniques used are founded on mathematical probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams PA (2001) Describing and quantifying interspecific interactions: a com-mentary on recent approaches. Oikos 94: 209-218

    Google Scholar 

  • Agnew P, Haussy C, Michalakis Y (2000) Effects of density and larval competi-tion on selected life history traits of Culex pipiens quinquefasciatus (Diptera: Culicidae). J Med Entomol 37: 732-735

    CAS  PubMed  Google Scholar 

  • Agnew P, Hide M, Sidobre C, Michalakis Y (2002) A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecol En-tomol 27: 396-402

    Google Scholar 

  • Ahumada JA, Lapointe D, Samuel MD (2004) Modeling the population dynamics of Culex quinquefasciatus (Diptera: Culicidae), along an elevational gradient in Hawaii. J Med Entomol 41: 1157-1170

    PubMed  Google Scholar 

  • Aitken THG, Trapido H (1961) Replacement Phenomenon Observed amongst Sardinian Anopheline Mosquitoes following Eradication Measures. Tech Mtg Un Conserv Nat 8th, 1960, pp. 106-114

    Google Scholar 

  • Aksnes DL, Ohman MD (1996) A vertical life table approach to zooplankton mor-tality estimation. Limnology and Oceanography 41: 1461-1469

    Google Scholar 

  • Ali SR, Rozeboom LE (1971a) Cross-insemination frequencies between strains of Aedes albopictus and members of the Aedes scutellaris group. J Med Entomol 8: 263-265

    CAS  PubMed  Google Scholar 

  • Ali SR, Rozeboom LE (1971b) Cross-mating between Aedes (S.) polynesiensis Marks and Aedes (S.) albopictus Skuse in a large cage. Mosquito News 31: 80-84

    Google Scholar 

  • Ali SR, Rozeboom LE (1973) Comparative laboratory observations on selective mating of Aedes (Stegomyia) albopictus Skuse and A. (S.) polynesiensis Marks. Mosquito News 33: 23-28

    Google Scholar 

  • Alto BW, Juliano SA (2001) Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. J Med Entomol 38: 646-656

    CAS  PubMed  Google Scholar 

  • Amalraj DD, Das PK (1994) Time to death from starvation and compulsive killing by the larvae of Toxorhynchites splendens (Diptera: Culicidae). Acta Trop 58: 151-158

    CAS  PubMed  Google Scholar 

  • Amalraj DD, Das PK (1998) Estimation of predation by the larvae of Toxorhynchites splendens on the aquatic stages of Aedes aegypti. Southeast Asian J Trop Med Public Health 29: 177-183

    Google Scholar 

  • Anderson RM (1979) Parasite pathogenicity and depression of host population equilibria. Nature 279: 150-152

    Google Scholar 

  • Anderson RM (1982) Epidemiology. In: Cox FEG (ed) Modern Parasitology. Blackwell Scientific Publications, Oxford, pp. 204-251

    Google Scholar 

  • Anderson RM, May RM (1978) Regulation and stability of host-parasite popula-tion interactions. I. Regulatory processes. J Anim Ecol 47: 219-247

    Google Scholar 

  • Anderson RM, Turner BD, Taylor LR (1979) Population Dynamics. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Andis MD, Meek CL (1983) Estimated mortalities of the immature stages of rice-land mosquitoes in Louisiana. Proc Annu Mtg Texas Mosq Control Assoc 27: 13

    Google Scholar 

  • Andis MD, Meek CL (1984) Survival of Psorophora columbiae larvae in Louisi-ana rice fields. Proc Annu Mtg Texas Mosq Control Assoc 28: 12-13

    Google Scholar 

  • Andis MD, Meek CL (1985) Mortality and survival patterns of the immature stages of Psorophora columbiae. J Am Mosq Control Assoc 1: 357-362

    CAS  PubMed  Google Scholar 

  • Andrewartha HG, Birch LC (1954) The Distribution and Abundance of Animals. Chicago University Press, Chicago

    Google Scholar 

  • Apiwathnasorn C, Sucharit S, Rongsriyam Y, Thongrungkiat S, Deesin T, Punavuthi N (1990) Survival of immature Culex tritaeniorhynchus in paddy fields. Mosq-Borne Dis Bull 7: 11-16

    Google Scholar 

  • Armbruster P, Hutchinson RA (2002) Pupal mass and wing length as indicators of fe-cundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). J Med Entomol 39: 699-704

    PubMed  Google Scholar 

  • Arrivillaga J, Barrera R (2004) Food as a limiting factor for Aedes aegypti in water-storage containers. J Vector Ecol 29: 11-20

    PubMed  Google Scholar 

  • Atkinson PR (1977) Preliminary analysis of a field population of citrus red scale, Aonidiella auranti (Maske 11), and the measurement and expression of stage duration and reproduction for life tables. Bull Entomol Res 67: 65-87

    Google Scholar 

  • Awono-Ambéné HP, Robert V (1999) Survival and emergence of immature Anopheles arabiensis mosquitoes in market-gardener wells in Dakar, Senegal. Parasite 6: 179-184

    PubMed  Google Scholar 

  • Bailey DL, Choate AL, Lawman JP (1986) A rapid radioimmunoassay for the de-tection of Mansonia antigen (Diptera: Culicidae): its potential use as a sensi-tive method for studying predator-prey relationships. Bull Entomol Res 76: 141-150

    Google Scholar 

  • Barr AR (1985) Population regulation of immature Culiseta incidens. In: Lounibos LP, Rey JR, Frank JH (eds) Ecology of Mosquitoes: Proceedings of a Workshop. Florida Medical Entomology Laboratory, Vero Beach, Florida, pp. 147-154

    Google Scholar 

  • Bar-Zeev M (1957) The effect of extreme temperatures on different stages of Aedes aegypti (L). Bull Entomol Res 48: 593-599

    Google Scholar 

  • Bay EC, Self LS (1972) Observations on the guppy, Poecilia reticulata Peters, in Culex pipiens fatigans breeding sites in Bangkok, Rangoon, and Taipei. Bull World Health Organ 46: 407-416

    CAS  PubMed  Google Scholar 

  • Bayoh MN, Lindsay SW (2004) Temperature-related duration of aquatic stages of the Afrotropical malaria vector mosquito Anopheles gambiae in the labora-tory. Med Vet Entomol 18: 174-179

    CAS  PubMed  Google Scholar 

  • Beaver RA (1983) The communities living in Nepenthes pitcher plants: fauna and food webs. In: Frank JH, Lounibos LP (eds) Phytotelmata: Terrestrial Plants as Hosts for Aquatic Insect Communities. Plexus Publishing Inc., Medford, New Jersey, pp. 129-159

    Google Scholar 

  • Beddington JR, Free CA, Lawton JH (1978) Characteristics of successful natural enemies in models of biological control of insect pests. Nature 273: 513-519

    CAS  PubMed  Google Scholar 

  • Begon M, Harper JL, Townsend CR (1986) Ecology, Individuals, Populations and Communities. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Bellows TS (1981) The descriptive properties of some models for density depend-ence. J Anim Ecol 50: 139-156

    Google Scholar 

  • Bellows TS, Birley MH (1981) Estimating developmental and mortality rates and stage recruitment from insect stage-frequency data. Researches in Population Ecology 23: 232-244

    Google Scholar 

  • Bellows TS, Ortiz M, Owens JC, Huddleston EW (1982) A model for analyzing insect stage-frequency data where mortality varies with time. Researches in Population Ecology 24: 142-156

    Google Scholar 

  • Berlow EL, Navarette SA, Briggs CL, Power ME, Menge BA (1999) Quantifying variation in the strengths of species interactions. Ecology 80: 2206-2224

    Google Scholar 

  • Beverton RJH, Holt SJ (1957) On the Dynamics of Exploited Fish Populations. Fishery Investigations, ser. 2, 19, Ministry of Agriculture Fisheries and Food, London, HMSO

    Google Scholar 

  • Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17: 15-26

    Google Scholar 

  • Birley MH (1977) The estimation of insect density and instar survivorship func-tions from census data. J Anim Ecol 46: 497-510

    Google Scholar 

  • Birley MH (1979) The estimation and simulation of variable developmental pe-riod, with application to the mosquito Aedes aegypti (L.). Researches in Population Ecology 21: 68-80

    Google Scholar 

  • Black WC, Rai KS, Turco BJ, Arroyo DC (1989) Laboratory study of competition between United States strains of Aedes albopictus and Aedes aegypti (Diptera: Culicidae). J Med Entomol 26: 260-271

    PubMed  Google Scholar 

  • Blackmore, MS, Scoles, GA, Craig, GB (1995) Parasitism of Aedes aegypti and Ae. albopictus (Diptera: Culicidae) by Ascogregarina spp. (Apicomplexa: Lecudinidae) in Florida. J Med Entomol 32: 847-852

    CAS  PubMed  Google Scholar 

  • Blaustein L (1998) Influence of the predatory backswimmer, Notonecta maculata, on invertebrate community structure. Ecol Entomol 23: 246-252

    Google Scholar 

  • Blaustein L, Kotler BP (1993) Oviposition and habitat selection by the mosquito, Culiseta longiareolata: effects of conspecifics, food and green toad tadpoles. Ecol Entomol 18: 104-108

    Google Scholar 

  • Blaustein L, Kotler BP, Ward D (1995) Direct and indirect effects of a predatory backswimmer (Notonecta maculata) on community structure of desert tempo-rary pools. Ecol Entomol 20: 311-318

    Google Scholar 

  • Boreham PFL, Ohiagu CE (1978) The use of serology in evaluating invertebrate prey-predator relationships; a review. Bull Entomol Res 68: 171-194

    Google Scholar 

  • Bown DN, Bang YH (1980). Ecological studies on Aedes simpsoni (Diptera: Culicidae) in southeastern Nigeria. J Med Entomol 17: 367-374

    CAS  PubMed  Google Scholar 

  • Bradshaw WE (1980) Blood-feeding and capacity for increase in the pitcher-plant mosquito, Wyeomyia smithii. Environ Entomol 9: 86-89

    Google Scholar 

  • Bradshaw WE (1983) Interaction between the mosquito Wyeomyia smithii, the midge Metriocnemus knabi, and their carnivorous host Sarracenia purpurea. In: Frank JH, Lounibos LP (eds) Phytotelmata: Terrestrial Plants as Hosts for Aquatic Insect Communities. Plexus Publishing Inc., Medford, New Jersey, pp. 161-189

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (1983) Predator-mediated, non-equilibrium coexis-tence of tree-hole mosquitoes in southeastern North America. Oecologia (Berl.) 57: 239-256

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (1984) Seasonal development of tree-hole mosqui-toes (Diptera: Culicidae) and Chaoboridae in relation to weather and preda-tion. J Med Entomol 21: 366-378

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (1985) The distribution and abundance of treehole mosquitoes in eastern North America: perspectives from north Florida. In: Lounibos LP, Rey JR, Frank JH (eds) Ecology of Mosquitoes: Proceedings of a Workshop. Florida Medical Entomology Laboratory, Vero Beach, Florida, pp. 3-23

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (1986a) Habitat segregation among European tree-hole mosquitoes. Natl Geogr Res 2: 167-178

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (1986b) Geography of density-dependent selection in pitcher-plant mosquitoes. In: Taylor F, Karban R (eds) The Evolution of Insect Life Cycles. Springer-Verlag, New York, pp. 48-65

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (1988) Drought and the organization of tree-hole mosquito communities. Oceologia (Berl.) 74: 507-514

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (1989) Life-historical consequences of density-dependent selection in the pitcher-plant mosquito, Wyeomyia smithii. Am Nat 133: 869-887

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (1991) Fitness and habitat segregation of British tree-hole mosquitoes. Ecol Entomol 16: 133-144

    Google Scholar 

  • Briegel H, Timmermann SE (2001) Aedes albopictus (Diptera: Culicidae): physio-logical aspects of development and reproduction. J Med Entomol 38: 566-571

    CAS  PubMed  Google Scholar 

  • Broadie KS, Bradshaw WE (1991) Mechanisms of interference competition in the western tree-hole mosquito Aedes sierrensis. Ecol Entomol 16: 145-154

    Google Scholar 

  • Brooke MM, Proske HO (1946) Precipitin test for determining natural predators of immature mosquitoes. J Natn Malar Soc 5: 45-56

    Google Scholar 

  • Brown D, Alexander NDE, Marrs RW, Albon S (1993). Structured accounting of variance of demographic change. J Anim Ecol 62: 490-502

    Google Scholar 

  • Campos RE, Lounibos LP (2000) Life tables of Toxorhynchites rutilus (Diptera: Culicidae) in nature in southern Florida. J Med Entomol 37: 385-392

    CAS  PubMed  Google Scholar 

  • Campos RE, Sy VE (2003) Mortality in immatures of the floodwater mosquito Ochlerotatus albifasciatus (Diptera: Culicidae) and effects of parasitism by Strelkovimermis spiculatus (Nematoda: Mermithidae) in Buenos Aires Prov-ince, Argentina. Mem Inst Oswaldo Cruz 98: 199-208

    PubMed  Google Scholar 

  • Campos RE, Fernández LA, Sy VE (2004) Study of the insects associated with the floodwater mosquito Ochlerotatus albifasciatus (Diptera: Culicidae) and their possible predators in Buenos Aires Province, Argentina. Hydrobiologia 524: 91-102

    Google Scholar 

  • Canyon DV, Hii JLK (1997) The gecko: an environmentally friendly biological agent for mosquito control. Med Vet Entomol 11: 319-323

    CAS  PubMed  Google Scholar 

  • Casanova C, do Prado AP (2002) Key-factor analysis of immature stages of Aedes scapularis (Diptera: Culicidae) populations in southeastern Brazil. Bull En-tomol Res 92: 271-277

    CAS  Google Scholar 

  • Chambers RC (1985) Competition and predation among larvae of three species of treehole-breeding mosquitoes. In: Lounibos LP, Rey JR, Frank JH (eds) Ecol-ogy of Mosquitoes: Proceedings of a Workshop. Florida Medical Entomology Laboratory, Vero Beach, Florida, pp. 25-53

    Google Scholar 

  • Chan KL (1971) Life table studies of Aedes albopictus (Skuse), IAEA-SM-138/19; pp. 131-44, In Sterility Principles for Insect Control or Eradication, IAEA, Vienna, STI/PUB/265

    Google Scholar 

  • Chan KL, Chan YC, Ho BC (1971) Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore city. 4. Competition between species. Bull World Health Organ 44: 643-649

    CAS  PubMed  Google Scholar 

  • Chapman DG, Gallucci VF (eds) (1981). Quantitative population dynamics. Stat Ecol Ser 13

    Google Scholar 

  • Chapman HC (ed) (1985) Biological control of mosquitoes. Am Mosq Control Assoc Bull No. 6. Fresno, California

    Google Scholar 

  • Chiang CL (1968) Introduction to Stochastic Processes in Biostatistics. John Wiley, New York

    Google Scholar 

  • Christie M (1958). Predation on larvae of Anopheles gambiae Giles. J Trop Med Hyg 61: 168-176

    CAS  PubMed  Google Scholar 

  • Chubachi R (1979) An analysis of the generation-mean life table of the mosquito, Culex tritaeniorhynchus summorosus with particular reference to population regulation. J Anim Ecol 48: 681-702

    Google Scholar 

  • Clark LR, Geier PW, Hughes RD, Morris RF (1967) The Ecology of Populations in Theory and Practice. Methuen, London

    Google Scholar 

  • Coetzee M (2004). Distribution of the African malaria vectors of the Anopheles gambiae complex. Am J Trop Med Hyg 70: 103-104

    PubMed  Google Scholar 

  • Connell JH, Mertz DB, Murdoch WW (1970) Readings in Ecology and Ecological Genetics. Harper & Row, New York

    Google Scholar 

  • Costanzo KS, Mormann K, Juliano SA (2005) Asymmetrical competition and pat-terns of abundance of Aedes albopictus and Culex pipiens (Diptera: Culici-dae). J Med Entomol 42: 559-570

    PubMed  Google Scholar 

  • Couch JN, Bland CE (eds) (1985) The Genus Ceolomomyces. Academic Press, Orlando

    Google Scholar 

  • Crook NE, Sunderland KD (1984) Detection of aphid remains in predatory insects and spiders by ELISA. Ann Appl Biol 105: 413-422

    Google Scholar 

  • Crovello TJ, Hacker CS (1972) Evolutionary strategies in life table characteristics among feral and urban strains of Aedes aegypti (L.) Evolution 26: 185-196

    Google Scholar 

  • Crowle AJ (1958) A simplified micro double-diffusion agar precipitin technique J Lab Clin Med 52: 784-787

    CAS  PubMed  Google Scholar 

  • Cuéllar CB (1969a) A theoretical model of the dynamics of an Anopheles gambiae population under challenge with eggs giving rise to sterile males. Bull World Health Organ 40: 205-212

    PubMed  Google Scholar 

  • Cuéllar CB (1969b) The critical level of interference in species eradication of mosquitoes. Bull World Health Organ 40: 213-219

    PubMed  Google Scholar 

  • Dabrowska-Prot E (1966) Experimental studies on the reduction of the abundance of mosquitoes by spiders. II. Activity of mosquitoes in cages. Bull Acad Pol Sci Cl II Sér Sci Biol 14: 771-775

    Google Scholar 

  • Dabrowska-Prot E, Łuczak J, Tarwid K (1966) Experimental studies on the reduc-tion of the abundance of mosquitoes by spiders. III. Indices of prey reduction and some controlling factors. Bull Acad Pol Sci Cl II Sér Sci Biol 14: 777-782

    Google Scholar 

  • Davies RW (1969) The production of antisera for detecting specific triclad anti-gens in the gut contents of predators. Oikos 20: 248-260

    Google Scholar 

  • DeBach P (1966) The competitive displacement and coexistence principles. Annu Rev Entomol 11: 183-212

    Google Scholar 

  • De Barjac A, Sutherland DJ (eds) (1990) Bacterial Control of Mosquitoes and Black Flies. Biochemistry, Genetics and Applications of Bacillus thuringiene-sis israelensis and Bacillus sphaericus. Unwin Hyman, London

    Google Scholar 

  • de Carvalho SCG, Martins Júnior A de J, Lima JBP, Valle D (2002) Temperature influence on embryonic development of Anopheles albitarsis and Anopheles aquasalis. Mem Inst Oswaldo Cruz 97: 1117-1120

    PubMed  Google Scholar 

  • Deevey ES (1947) Life tables for natural populations of animals. Quart Rev Biol 22: 283-314. Also reprinted in Hazen (1970)

    PubMed  Google Scholar 

  • Dempster JP (1958) A study of the predators of the broom beetle (Phytodecta olivacea Forster) using the precipitin test. Proc R Entomol Soc Lond (C) 23: 34

    Google Scholar 

  • Dempster JP (1960) A quantitative study of the predators on the eggs and larvae of the broom beetle, Phytodecta olivacea Forster, using the precipitin test. J Anim Ecol 29: 149-167

    Google Scholar 

  • Dempster JP (1961) The analysis of data obtained by regular sampling of an insect population. J Anim Ecol 30: 429-432

    Google Scholar 

  • Dempster JP (1963) The natural prey of three species of Anthocoris (Heteroptera: Anthocoridae) living on broom (Sarothamnus scoparius L.) Entomol Exp Appl 6: 149-155

    Google Scholar 

  • Dempster JP (1967) The control of Pieris rapae with D.D.T. 1. The natural mor-tality of the young stages of Pieris. J Appl Ecol 4: 485-500

    Google Scholar 

  • Dempster JP (1983) The natural control of populations of butterflies and moths. Biol Rev 58: 461-481

    Google Scholar 

  • Dempster JP, Pollard E (1986) Spatial heterogeneity, stochasticity and the detec-tion of density dependence in animal populations. Oikos 46: 413-416

    Google Scholar 

  • Dempster JP, Richards OW, Waloff N (1959) Carabidae as predators on the pupal stage of the chrysomelid beetle, Phytodecta olivacea (Forster). Oikos 10: 65-70

    Google Scholar 

  • Dennehy JJ, Robakiewicz P, Livdahl T (2001) Larval rearing conditions affect kin-mediated cannibalism in a treehole mosquito. Oikos 95: 335-339

    Google Scholar 

  • Derr JA, Ord K (1979) Field estimates of insect colonization. J Anim Ecol 48: 521-534

    Google Scholar 

  • Dieng H, Mwandawiro C, Boots M, Morales R, Satho T, Tuno N, Tsuda Y, Takagi M (2002) Leaf litter decay process and the growth performance of Aedes albopictus larvae (Diptera: Culicidae). J Vector Ecol 27: 31-38

    PubMed  Google Scholar 

  • Dixon RD, Brust RA (1971) Predation of mosquito larvae by the Fathead Minnow. Manitoba Entomol 5: 68-70

    Google Scholar 

  • Doane JF, Scotti PD, Sutherland ORW, Pottinger RP (1985) Serological identification of wireworm and staphylinid predators of the Australian soldier fly (Inopus rubriceps) and wireworm feeding on plant and animal foods. Entomol Exp Appl 38: 65-72

    Google Scholar 

  • Dubitskij AM (1978) Biological Methods of Control of Blood Sucking Insects in the USSR. Alma-Ata (In Russian)

    Google Scholar 

  • Duhrkopf RE, Benny H (1990) Differences in the larval alarm reactions in popula-tions of Aedes aegypti and Aedes albopictus. J Am Mosq Control Assoc 6: 411-414

    CAS  PubMed  Google Scholar 

  • Duhrkopf RE, Young SS (1979) Some consequences of selection for fast and slow recovery from the larval alarm reaction of Aedes aegypti. Theor Appl Genet 55: 263-268

    Google Scholar 

  • Dye C (1982) Intraspecific competition amongst larval Aedes aegypti: food ex-ploitation or chemical interference? Ecol Entomol 7: 39-46

    Google Scholar 

  • Dye C (1984a) Models for the population dynamics of the yellow fever mosquito, Aedes aegypti. J Anim Ecol 53: 247-268

    Google Scholar 

  • Dye C (1984b) Competition amongst larval Aedes aegypti: the role of interference. Ecol Entomol 9: 355-357

    Google Scholar 

  • Edillo FE, Touré YT, Lanzaro GC, Dolo G, Taylor CE (2004) Survivorship and distribution of immature Anopheles gambiae s.l. (Diptera: Culicidae) in Ba-nambani village, Mali. J Med Entomol 41: 333-339

    PubMed  Google Scholar 

  • Edgerly JS, Willey MS, Livdahl T (1999) Intraguild predation among larval tree-hole mosquitoes, Aedes albopictus, Ae. aegypti, and Ae. triseriatus (Diptera: Culicidae), in laboratory microcosms. J Med Entomol 36: 394-399

    CAS  PubMed  Google Scholar 

  • Enfield MA, Pritchard G (1977) Methods for sampling immature stages of Aedes spp. (Diptera: Culicidae) in temporary ponds. Can Entomol 109: 1435-1444

    Google Scholar 

  • Fava FD, Ludueña Almeida FF, Almirón WR, Brewer M (2001) Winter biology of Aedes albifasciatus (Diptera: Culicidae) from Córdoba, Argentina. J Med Entomol 38: 253-259

    CAS  Google Scholar 

  • Fish D, Carpenter SR (1982) Leaf litter and larval mosquito dynamics in tree-hole ecosystems. Ecology 63: 283-288

    Google Scholar 

  • Fisher IJ, Bradshaw WE, Kammeyer C (1990) Fitness and its correlates assessed by intra- and interspecific interactions among tree-hole mosquitoes. J Anim Ecol 59: 819-829

    Google Scholar 

  • Fitcher BL, Stephen WP (1984) Time-related decay of prey antigens by arboreal spiders as detected by ELISA. Environ Entomol 13: 1583-1587

    Google Scholar 

  • Focks DA, Sackett SR (1985) Some factors affecting interaction of Toxorhynchites amboiensis with Aedes and Culex in an urban environment. In: Lounibos LP, Rey JR, Frank JH (eds) Ecology of Mosquitoes: Proceedings of a Workshop. Florida Medical Laboratory, Vero Beach, pp. 55-64

    Google Scholar 

  • Fox CJS, MacLellan CR (1956) Some Carabidae and Staphylinidae shown to feed on a wireworm, Agnotes sputator (L.) by the precipitin test. Can Entomol 88: 228-231

    Google Scholar 

  • Frank JH (1967) A serological method used in the investigation of the predators of the pupal stage of the winter moth, Operophtera brumata (L.) (Hydriomeni-dae). Quaest Entomol 3: 95-105

    Google Scholar 

  • Frank JH (1983) Bromeliad phytotelmata and their biota, especially mosquitoes. In: Frank JH, Lounibos LP (eds) Phytotelmata: Terrestrial Plants as Hosts for Aquatic Insect Communities. Plexus Publishing Inc., Medford, New Jersey, pp. 101-128

    Google Scholar 

  • Frank JH, Curtis GA (1977a) On the bionomics of bromeliad-inhabiting mosqui-toes. IV. Egg mortality of Wyeomyia vanduzeei caused by rainfall. Mosquito News 37: 239-245

    Google Scholar 

  • Frank JH, Curtis GA (1977b) On the bionomics of bromeliad-inhabiting mosqui-toes. III. The probable strategy of larval feeding in Wyeomyia vanduzeei and Wyeomyia medioalbipes. Mosquito News 37: 200-206

    Google Scholar 

  • Fuxa JR (1987) Ecological considerations for the use of entomopathogens in IPM. Annu Rev Entomol 32: 225-251

    Google Scholar 

  • Gauch HG (1982) Multivariate Analysis in Community Ecology. Cambridge Uni-versity Press, Cambridge.

    Google Scholar 

  • Giller PS (1982) The natural diets of waterbugs (Hemiptera-Heteroptera): electro-phoresis as a potential method of analysis. Ecol Entomol 7: 233-237

    Google Scholar 

  • Giller PS (1984) Predator gut state and prey detectability using electrophoretic analysis of gut contents. Ecol Entomol 9: 157-162

    Google Scholar 

  • Giller PS (1986) The natural diet of the Notonectidae: field trials using electropho-resis. Ecol Entomol 11: 163-172

    Google Scholar 

  • Gillies MT, Gubbins SJ (1982) Culex (Culex) torrentium Martini and Cx. (Cx.) pipiens L. in a southern English county, 1974-1975. Mosq Syst 14: 127-130

    Google Scholar 

  • Gillies MT, Smith A (1960) The effect of a residual house-spraying campaign in East Africa on species balance in the Anopheles funestus group. The replace-ment of A. funestus Giles by A. rivulorum Leeson. Bull Entomol Res 51: 243-252

    Google Scholar 

  • Gilotra SK, Rozeboom LE, Bhattacharya NC (1967) Observations on possible competitive displacement between populations of Aedes aegypti Linnaeus and Aedes albopictus Skuse in Calcutta. Bull World Health Organ 37: 437-446

    CAS  PubMed  Google Scholar 

  • Gilpin ME, Langford RP (1978) Evidence for density dependent growth regula-tion among larval Aedes sierrensis mediated by food competition. Proc Cali-fornia Mosq Vector Control Assoc 46: 42-45

    Google Scholar 

  • Gilpin ME, McClelland GAH (1979) System analysis of the yellow fever mos-quito Aedes aegypti. Fortschr Zool 25: 355-388

    CAS  PubMed  Google Scholar 

  • Gilpin ME, McClelland GAH, Pearson JW (1976) Space, time and stability of laboratory mosquito populations. Am Nat 110: 1107-1111

    Google Scholar 

  • Gimnig JE, Ombok M, Otieno S, Kaufman MG, Vulule JM, Walker ED (2002) Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. J Med Entomol 39: 162-172

    PubMed  Google Scholar 

  • Goettel MS (1987) Field incidence of mosquito pathogens and parasites in central Alberta. J Am Mosq Control Assoc 3: 231-238

    CAS  PubMed  Google Scholar 

  • Gomes A de C, Gotlieb SLD, Marques CC de A, de Paula MB, Marques GRAM (1995) Duration of larval and pupal development stages of Aedes albopictus in natural and artificial containers. Rev Saúde Pública 29: 15-19

    PubMed  Google Scholar 

  • Gomez C, Rabinovich JE, Machado-Allison CE (1977) Population analysis of Culex pipiens fatigans Wied. (Diptera: Culicidae) under laboratory conditions. J Med Entomol 13: 453-463

    CAS  PubMed  Google Scholar 

  • Greenstone MH (1977) A passive haemagglutination inhibition assay for the identi-fication of stomach contents of invertebrate predators. J Appl Ecol 14: 457-464

    Google Scholar 

  • Gubler DJ (1970a) Comparison of reproductive potentials of Aedes (Stegomyia) albopictus Skuse and Aedes (Stegomyia) polynesiensis Marks. Mosquito News 30: 201-209

    Google Scholar 

  • Gubler DJ (1970b) Competitive displacement of Aedes (Stegomyia) polynesiensis Marks by Aedes (Stegomyia) albopictus Skuse in laboratory populations. J Med Entomol 7: 229-235

    CAS  PubMed  Google Scholar 

  • Gubler DJ (1971) Studies on the comparative oviposition behaviour of Aedes (Stegomyia) albopictus and Aedes (Stegomyia) polynesiensis Marks. J Med Entomol 8: 675-682

    CAS  PubMed  Google Scholar 

  • Haldane JBS (1949) Disease and evolution. In: Symposium sui fattori ecologici e genetici della speciazone negli animali. Ric Sci 19 (suppl.) 3-11

    Google Scholar 

  • Harcourt DG, Yee JM (1982) Polynomial algorithm for predicting the duration of insect life stages. Environ Entomol 11: 581-584

    Google Scholar 

  • Hard JJ, Bradshaw WE, Malarkey DJ (1989) Resource- and density-dependent development in tree-hole mosquitoes. Oikos 54: 137-144

    Google Scholar 

  • Hassell MP (1971) Mutual interference between searching insect parasites. J Anim Ecol 40: 473-486

    Google Scholar 

  • Hassell MP (1975) Density-dependence in single-species populations. J Anim Ecol 44: 283-295

    Google Scholar 

  • Hassell MP (1985) Insect natural enemies as regulating factors. J Anim Ecol 54: 323-334

    Google Scholar 

  • Hassell MP (1987) Detecting regulation in patchily distributed animal populations. J Anim Ecol 56: 705-713

    Google Scholar 

  • Hassell MP, Huffaker CB (1969) The appraisal of delayed and direct density-dependence. Can Entomol 101: 353-361

    Google Scholar 

  • Hassell MP, May RM (1973) Stability in insect host-parasitic models. J Anim Ecol 42: 693-726

    Google Scholar 

  • Hassell MP, May RM (1974) Aggregation of predators and insect parasites and its effect on stability. J Anim Ecol 43: 567-587

    Google Scholar 

  • Hassell MP, Rogers DJ (1972) Insect parasite responses in the development of population models. J Anim Ecol 41: 661-676

    Google Scholar 

  • Hassell MP, Varley GC (1969) New inductive population model for insect para-sites and its bearing on biological control. Nature 223: 1133-1137

    CAS  PubMed  Google Scholar 

  • Hassell MP, Lawton JH, May RM (1976) Patterns of dynamical behaviour in sin-gle-species populations. J Anim Ecol 45: 471-486

    Google Scholar 

  • Hassell MP, Latto J, May RM (1989) Seeing the wood from the trees: detecting density dependence from existing life-table studies. J Anim Ecol 58: 883-892

    Google Scholar 

  • Hawley WA (1985a) The effect of larval density on adult longevity of a mosquito, Aedes sierrensis: epidemiological consequences. J Anim Ecol 54: 955-964

    Google Scholar 

  • Hawley WA (1985b) Population dynamics of Aedes sierrensis. In: Lounibos LP, Rey JR, Frank JH (eds) Ecology of Mosquitoes: Proceedings of a Workshop. Florida Medical Entomology Laboratory, Vero Beach, Florida, pp. 167-184

    Google Scholar 

  • Hawley WA (1988) The biology of Aedes albopictus. J Am Mosq Control Assoc 4 (suppl.): 1-39

    Google Scholar 

  • Hayes J, Hsi BP (1975) Interrelationships between selected meteorologic phenom-ena and immature stages of Culex pipiens quinquefasciatus Say: study of an isolated population. J Med Entomol 12: 299-308

    CAS  PubMed  Google Scholar 

  • Hazen W (ed) (1970) Readings in Population and Community Ecology, 6th edn. WB Saunders, Philadelphia

    Google Scholar 

  • Healey JA, Cross TF (1975) Immunoelectroosmorphoresis for serological identifi-cation of predators of the sheep-tick Ixodes ricinus. Oikos 26: 97-101

    Google Scholar 

  • Hill AB (1971) Principles of Medical Statistics. Lancet Ltd, London

    Google Scholar 

  • Ho BC, Ewert A, Chew L-M (1989) Interspecific competition among Aedes ae-gypti, Ae. albopictus, and Ae. triseriatus (Diptera: Culicidae): larval develop-ment in mixed cultures. J Med Entomol 26: 615-623

    CAS  PubMed  Google Scholar 

  • Hokkanen HMT, Pimentel D (1989) New associations in biological control: the-ory and practice. Can Entomol 121: 829-840

    Google Scholar 

  • Holling CS (1959) The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Can Entomol 91: 385-398

    Google Scholar 

  • Huffaker CB (1944) The temperature relations of the immature stages of the ma-larial mosquito An. quadrimaculatus Say, with a comparison of the develop-mental power of constant and variable temperatures in insect metabolism. Ann Entomol Soc Am 37: 1-27

    CAS  Google Scholar 

  • Huffaker CB, Kennett CE (1969) Some aspects of assessing efficiency of natural enemies. Can Entomol 101: 425-447

    Google Scholar 

  • Huffaker CB, Rabb RL (eds) (1984) Ecological Entomology. John Wiley, New York

    Google Scholar 

  • Hughes RD (1962) A method for estimating the effects of mortality on aphid populations. J Anim Ecol 31: 389-396

    Google Scholar 

  • Hughes RD (1963) Population dynamics of the cabbage aphid, Brevicoryne bras-sicae (L.). J Anim Ecol 32: 393-424

    Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experi-ments. Ecol Mongr 54: 187-211

    Google Scholar 

  • Hwang Y-S, Mulla MS (1975) Overcrowding factors of mosquito larvae. Their potential for mosquito control. Proc California Mosq Control Assoc 43: 73-74

    Google Scholar 

  • Hwang Y-S, Mulla MS, Majori G (1976) Overcrowding factors of mosquito lar-vae. VIII. Structure-activity relationship of methyl 2-alkylalkanoates against mosquito larvae. Agricultural Food Chemistry 24: 649-651

    CAS  Google Scholar 

  • Ikeshoji T (1977) Self-limiting economes in the populations of insects and some aquatic animals. J Pest Sci 2: 77-89

    Google Scholar 

  • Ikeshoji T (1978) Lipids self-limiting the populations of mosquito larvae. In: Symposium on the Pharmacological Effects of Lipids, AOCS Monograph No 5, pp. 113-121

    Google Scholar 

  • Ikeshoji T, Ichimoto I, Ono T, Naoshima Y, Ueda H (1977) Overcrowding factors of mosquito larvae. X. Structure-bioactivity relationship and bacterial activa-tion of the alkyl-branched hydrocarbons. Appl Entomol Zool 12: 265-273

    CAS  Google Scholar 

  • Irving-Bell RJ, Okoli EI, Diyelong DY, Lyimo EO, Onyia OC (1987). Septic tank mosquitoes: competition between species in central Nigeria. Med Vet Entomol 1: 243-250

    CAS  PubMed  Google Scholar 

  • Istock CA, Wasserman SS, Zimmer H (1975) Ecology and evolution of the pitcher-plant mosquito: 1. Population dynamics and laboratory responses to food and population density. Evolution 29: 296-312

    Google Scholar 

  • Istock CA, Zisfeln J, Vavra KJ (1976a) Ecology and evolution of the pitcher-plant mosquito. 2. The substructure of fitness. Evolution 30: 535-547

    Google Scholar 

  • Istock CA, Vavra KJ, Zimmer H (1976b) Ecology and evolution of the pitcher-plant mosquito: 3. Resources tracking by a natural population. Evolution 30: 548-557

    Google Scholar 

  • Itô Y (1961) Factors that effect the fluctuations of animal numbers, with special reference to insect outbreaks. Bull Natl Inst Agr Sci C13: 57-89

    Google Scholar 

  • Itô Y (1972) On the methods for determining density-dependence by means of re-gression. Oecologia (Berl.) 10: 347-372

    Google Scholar 

  • Jackson N (1953) Observations on the feeding habits of a predaceous mosquito larva, Culex (Lutzia) tigripes Grandpré and Charmoy (Diptera). Proc R Ento-mol Soc Lond (A) 28: 153-159

    Google Scholar 

  • James HG (1961) Some predators of Aedes stimulans (Walk.) and Aedes trichurus (Dyar) (Dipt.: Culicidae) in woodland pools. Can J Zool 39: 533-540

    Google Scholar 

  • James HG (1964) Insect and other fauna associated with the rockpool mosquito Aedes altropalpus (Coq.). Mosquito News 24: 325-329

    Google Scholar 

  • James HG (1966) Insect predators of univoltine mosquitoes in woodland pools of the pre-Cambrian Shield in Ontario. Can Entomol 98: 550-555

    Google Scholar 

  • Jenkins DW (1964) Pathogens, parasites and predators of medically important ar-thropods. Annotated list and bibliography. Bull World Health Organ 30 (Suppl.): 5-150

    Google Scholar 

  • Joshi DS (1996) Effect of fluctuating and constant temperatures on development, adult longevity and fecundity in the mosquito Aedes krombeini. J Thermal Biol, 21: 151-154

    Google Scholar 

  • Juliano SA (1998) Species introduction and replacement among mosquitoes: inter-specific resource competition or apparent competition? Ecology 79: 255-268

    Google Scholar 

  • Juliano SA, O’Meara GF, Morrill JR, Cutwa MM (2002) Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia (Berl.) 130: 458-469

    Google Scholar 

  • Kapuge SH, Danthanarayana W, Hoogenraad N (1987) Immunological investiga-tion of prey-predator relationships for Pieris rapae (L.) (Lepidoptera: Pieri-dae). Bull Entomol Res 77: 247-254

    Google Scholar 

  • Kaur R, Reuben R (1981) Studies of density and natural survival of immatures of Anopheles stephensi Liston in wells in Salem (Tamil Nadu). Indian J Med Res 73 (Suppl.): 129-135

    PubMed  Google Scholar 

  • Kellett FRS, Omardeen TA (1957) Tree hole breeding of Aedes aegypti (Linn) in Arima, Trinidad, B.W.I. W. Indian Med J 6: 179-188

    CAS  Google Scholar 

  • Kiflawi M, Blaustein L, Mangel M (2003a) Predation-dependent oviposition habitat selection by the mosquito Culiseta longiareolata: a test of competing hypothe-ses. Ecol Letters 6: 35-40

    Google Scholar 

  • Kiflawi M, Blaustein L, Mangel M (2003b) Oviposition habitat selection by the mosquito Culiseta longiareolata in response to risk of predation and conspeci-fic larval density. Ecol Entomol 28: 168-173

    Google Scholar 

  • Kiritani K, Nakasuji F (1967) Estimation of the stage-specific survival rate in the insect population with overlapping stages. Researches in Population Ecology 9: 143-152

    Google Scholar 

  • Knight TM, Chase JM, Goss CW, Knight JJ (2004) Effects of interspecific com-petition, predation, and their interaction on survival and development time of immature Anopheles quadrimaculatus. J Vector Ecol 29: 277-284

    PubMed  Google Scholar 

  • Kobayashi S (1968) Estimation of the individual number entering each develop-mental stage in an insect population. Researches in Population Ecology 10: 40-44

    Google Scholar 

  • Koenraadt CJM, Takken W (2003) Cannibalism and predation among larvae of the Anopheles gambiae complex. Med Vet Entomol 17: 61-66

    CAS  PubMed  Google Scholar 

  • Koenraadt CJM, Majambere S, Hemerik L, Takken W (2004) The effects of food and space on the occurrence of cannibalism and predation among larvae of Anopheles gambiae s.l.. Entomol Exp Appl 112: 125-134

    Google Scholar 

  • Kuno E (1971) Sampling error as a misleading artifact in ‘key factor analysis’. Researches in Population Ecology 13: 28-45

    Google Scholar 

  • Kuno E (1973) Statistical characteristics of the density-dependent population fluc-tuations and the evaluation of density-dependence and regulation in animal populations. Researches in Population Ecology 15: 99-120

    Google Scholar 

  • Kuno E (1991) Sampling and analysis of insect populations. Annu Rev Entomol 36: 285-304

    Google Scholar 

  • Lacey LA, Lacey CM (1990) The medical importance of riceland mosquitoes and their control using alternatives to chemical insecticides. J Am Mosq Control Assoc 6 (Suppl. 2) 1-93

    Google Scholar 

  • Laird M (ed) (1981) Biocontrol of Medical and Veterinary Pests. Praeger Publish-ers, New York

    Google Scholar 

  • Laird M, Miles JW (eds) (1983) Integrated Mosquito Control Methodologies. Volume 1. Experience and Components from Conventional Chemical Control. Academic Press, London

    Google Scholar 

  • Laird M, Miles JW (eds) (1985) Integrated Mosquito Control Methodologies. Volume 2. Biocontrol and Other Innovative Components, and Future Direc-tions. Academic Press, London

    Google Scholar 

  • Lakhani KH, Service MW (1974) Estimated mortalities of the immature stages of Aedes cantans (Meigen) (Dipt., Culicidae) in a natural habitat. Bull Entomol Res 64: 265-276

    Google Scholar 

  • Landry SV, DeFoliart GR, Hogg DB (1988) Adult body size and survivorship in a field population of Aedes triseriatus. J Am Mosq Control Assoc 4: 121-128

    CAS  PubMed  Google Scholar 

  • Lang JD (2003) Factors affecting immatures of Ochlerotatus taeniorhynchus (Diptera: Culicidae) in San Diego County, California. J Med Entomol 40: 387-394

    Google Scholar 

  • Lansdowne C, Hacker CS (1975) The effect of fluctuating temperature and humidity on the adult life table characteristics of five strains of Aedes aegypti. J Med Entomol 11: 723-733

    CAS  PubMed  Google Scholar 

  • Laughlin R (1965) Capacity for increase: a useful population statistic. J Anim Ecol 34: 77-91

    Google Scholar 

  • Lee FC (1967) Laboratory observations on certain mosquito larval predators. Mosquito News 27: 332-338

    Google Scholar 

  • Lester PJ, Pike AJ (2003) Container surface area and water depth influence the population dynamics of the mosquito Culex pervigilans (Diptera: Culicidae) and its associated predators in New Zealand. J Vector Ecol 28: 267-274

    PubMed  Google Scholar 

  • Lister A (1984) Predation in an Antarctic micro-arthropod community. Acarol 6: 886-892

    Google Scholar 

  • Lister A, Block W, Usher MB (1988) Arthropod predation in an Antarctic terres-trial community. J Anim Ecol 57: 957-971

    Google Scholar 

  • Liu Z, Zhang Y, Yang Y (1985) Population dynamics of Aedes (Stegomyia) al-bopictus (Skuse) under laboratory conditions. Acta Entomol Sin 28: 270-280 (In Chinese, English summary)

    Google Scholar 

  • Livdahl TP, Sugihara G (1984) Non-linear interactions of populations and the im-portance of estimating per capita rates of change. J Anim Ecol 53: 573-580

    Google Scholar 

  • Lloyd M (1967) Mean crowding. J Anim Ecol 36: 1-30

    Google Scholar 

  • Lord CC (1998) Density dependence in larval Aedes albopictus (Diptera: Culici-dae). J Med Entomol 35: 825-829

    CAS  PubMed  Google Scholar 

  • Loughton BG, West AS (1962) Serological assessment of spider predation on the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortrici-dae). Proc Entomol Soc Ontario 92: 176-180

    Google Scholar 

  • Loughton BG, Derry C, West AS (1963) Spiders and the spruce budworm. Mem Entomol Soc Canada 31: 249-268

    Google Scholar 

  • Lounibos LP (1979) Mosquitoes occurring in the axils of Pandanus rabaiensis Rendle on the Kenya coast. Cah ORSTOM sér Entomol Méd Parasitol 17: 25-29

    Google Scholar 

  • Lounibos LP (1981) Habitat segregation among African treehole mosquitoes. Ecol Entomol 6: 129-154

    Google Scholar 

  • Lounibos LP (1983) The mosquito community of treeholes in subtropical Florida. In: Frank JH, Lounibos LP (eds) Phytotelmata: Terrestrial Plants as Hosts for Aquatic Insect Communities. Plexus Publishing, Medford, pp. 223-246

    Google Scholar 

  • Lounibos LP (1985) Interactions influencing production of tree-hole mosquitoes in south Florida. In: Lounibos LP, Rey JR, Frank JH (eds) Ecology of Mos-quitoes: Proceedings of a Workshop. Medical Entomology Laboratory. Vero Beach, Florida, pp. 65-77

    Google Scholar 

  • Lounibos LP, Machado-Allison CE (1986) Mosquito maternity: Egg brooding in the life cycle of Trichoprosopon digitatum. In: Taylor F, Karban R (eds) The Evolution of Insect Life Cycles. Springer-Verlag, New York, pp. 173-184

    Google Scholar 

  • Lounibos LP, Suárez S, Menéndez Z, Nishimura N, Escher RL, O’Connell SM, Rey JR (2002) Does temperature affect the outcome of larval competition be-tween Aedes aegypti and Aedes albopictus? J Vector Ecol 27: 86-95

    CAS  PubMed  Google Scholar 

  • Lounibos LP, O’Meara GF, Nishimura N, Escher RL (2003) Interactions with native mosquito larvae regulate the production of Aedes albopictus from bromeliads in Florida. Ecol Entomol 28: 551-558

    Google Scholar 

  • Lowrie RC (1973a) The effect of competition between larvae of Aedes (S) al-bopictus Skuse and A. (S) polynesiensis Marks. J Med Entomol 10: 23-30

    PubMed  Google Scholar 

  • Lowrie RC (1973b) Displacement of Aedes (S) polynesiensis Marks by A (S) al-bopictus Skuse through competition in the larval stages under laboratory conditions. J Med Entomol 10: 131-136

    PubMed  Google Scholar 

  • Lowry OL, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265-275

    CAS  PubMed  Google Scholar 

  • Luck RF (1971) An appraisal of two methods of analysing insect life tables. Can Entomol 103: 1261-1271

    Google Scholar 

  • Łuczak J, Dabrowska-Prot E (1966) Experimental studies on the reduction of the abundance of mosquitoes by spiders. I. Intensity of spider predation on mos-quitoes. Bull Acad Pol Sci Cl II Sér Sci Biol 14: 315-320

    Google Scholar 

  • Lundkvist E, Landin J, Jackson M, Svensson C (2003) Diving beetles (Dytiscidae) as predators of mosquito larvae (Culicidae) in field experiments and in labora-tory tests of prey preference. Bull Entomol Res 93: 219-226

    CAS  PubMed  Google Scholar 

  • Lutwama JJ, Mukwaya LG (1995) Estimates of mortalities of larvae and pupae of the Aedes simpsoni (Theobald) (Diptera: Culicidae) complex in Uganda. Bull Entomol Res 85: 93-99

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The Theory of Island Biogeography. Princeton University Press. Princeton, New Jersey

    Google Scholar 

  • Macdonald WW (1956) Aedes aegypti in Malaya. II. Larval and adult biology. Ann Trop Med Parasitol 50: 399-414

    CAS  PubMed  Google Scholar 

  • Machado-Allison CE, Rodriquez DJ, Barrera R, Cova CG (1983) The insect community associated with inflorescences of Heliconia caribea Lamarck in Venezuela. In: Frank JH, Lounibos LP (eds) Phytotelmata: Terrestrial Plants as Hosts for Aquatic Insect Communities. Plexus Publishing, Medford, pp. 247-270

    Google Scholar 

  • Mackauer M, Ehler LE, Roland J (1990) Critical Issues in Biological Control. In-tercept, Andover Mackey BE, Hoy JB (1978) Culex tarsalis: Sequential sampling as a means of estimating populations in Californian rice field. J Econ Entomol 71: 329-334

    Google Scholar 

  • Maelzer DA (1970) The regression of log Nn+1 on log Nn as a test of density de-pendence: an exercise with computer-constructed density-independent popula-tions. Ecology 51: 810-822

    Google Scholar 

  • Maharaj R (2003) Life table characteristics of Anopheles arabiensis (Diptera: Culicidae) under simulated seasonal conditions. J Med Entomol 40: 737-742

    CAS  PubMed  Google Scholar 

  • Mahmood F (1997) Life-table attributes of Anopheles albimanus (Wiedemann) under controlled laboratory conditions. J Vector Ecol 22: 103-108

    CAS  PubMed  Google Scholar 

  • Mahmood F, Crans WJ (1998) Effect of temperature on the development of Culiseta melanura (Diptera: Culicidae) and its impact on the amplification of eastern equine encephalomyelitis virus in birds. J Med Entomol 35: 1007-1012

    CAS  PubMed  Google Scholar 

  • Manly, BF J (1974a) A comparison of methods for the analysis of insect stage-frequency data. Oecologia (Berl.), 17: 335-48

    Google Scholar 

  • Manly, BFJ (1974b) Estimation of stage-specific survival rates and other parame-ters for insect populations developing through several stages. Oecologia (Berl.), 15: 277-85

    Google Scholar 

  • Manly, BF J (1976). Extensions to Kiritani and Nakasuji’s method for analysing insect stage-frequency data. Res. Popul. Ecol., 17: 191-9

    Google Scholar 

  • Manly, BFJ (1977a) A further note on Kiritani and Nakasuji’s model for stage-frequency data including comments on the use of Tukey’s jackknife tech-niques for estimating variances. Res. Popul. Ecol., 18: 177-86

    Google Scholar 

  • Manly, BFJ (1977b) The determination of key factors from life table data. Oeco-logia (Berl.), 31: 111-7

    Google Scholar 

  • Manrique-Saide, P., Ibáñez-Bernal, S., Delfín-González, H & Tabla, VP (1998) Mesocyclops longisetus effects on survivorship of Aedes aegypti immature stages in car tyres. Med Vet Entomol 12: 386-390

    CAS  PubMed  Google Scholar 

  • Marchi A, Munstermann LE (1987) The mosquitoes of Sardinia: species records 35 years after the malaria eradication campaign. Med. vet. Ent., 1: 89-96

    CAS  Google Scholar 

  • Marten GG, Mieu Nguyen, Giai Ngo (2000) Copepod predation on Anopheles quadrimaculatus larvae in rice fields. J Vector Ecol 25: 1-6

    CAS  PubMed  Google Scholar 

  • Mattingly PF (1967) Aedes aegypti and other mosquitos in relation to the dengue syndrome. Bull World Health Organ 36: 533-55

    CAS  PubMed  Google Scholar 

  • May, RM (edit.). (1981) Theoretical Ecology: Principles and Applications (2nd edit.). Blackwell Scientific Publications, Oxford, ix + 489 pp.

    Google Scholar 

  • May, RM (1986) The search for patterns in the balance of nature; advances and re-treats. Ecology, 67: 1115-26

    Google Scholar 

  • May, RM & Oster, GF (1976) Bifurcations and dynamic complexity in simple ecological models. Am. Nat., 110: 573-600

    Google Scholar 

  • McDonald, G & Buchanan, GA (1981). The mosquito and predatory insect fauna inhibiting fresh-water ponds, with particular reference to Culex annulirostris Skuse (Diptera: Culicidae). Aust. J. Ecol., 6: 21-7.

    Google Scholar 

  • McDonald, L., Manly, B., Lockwood, J & Logan, J (edit). (1989) Estimation and Analysis of Insect Populations. In Proc. Conf. Laramie, Wyoming, 25-29 January 1988. Springer-Verlag, Berlin, xiv + 492 pp.

    Google Scholar 

  • McIver, JD (1981) An examination of the utility of the precipitin test for evalua-tion of arthropod predator-prey relationships. Can. Ent., 113: 213-22

    Google Scholar 

  • Menon, PKB & Rajagopalan, PK (1979) Seasonal changes in the density and natural mortality of immature stages in the urban malaria vector, Anopheles stephensi (Liston) in wells in Pondicherry. Indian J. med. Res., 70 (Suppl.), 123-7

    PubMed  Google Scholar 

  • Menon, PKB & Sharma, VP (1981) Geographic variation in life table attributes of four populations of Anopheles stephensi Liston from India. Indian J. Malar., 18: 91-7

    Google Scholar 

  • Mercer, DR., Wettach, GR & Smith, JL (2005) Effects of larval density and pre-dation by Toxorhynchites amboinensis on Aedes polynesiensis (Diptera: Culicidae) developing in coconuts. Journal of the American Mosquito Control Association, 21: 425-431

    PubMed  Google Scholar 

  • Miura, T & Takahashi, RM (1988) Development and survival rates of immature stages of Culex tarsalis (Diptera: Culicidae) in central California rice fields. Proc. Calif. Mosq. & Vect. Contr. Ass., 56: 168-79

    Google Scholar 

  • Miura, T., Takahashi, RM & Mulligan, FS (1978) Field evaluation of the effec-tiveness of predacious insects as a mosquito control agent. Proc. Calif. Mosq. & Vect. Contr. Ass., 46: 80-1

    Google Scholar 

  • Miura, T., Takahashi, RM & Wilder, WH (1984) Impact of the mosquitofish (Gambusia affinis) on a rice field ecosystem when used as a mosquito control agent. Mosquito News, 44: 510-17

    Google Scholar 

  • Mogi, M (1978) Population studies on mosquitoes in the rice field area of Nagasaki, Japan, especially on Culex tritaeniorhynchus. Trop. Med., 20: 173-263

    Google Scholar 

  • Mogi, M (1981) Population dynamics and methodology for biocontrol of mosqui-toes, pp. 140-172. In Biocontrol of Medical and Veterinary Pests, (edit. M. Laird). Praeger Scientific, New York, xx + 235 pp.

    Google Scholar 

  • Mogi, M & Okazawa, T (1990) Factors influencing development and survival of Culex pipiens pallens larvae (Diptera: Culicidae) in polluted urban creeks. Res. Popul. Ecol., 32: 135-49

    Google Scholar 

  • Mogi, M & Yamamura, N (1988) Population regulation of a mosquito Armigeres theobaldi with description of the animal fauna in zingiberaceous inflorescen-ces. Res. Popul. Ecol., 30: 251-65

    Google Scholar 

  • Mogi, M., Mori, A & Wada, Y (1980a) Survival rates of Culex tritaeniorhynchus (Diptera: Culicidae) larvae in fallow rice fields before summer cultivation. Trop. Med., 22: 47-59

    Google Scholar 

  • Mogi, M., Mori, A & Wada, Y (1980b) Survival rates of immature stages of Culex tritaeniorhynchus (Diptera: Culicidae) in rice fields under summer cultivation. Trop. Med., 22: 111-26

    Google Scholar 

  • Mogi, M., Miyagi, I & Cabrera, B D (1984) Development and survival of imma-ture mosquitoes (Diptera: Culicidae) in Philippine rice fields. J Med Entomol 21: 283-91

    CAS  PubMed  Google Scholar 

  • Mogi, M., Horio, M., Miyagi, I & Cabrera, B D (1985) Succession, distribution, overcrowding and predation in the aquatic community in aroid axils, with special reference to mosquitoes, pp. 95-119. In Ecology of Mosquitoes: Pro-ceedings of a Workshop (edit. LP Lounibos, JR Rey & JH Frank). Florida Medical Entomology Laboratory, Vero Beach, Florida, xix + 579 pp.

    Google Scholar 

  • Mogi, M., Okazawa, T., Miyagi, I., Sucharit, S., Tumrasvin, W., Deesin, T & Khamboonruang, C. (1986). Development and survival of anopheline imma-tures (Diptera: Culicidae) in rice fields in northern Thailand. J Med Entomol 23: 244-50

    CAS  PubMed  Google Scholar 

  • Mokany, A & Shine, R (2002a) Pond attributes influence competitive interactions between tadpoles and mosquito larvae. Austral Ecology, 27: 396-404

    Google Scholar 

  • Mokany, A & Shine, R (2002b) Competition between tadpoles and mosquitoes: the effects of larval density and tadpole size. Australian Journal of Zoology, 50: 549-563

    Google Scholar 

  • Mokany, A & Shine, R (2003a) Competition between tadpoles and mosquito lar-vae. Oecologia, 135: 615-620

    CAS  PubMed  Google Scholar 

  • Mokany, A & Shine, R (2003b) Biological warfare in the garden pond: tadpoles suppress the growth of mosquito larvae. Ecological Entomology, 28: 102-108

    Google Scholar 

  • Moon, TE (1976) A statistical model of the dynamics of a mosquito vector (Culex tarsalis) population. Biometrics, 32: 355-68

    CAS  PubMed  Google Scholar 

  • Moore CG, Fisher BR (1969) Competition in mosquitoes. Density and species ra-tio effects on growth, mortality, fecundity, and production of growth retar-dant. Ann. ent. Soc. Am., 62: 1325-31

    CAS  Google Scholar 

  • Moore CG, Whitacre DM (1972) Competition in mosquitoes. 2. Production of Aedes aegypti larval growth retardant at various densities and nutrition levels. Ann. ent. Soc. Am., 65: 915-8

    Google Scholar 

  • Moore CG, Reiter P, Eliason DA, Bailey RE, Campos EG (1990) Apparent influ-ence of the stage of blood meal digestion on the efficacy of ground applied ULV aerosols for the control of urban Culex mosquitoes. III. Results of a computer simulation. J Am Mosq Control Assoc 6: 375-83

    Google Scholar 

  • Morales, ME., Wesson, DM., Sutherland, IW., Impoinvil, DE., Mbogo, CM., Githure, JI & Beier, JC (2003) Determination of Anopheles gambiae larval DNA in the gut of insectivorous dragonfly (Libellulidae) nymphs by poly-merase chain reaction. Journal of the American Mosquito Control Associa-tion, 19: 163-165

    CAS  Google Scholar 

  • Mori, A (1979) Effects of larval density and nutrition on some attributes of imma-ture and adult Aedes albopictus. Trop. Med., 21: 85-103

    Google Scholar 

  • Mori, A & Wada, Y (1978) Seasonal abundance of Aedes albopictus in Nagasaki. Trop. Med., 20: 29-37

    Google Scholar 

  • Morris, RF (1959) Single-factor analysis in population dynamics. Ecology, 40: 580-8.

    Google Scholar 

  • Morris, RF (1963) Predictive population equations based on key factors. Mem. ent. Soc. Canada, 32: 16-21

    Google Scholar 

  • Morris, RF & Royama, T (1969) Logarithmic regression as an index of re-sponses to population density. A comment on a paper by MP Hassell and CB Huffaker. Can. Ent., 101: 361-4

    Google Scholar 

  • Morrison, A & Andreadis, TG (1992) Larval population dynamics in a community of nearctic Aedes inhabiting a temporary vernal pool. Journal of the American Mosquito Control Association, 8: 52-57

    CAS  PubMed  Google Scholar 

  • Mottram, P & Kettle, DS (1997) Development and survival of immature Culex annulirostris mosquitoes in southeast Queensland. Med Vet Entomol 11: 181-186

    CAS  PubMed  Google Scholar 

  • Mountford, M D (1988) Population regulation, density dependence, and heteroge-neity. J. Anim. Ecol., 57: 845-58

    Google Scholar 

  • Mpho, M., Holloway, GJ & Callaghan, A (2000) Fluctuating wing asymmetry and larval density stress in Culex quinquefasciatus (Diptera: Culicidae). Bull En-tomol Res 90: 279-283

    CAS  Google Scholar 

  • Mueller, LD (1997) Theoretical and experimental examination of density-dependent selection. Ann Rev Ecol Syst, 28: 269-288

    Google Scholar 

  • Murray, BG (1979) Population Dynamics. Academic Press, New York, ix + 212 pp.

    Google Scholar 

  • Murray, RA & Solomon, MG (1978) A rapid technique for analysing diets of invertebrate predators by electrophoresis. Ann. appl. Biol., 90: 7-10

    CAS  Google Scholar 

  • Nannini, MA & Juliano, SA (1997) Effects of developmental asynchrony between Aedes triseriatus (Diptera: Culicidae) and its predator Toxorhynchites rutilus (Diptera: Culicidae). J Med Entomol 34: 457-460

    CAS  PubMed  Google Scholar 

  • Oda, T., Uchida, K., Mori, A., Mine, M., Eshita, Y., Kurokawa, K., Kato, K & Tahara, H (1999) Effects of high temperature on the emergence and survival of adult Culex pipiens molestus and Culex quinquefasciatus in Japan. Journal of the American Mosquito Control Association, 15: 153-156

    CAS  PubMed  Google Scholar 

  • Ohiagu, CE & Boreham, PFL (1978) A simple field test for evaluating insect prey-predator relationships. Entomologia exp. appl., 23: 40-7

    Google Scholar 

  • O’Meara GF, Larson VL, Mook DH, Latham MD (1989) Aedes bahamensis: its invasion of South Florida and association with Aedes aegypti. J Am Mosq Control Assoc 5: 1-5

    PubMed  Google Scholar 

  • Paine, RT (1992) Food web analysis through field measurement of per capita in-teraction strength. Nature, 355: 73-75

    Google Scholar 

  • Pajot, F.-X (1975) Contribution a l’étude écologique d’Aedes (Stegomyia) simpsoni (Theobald, 1905) (Diptera: Culicidae). Études des gîtes larvaires en République Centrafricaine. Cah. ORSTOM, sér. Entomol. méd. Parasit., 13: 135-64

    Google Scholar 

  • Pajot, F. -X (1976) Contribution a l’étude écologique d’Aedes (Stegomyia) simp-soni (Theobald, 1905) (Diptera: Culicidae). Observations concernant les stages préimaginaux. Cah. ORSTOM, sér. Entomol. méd. Parasit., 16: 129-50

    Google Scholar 

  • Pajunen, VI (1983) The use of physiological time in the analysis of insect stage-frequency data. Oikos, 40: 161-5.

    Google Scholar 

  • Pajunen, VI (1986) How to construct and use realistic physiological time scales: an analysis of larval mortality in rock pool corixids (Hemiptera). Oikos, 47: 239-50

    Google Scholar 

  • Palchick, S., Schoof, DD., Tempelis, CH & Washino, RK (1986) Who is eating whom? An evaluation of an enzyme immunoassay for predator prey analyses. Proc. Calif. Mosq. & Vect. Contr. Ass., 53, 120

    Google Scholar 

  • Peters, TM & Barbosa, P (1977) Influence of population density on size, fecun-dity, and development rate of insects in culture. A. Rev. Ent., 22: 431-50

    Google Scholar 

  • Pickavance, JR (1970) A new approach to the immunological analysis of inverte-brate diets. J. Anim. Ecol., 39: 715-24

    Google Scholar 

  • Pielou, EC (1977) Mathematical Ecology. John Wiley & Sons, New York. x + 385 pp.

    Google Scholar 

  • Podoler, H. & Rogers, D (1975) A new method for the identification of key fac-tors from life table data. J. Anim. Ecol., 44: 85-114

    Google Scholar 

  • Poinar, GO (1979) Nematodes for Biological Control of Insects. CRC Press, Boca Raton, 217 pp.

    Google Scholar 

  • Pollard, E., Lakhani, KH & Rothery, P (1987) The detection of density-dependence from a series of annual censuses. Ecology, 68: 2046-55

    Google Scholar 

  • Pritchard, G & Scholefield, PJ (1980) Efficiency of the Enfield sampler for esti-mates of larval and pupal mosquito populations. Mosquito News, 40: 383-7

    Google Scholar 

  • Pritchard, G & Scholefield, PJ (1983) Survival of Aedes larvae in constant area ponds in southern Alberta (Diptera: Culicidae). Can. Ent., 115: 183-8

    Google Scholar 

  • Pritchard, G., Harder, LD & Mutch, RA (1996) Development of aquatic insect eggs in relation to temperature and strategies for dealing with different ther-mal environments. Biological Journal of the Linnean Society, 58: 221-244

    Google Scholar 

  • Prout, T (1980) Some relationships between density-independent selection and density-dependent population growth. Evolutionary biology, 13: 1-68

    Google Scholar 

  • Rae, DJ (1990) Survival and development of the immature stages of Culex annuli-rostris (Diptera: Culicidae) at the Ross River dam in tropical eastern Australia. J Med Entomol 27: 756-62

    CAS  PubMed  Google Scholar 

  • Rai KS (1991) Aedes albopictus in the Americas. A. Rev. Ent., 36: 459-84

    CAS  Google Scholar 

  • Rajagopalan, PK., Yasuno, M & Russel, S (1975) Studies on the development and survival of immature stages of Culex fatigans in nature. J. Commun. Dis., 7: 10-14

    Google Scholar 

  • Rajagopalan, PK., Yasuno, M & Menon, PKB (1976a) Density effect on survival of immature stages of Culex pipiens fatigans in breeding sites in Delhi vil-lages. Indian J. med. Res., 64: 688-708

    CAS  PubMed  Google Scholar 

  • Rajagopalan, PK., Brooks, GD & Menon, PKB (1976b) Estimation of natural sur-vival rates of immatures of Culex pipiens fatigans in open effluent drains in Faridabad, northern India. J. Commun. Dis., 8: 11-17

    Google Scholar 

  • Rajagopalan, PK., Menon, PKB & Brooks, GD (1977a) A study on some aspects of Culex pipiens fatigans population in an urban area, Faridabad, northern In-dia. Indian J. med. Res., 65 (Suppl.), 65-76

    PubMed  Google Scholar 

  • Rajagopalan, PK., Curtis, CF., Brooks, GD & Menon, PKB (1977b) The density dependence of larval mortality of Culex pipiens fatigans in an urban situation and prediction of its effects on genetic control operations. Indian J. med. Res., 65 (Suppl.), 77-85

    PubMed  Google Scholar 

  • Read, NR & Moon, RD (1996) Simulation of development and survival of Aedes vexans (Diptera: Culicidae) larvae and pupae. Environmental Entomology, 25: 1113-1121

    Google Scholar 

  • Reisen, WK (1975) Intraspecific competition in Anopheles stephensi Liston. Mosquito News, 35: 473-82

    Google Scholar 

  • Reisen, WK (1995) Effect of temperature on Culex tarsalis (Diptera: Culicidae) from the Coachella and San Joaquin Valleys of California. J Med Entomol 32: 636-645

    CAS  PubMed  Google Scholar 

  • Reisen, WK & Emory, RW (1977) Intraspecific competition in Anopheles ste-phensi (Diptera: Culicidae). II. The effects of more crowded densities and the addition of antibiotics. Can. Ent., 109: 1475-80

    Google Scholar 

  • Reisen, WK & Mahmood, F (1980) Horizontal life table characteristics of the malaria vectors Anopheles culicifacies and Anopheles stephensi (Diptera: Culicidae). J Med Entomol 17: 211-17

    Google Scholar 

  • Reisen, WK & Siddiqui, TF (1979) Horizontal and vertical estimates of immature survivorship for Culex tritaeniorhynchus (Diptera: Culicidae) in Pakistan. J Med Entomol 16: 207-18

    CAS  PubMed  Google Scholar 

  • Reisen, WK., Siddiqui, TF., Aslam, Y & Malik, GM (1979) Geographic variation among the life table characteristics of Culex tritaeniorhynchus from Asia. Ann. ent. Soc. Am., 72: 700-779

    Google Scholar 

  • Reisen, WK., Azra, K & Mahmood, F (1982) Anopheles culicifacies (Diptera: Cu-licidae): horizontal and vertical estimates of immature development and sur-vivorship in rural Punjab province, Pakistan. J Med Entomol 19: 413-22

    CAS  PubMed  Google Scholar 

  • Reisen, WK., Meyer, RP., Shields, J & Arbolante, C (1989) Population ecology of preimaginal Culex tarsalis (Diptera: Culicidae) in Kern county, California. J Med Entomol 26: 10-22

    CAS  PubMed  Google Scholar 

  • Renshaw, M (1991) ‘Population dynamics and ecology of Aedes cantans (Diptera: Culicidae) in England’ Unpublished Ph.D. thesis, University of Liverpool, 186 pp.

    Google Scholar 

  • Renshaw, M., Service, MW & Birley, MH (1993) Density-dependent regulation of Aedes cantans (Diptera: Culicidae) in natural and artificial populations. Eco-logical Entomology, 18: 223-233

    Google Scholar 

  • Richards, OW. (1961). The theoretical and practical study of natural insect popu-lations. A. Rev. Ent., 6: 147-62

    Google Scholar 

  • Richards, OW & Waloff, N (1954) Studies on the biology and population dynam-ics of British grasshoppers. Anti-Locust Bull., 17, 182 pp.

    Google Scholar 

  • Richards, OW., Waloff, N & Spradbery, JP (1960) The measurement of mortality in an insect population in which recruitment and mortality widely overlap. Oikos, 11: 306-10

    Google Scholar 

  • Ricker, WE (1944) Further notes on fishing mortality and effort. Copeia, 1944: 23-44

    Google Scholar 

  • Ricker, WE (1948) ‘Methods of Estimating Vital Statistics of Fish Populations’. Indiana Univ. Publ. Sci. Ser., 15: 101 pp.

    Google Scholar 

  • Ricklefs, RE (1973) Ecology. Nelson, London. x + 861 pp.

    Google Scholar 

  • Robert, V., Planchon, O., Lapetite, JM & Esteves, M (1999) Rainfall is not a di-rect mortality factor for anopheline larvae. Parasite, 6: 195-196

    CAS  PubMed  Google Scholar 

  • Roberts, D (1998) Overcrowding of Culex sitiens (Diptera: Culicidae) larvae: population regulation by chemical factors or mechanical interference. J Med Entomol 35: 665-669

    CAS  PubMed  Google Scholar 

  • Roberts, DR., Smith, LW & Enns, WR (1967) Laboratory observations on preda-tion activities of Laccophilus beetles in the immature stages of some dipterous pests found in Missouri oxidation lagoons. Ann. ent. Soc. Am., 60: 908-10

    CAS  Google Scholar 

  • Roberts, DW & Castillo, JM (1980) Bibliography on pathogens of medically im-portant arthropods: 1980. Bull World Health Organ 58 (Suppl.), 197 pp.

    Google Scholar 

  • Roberts, DW & Strand, MA (1977) Pathogens of medically important arthropods. Bull World Health Organ 55 (Suppl.), 419 pp.

    Google Scholar 

  • Roberts, DW., Daoust, RA & Wraight, SP (1983) Bibliography of pathogens of medically important arthropods: 1981. VBC/83.1, 324 pp.

    Google Scholar 

  • Rogers, DJ (1972) Random search and insect population models. Journal of Ani-mal Ecology, 41: 369-383

    Google Scholar 

  • Rogers, DJ (1983) Interpretation of sample data, pp. 139-160. In Pest and Vector Management in the Tropics with Particular Reference to Insects, Mites and Snails (edit. A Youdeowei & MW Service). Longman, London, xv + 399 pp.

    Google Scholar 

  • Roitberg BD, Mondor EB, Tyerman JGA (2003) Pouncing spider, flying mos-quito: blood acquisition increases predation risk in mosquitoes. Behavioral Ecology, 14: 736-740

    Google Scholar 

  • Rosen L, Rozeboom LE, Reeves WC, Saugrain J, Gubler DJ (1976) A field trial of competitive displacement of Aedes polynesiensis by Aedes albopictus on a Pacific atoll. Am. J. trop. Med. Hyg., 25: 906-13

    CAS  PubMed  Google Scholar 

  • Rothschild, GHL (1966) A study of a natural population of Conomelus anceps Germar (Homoptera:Delphacidae) including observations on predation using the precipitin test. J. Anim. Ecol., 35: 423-33

    Google Scholar 

  • Royama, T (1971) A comparative study of models for predation and parasitism. Res. Pop. Ecol., Suppl., 1, 91 pp.

    Google Scholar 

  • Royama, T (1977) Population persistence and density dependence. Ecol. Monogr., 47: 1-35

    Google Scholar 

  • Royama, T (1981a) Fundamental concepts and methodology for the analysis of animal populations dynamics, with particular reference to univoltine species. Ecol. Monogr., 51: 473-93

    Google Scholar 

  • Royama, R (1981b) Evaluation of mortality factors in insect life table analysis. Ecol. Monogr., 51: 495-505

    Google Scholar 

  • Rozeboom LE (1971) Relative densities of freely breeding populations of Aedes (S.) polynesiensis Marks and A. (S.) albopictus Skuse. A large cage experi-ment. Am. J. trop. Med. Hyg., 20: 356-62

    CAS  PubMed  Google Scholar 

  • Rozeboom LE, Bridges JR (1972) Relative population densities of Aedes albopic-tus and A. guamensis on Guam. Bull World Health Organ 46: 477-83

    CAS  PubMed  Google Scholar 

  • Rudnick A (1965) Studies on the ecology of dengue in Malaysia: A preliminary report. J. med. Entomol. 2: 203-8

    CAS  PubMed  Google Scholar 

  • Rudnick A, Hammon WM (1960) Newly recognized Aedes aegypti problems in Manila and Bangkok. Mosquito News, 20: 247-9

    Google Scholar 

  • Ruesink, WG (1975) Estimating time-varying survival of arthropod life stages from population diversity. Ecology, 56, 244-7

    Google Scholar 

  • Russell RC (1986) Larval competition between the introduced vector of dengue fever in Australia, Aedes aegypti (L.), and a native container-breeding mos-quito, Aedes notoscriptus (Skuse) (Diptera: Culicidae). Aust. J. Zool., 34: 527-34

    Google Scholar 

  • Russo RJ (1983) The functional response of Toxorhynchites rutilus rutilus (Dip-tera: Culicidae), a predator on container breeding mosquitoes. J Med Entomol 20: 585-590.

    Google Scholar 

  • Sawyer, AJ & Haynes, DL (1984) On the nature of errors involved in estimating stage-specific survival rates by Southwood’s method for a population with overlapping stages. Res. Popul. Ecol., 26, 331-51

    Google Scholar 

  • Schneider, P., Takken, W. & McCall, P. J. (2000). Interspecific competition be-tween sibling species larvae of Anopheles arabiensis and An. gambiae. Med Vet Entomol 14, 165-170

    CAS  PubMed  Google Scholar 

  • Schreiber, ET., Meek, CL & Yates, MM (1988) Vertical distribution and species coexistence of tree hole mosquitoes in Louisiana. J Am Mosq Control Assoc 4, 9-14

    CAS  PubMed  Google Scholar 

  • Scott, JA., Brogdon, WG & Collins, FH (1993) Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Ameri-can Journal of Tropical Medicine and Hygiene, 49, 520-529

    CAS  Google Scholar 

  • Seifert, RP (1980) Mosquito fauna of Heliconia aurea. J. Anim. Ecol., 49, 687-97

    Google Scholar 

  • Seifert, RP & Barrera, R (1981) Cohort studies on mosquito (Diptera: Culicidae) larvae living in the water-filled floral bracts of Heliconia aurea (Zingiberales: Musaceae). Ecol. Ent., 6: 191-7

    Google Scholar 

  • Sempala, SDK (1982) Estimation of the mortality of the immature stages of Aedes (Stegomyia) africanus Theobald in a tropical forest in Uganda. Insect Sci. Ap-plic., 2: 233-44

    Google Scholar 

  • Service MW (1966) The replacement of Culex nebulosus Theo. by Culex pipiens fatigans Wied. (Diptera, Culicidae) in towns in Nigeria. Bull Entomol Res 56: 407-15

    CAS  PubMed  Google Scholar 

  • Service MW (1968) The taxonomy and biology of two sympatric sibling species of Culex, C. pipiens and C. torrentium (Diptera: Culicidae). J. Zool., Lond., 156: 313-23

    Google Scholar 

  • Service MW (1970) Studies on the biology and taxonomy of Aedes (Stegomyia) vittatus (Bigot) (Diptera: Culicidae) in northern Nigeria. Trans. R. ent. Soc. Lond., 122: 101-43

    Google Scholar 

  • Service MW (1971) Studies on sampling larval populations of the Anopheles gambiae complex. Bull World Health Organ 45: 169-80

    CAS  PubMed  Google Scholar 

  • Service MW (1973a) Study of the natural predators of Aedes cantans (Meigen) us-ing the precipitin test. J Med Entomol 10: 503-10

    CAS  PubMed  Google Scholar 

  • Service MW (1973b) Mortalities of the larvae of the Anopheles gambiae complex and detection of predators by the precipitin test. Bull Entomol Res 62: 359-69

    Google Scholar 

  • Service MW (1973c) Identification of predators of Anopheles gambiae resting in huts, by the precipitin test. Trans. R. Soc. trop. Med. Hyg., 67: 33-4

    CAS  Google Scholar 

  • Service MW (1976) Mosquito Ecology. Field Sampling Methods. Applied Science Publishers, xii + 583 pp.

    Google Scholar 

  • Service MW (1977a) Mortalities of the immature stages of species B of the Anopheles gambiae complex in Kenya: comparison between rice fields and temporary pools, identification of predators, and effects of insecticidal spray-ing. J Med Entomol 13: 535-45

    CAS  PubMed  Google Scholar 

  • Service MW (1977b) Ecological and biological studies on Aedes cantans (Meig.) (Diptera: Culicidae) in southern England. J. appl. Ecol., 14: 159-96

    Google Scholar 

  • Service MW (1983) Biological control of mosquitoes—has it a future? Mosquito News, 43: 113-20

    Google Scholar 

  • Service MW (1985a) Some ecological considerations basic to the biocontrol of Culicidae and other medically important arthropods, pp. 9-30 and 429-431 In Integrated Mosquito Control Methodologies, Volume 2. Biocontrol and Other Innovative Components and Future Directions (edit. M. Laird & J. W. Miles). Academic Press, London, xviii + 444 pp.

    Google Scholar 

  • Service MW (1985b) Population dynamics and mortalities of mosquito preadults, pp. 185-201. In Ecology of Mosquitoes: Proceedings of a Workshop (edit. LP Lounibos, JR Rey & JH Frank). Florida Medical Entomology Laboratory, Vero Beach, Florida, 579 pp.

    Google Scholar 

  • Service MW (1993) Mosquito Ecology. Field Sampling Methods. 2nd edn. Chap-man & Hall, London

    Google Scholar 

  • Service MW, Lyle P (1975) Detection of the predators of Simulium damnosum by the precipitin test. Ann Trop Med Parasitol 69: 105-108

    CAS  PubMed  Google Scholar 

  • Service MW, Voller A, Bidwell DE (1986) The enzyme-linked immunosorbent assay (ELISA) test of the identification of blood-meals of haematophagous in-sects. Bull Entomol Res 76: 321-330

    Google Scholar 

  • Sheppard PM, Macdonald WW, Tonn RJ, Grab B (1969) The dynamics of an adult population of Aedes aegypti in relation to dengue haemorrhagic fever in Bangkok. J Anim Ecol 38: 661-702

    Google Scholar 

  • Sherratt TN, Tikasingh ES (1989) A laboratory investigation of mosquito larval predation by Toxorhynchites moctezuma on Aedes aegypti. Med Vet Entomol 3: 239-246

    CAS  PubMed  Google Scholar 

  • Sibley RM, Smith RH (1998) Identifying key factors using lambda contribution analysis. J Anim Ecol 67: 17-24

    Google Scholar 

  • Slater JD, Pritchard G (1979) A stepwise computer program for estimating devel-opment time and survival of Aedes vexans (Diptera: Culicidae) larvae and pu-pae in field populations in southern Alberta. Can Entomol 111: 1241-1253

    Google Scholar 

  • Slobodkin LB (1962) Growth and Regulation of Animal Populations. Holt, Rinehart & Winston, New York

    Google Scholar 

  • Smith PT, Reisen WK, Cowles DA (1995) Interspecific competition between Culex tarsalis and Culex quinquefasciatus. J Vector Ecol 20: 139-146

    Google Scholar 

  • Smith RH (1973) The analysis of intra-generation change in animal popula-tions. J Anim Ecol 42: 611-622

    Google Scholar 

  • Solomon ME (1968) Logarithmic regression as a measure of population density response: comment on a report by G. W. Salt. Ecology 49: 357-358

    Google Scholar 

  • Solow AR, Steele JH (1990) On sample size, statistical power, and the detection of density dependence. J Anim Ecol 59: 1073-1076

    Google Scholar 

  • Sota T, Mogi M (1992) Interspecific variation in desiccation survival time of Aedes (Stegomyia) mosquito eggs is correlated with habitat and egg size. Oecologia 90: 353-358

    Google Scholar 

  • Southwood TRE (1967) The interpretation of population change. J Anim Ecol 36: 519-529

    Google Scholar 

  • Southwood TRE (1978) Ecological Methods with Particular Reference to the Study of Insect Populations. Chapman & Hall, London

    Google Scholar 

  • Southwood TRE (1988) Tactics, strategies and templets. Oikos 52: 3-18

    Google Scholar 

  • Southwood TRE, Henderson PA (2000) Ecological Methods. 3rd edn. Blackwell Science, Oxford

    Google Scholar 

  • Southwood TRE, Jepson WF (1962) Studies on the populations of Oscinella frit L. (Dipt.: Chloropidae) in the oat crop. J Anim Ecol 31: 481-495

    Google Scholar 

  • Southwood TRE, Murdie G, Yasuno M, Tonn RJ, Reader PM (1972) Studies on the life budget of Aedes aegypti in Wat Samphaya, Bangkok, Thailand. Bull World Health Organ 46: 211-226

    CAS  PubMed  Google Scholar 

  • Spielman A, Feinsod FM (1979) Differential distribution of peridomestic Aedes mosquitoes on Grand Bahama Island. Trans R Soc Trop Med Hyg 73: 381-384

    CAS  PubMed  Google Scholar 

  • St. Amani JLS (1970) The detection of regulation in animal populations. Ecology 51: 823-828

    Google Scholar 

  • Stav G, Blaustein L, Margalith J (1999) Experimental evidence for predation risk sensitive oviposition by a mosquito, Culiseta longiareolata. Ecol Entomol 24: 202-207

    Google Scholar 

  • Steffan WA (1970) Evidence of competitive displacement of Toxorhynchites bre-vipalpis Theobald by T. amboinensis Doleschall in Hawaii. Mosq Syst News-letter 2: 68

    Google Scholar 

  • Stewart RJ, Schaefer CH, Miura T (1983) Sampling Culex tarsalis (Diptera: Culi-cidae) immatures in rice fields treated with combinations of mosquitofish and Bacillus thuringiensis H-14 toxins. J Econ Entomol 76: 91-95

    CAS  PubMed  Google Scholar 

  • Stewart RJ, Schaefer CH, Miura T (1985) Age structure and survivorship of Culex tarsalis in central California ricefields. Proc California Mosq Vector Control Assoc 52: 148-152

    Google Scholar 

  • Stewart-Oaten A, Murdoch WW (1990) Temporal consequences of spatial density dependence. J Anim Ecol 59: 1027-1045

    Google Scholar 

  • Stiling P (1988) Density-dependent processes and key factors in insect popula-tions. J Anim Ecol 57: 581-594

    Google Scholar 

  • Subra R (1983) The regulation of preimaginal populations of Aedes aegypti L. (Diptera: Culicidae) on the Kenya Coast. 1. Preimaginal population dynamics and the role of human behaviour. Ann Trop Med Parasitol 77: 195-201

    CAS  PubMed  Google Scholar 

  • Subra R, Dransfield RD (1984) Field observations on competitive displacement, at the preimaginal stage, of Culex quinquefasciatus Say by Culex cinereus Theo-bald (Diptera: Culicidae) at the Kenya coast. Bull Entomol Res 74: 559-568

    Google Scholar 

  • Subra R, Service MW, Mosha FW (1984) The effect of domestic detergents on the population dynamics of the immature stages of two competitor mosquitoes, Culex cinereus Theobald and Culex quinquefasciatus Say (Diptera: Culicidae) in Kenya. Acta Trop 41: 69-75

    CAS  PubMed  Google Scholar 

  • Sucharit S, Tumrasvin W (1981) Ovipositional attractancy of waters containing larvae of Aedes aegypti and Aedes albopictus. Jap J Sanit Zool 32: 261-264

    Google Scholar 

  • Sucharit S, Tumrasvin W, Vutikes S, Viraboonchai S (1978) Interactions between larvae of Aedes aegypti and Aedes albopictus in mixed experimental populations. Southeast Asian J Trop Med Public Health 9: 93-97

    Google Scholar 

  • Sulaiman S (1982) The ecology of Aedes cantans (Meigen) and biology of Culex pipiens in hibernation sites in northern England. Ph.D. thesis, University of Liverpool

    Google Scholar 

  • Sulaiman S, Omar B, Omar S, Ghauth I, Jeffery J (1990) Detection of the preda-tors of Aedes albopictus (Skuse) (Diptera: Culicidae) by the precipitin test. Mosq-Borne Dis Bull 7: 1-4

    Google Scholar 

  • Sulaiman S, Pawanchee Z A, Karim MA, Jeffery J, Busparani V, Wahab A (1996) Serological identification of the predators of adult Aedes albopictus (Skuse) (Diptera: Culicidae) in rubber plantations and a cemetery in Malaysia. J Vec-tor Ecol 21: 22-25

    Google Scholar 

  • Suleman M (1990) Intraspecific variation in the reproductive capacity of Anophe-les stephensi (Diptera: Culicidae). J Med Entomol 27: 819-828

    CAS  PubMed  Google Scholar 

  • Suleman M, Reisen WK (1979) Culex quinquefasciatus: Life table characteristics of adults reared from wild-caught pupae from north west frontier province, Pakistan. Mosquito News 39: 756-762

    Google Scholar 

  • Sunahara T, Mogi M (2002a) Priority effects of bamboo-stump mosquito larvae: influences of water exchange and leaf litter input. Ecol Entomol 27: 346-354

    Google Scholar 

  • Sunahara T, Mogi M (2002b) Variability of intra- and interspecific competitions of bamboo stump mosquito larvae over small and large spatial scales. Oikos 97: 87-96

    Google Scholar 

  • Sunahara T, Ishizaka K, Mogi M (2002) Habitat size: a factor determining the opportunity for encounters between mosquito larvae and aquatic predators. J Vector Ecol 27: 8-20

    PubMed  Google Scholar 

  • Sunderland KD, Sutton SL (1980) A serological study of arthropod predation on woodlice in a dune grassland ecosystem. J Anim Ecol 49: 987-1004

    Google Scholar 

  • Sunderland KD, Crook NE, Stacey DL, Fuller BJ (1987) A study of feeding by phytophagous predators on cereal aphids using ELISA and gut dissection. J Appl Ecol 24: 907-933

    Google Scholar 

  • Sunish IP, Reuben R (2002) Factors influencing the abundance of Japanese en-cephalitis vectors in ricefields in India - II. Biotic. Med Vet Entomol 15: 1-9

    Google Scholar 

  • Sweeney AW, Becnel JJ (1991) Potential of microsporidia for the biological con-trol of mosquitoes. Parasitol Today 7: 217-220

    CAS  PubMed  Google Scholar 

  • Takagi M, Sugiyama A, Maruyama K (1996) Survival of newly emerged Culex tritaeniorhynchus (Diptera: Culicidae) adults in field cages with or without predators. J Med Entomol 33: 698-701

    CAS  PubMed  Google Scholar 

  • Teesdale C (1957) The genus Musa Linn. and its role in the breeding of Aedes (Ste-gomyia) simpsoni (Theo.) on the Kenya coast. Bull Entomol Res 48: 251-260

    Google Scholar 

  • Tempelis CH (1983) Adaptation of the enzyme-linked immunosorbent assay for the study of predator-prey relationships. In: Fotaine RE (ed) Mosquito Control Research, Annual Report 1983. University of California, Davis, pp. 34-51

    Google Scholar 

  • Teng HJ, Apperson CS (2000) Development and survival of immature Aedes al-bopictus and Aedes triseriatus (Diptera: Culicidae) in the laboratory: effects of density, food, and competition on response to temperature. J Med Entomol 37: 40-52

    CAS  PubMed  Google Scholar 

  • Tianyun Su, Mulla MS (2001) Effects of temperature on development, mortal-ity, mating and blood feeding behavior of Culiseta incidens (Diptera: Culi-cidae). J Vector Ecol 26: 83-92

    Google Scholar 

  • Trpis M (1972a) Predator-Prey Oscillations in Populations of Larvae of Toxorhynchites brevipalpis and Aedes aegypti in a Suburban Habitat in East Africa. WHO/VBC/72.399, 12 pp. (mimeographed)

    Google Scholar 

  • Trpis M (1972b) Development and predatory behaviour of Toxorhynchites brevi-palpis (Diptera: Culicidae) in relation to temperature. Environ Entomol 1: 537-546

    Google Scholar 

  • Trpis M (1981) Survivorship and age-specific fertility of Toxorhynchites brevi-palpis females (Diptera: Culicidae). J Med Entomol 18: 481-486

    Google Scholar 

  • Tun-Lin W, Burkot TR, Kay BH (2000) Effect of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol 14: 31-37

    CAS  PubMed  Google Scholar 

  • Tuno N, Okeka W, Minakawa N, Takagi M, Yan G (2005) Survivorship of Anopheles gambiae sensu stricto (Diptera: Culicidae) larvae in western Kenya highland forest. J Med Entomol 42: 270-277

    PubMed  Google Scholar 

  • Turnbull AL (1967) Population dynamics of exotic insects. Bull Entomol Soc Am 13: 333-337

    Google Scholar 

  • Urabe K, Sekijima Y, Ikemoto T, Aida C (1982) Studies on Sympetrum frequens (Odonata: Libellulidae) nymphs as natural enemies of the mosquito larvae, Anopheles sinensis, in the rice field. 1. Evaluation on an utilization of the electrosyneresis for the quantitative study of the prey-predator relationships. Jap J Sanit Zool 33: 55-60 (In Japanese, English summary)

    Google Scholar 

  • Van Valen L (1962) A study of fluctuating asymmetry. Evolution 16: 125-142

    Google Scholar 

  • Varley GC, Edwards RL (1957) The bearing of parasite behaviour on the dynam-ics of insect host and parasite populations. J Anim Ecol 26: 471-477

    Google Scholar 

  • Varley GC, Gradwell GR (1960) Key factors in population studies. J Anim Ecol 29: 399-401

    Google Scholar 

  • Varley GC, Gradwell GR (1963) The interpretation of insect population changes. Proc Ceylon AssocAdv Sci 18: 142-156

    Google Scholar 

  • Varley GC, Gradwell GR (1968) Population models for the winter moth. In: Southwood TRE (ed) Insect Abundance. Symposium of the Royal Entomo-logical Society of London No. 4. Blackwell Scientific Publications, Oxford, pp 132-142

    Google Scholar 

  • Varley GC, Gradwell GR (1970) Recent advances in insect population dynamics. Annu Rev Entomol 15: 1-24

    Google Scholar 

  • Varley GC, Gradwell GR, Hassell MP (1973) Insect Population Ecology, an Ana-lytical Approach. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Vickerman GP, Sunderland KD (1975) Arthropods in cereal crops: Nocturnal ac-tivity, vertical distribution and aphid predation. J Appl Ecol 12: 755-766

    Google Scholar 

  • Vickery WL (1991) An evaluation of bias in k-factor analysis. Oecologia 85: 413-419

    Google Scholar 

  • Wada Y, Mogi M (1974) Efficiency of the dipper in collecting immature stages of Culex tritaeniorhynchus summorosus. Trop Med 16: 35-40

    Google Scholar 

  • Wadsworth C (1957) A slide microtechnique for the analysis of immune precipi-tates in gel. Int Archs Allergy 10: 355-360

    CAS  Google Scholar 

  • Walker ED, Copeland RS, Paulson SL, Munstermann LE (1987) Adult survivor-ship, population density, and body size in sympatric populations of Aedes triseriatus and Aedes hendersoni (Diptera: Culicidae). J Med Entomol 24: 485-493

    CAS  PubMed  Google Scholar 

  • Walton WE, Workman PD (1998) Effect of marsh design on the abundance of mosquitoes in experimental constructed wetlands in southern California. J Am Mosq Control Assoc 14: 95-107

    CAS  PubMed  Google Scholar 

  • Walton WE, Tietz NS, Mulla MS (1990) Ecology of Culex tarsalis (Diptera: Culicidae): factors influencing larval abundance in mecocosms in southern California. J Med Entomol 27: 57-67

    CAS  PubMed  Google Scholar 

  • Washburn JO, Anderson JR (1993) Habitat overflow, a source of larval mortality for Aedes sierrensis (Diptera: Culicidae). J Med Entomol 30: 802-804

    CAS  PubMed  Google Scholar 

  • Watanabe M, Wada Y (1968) Studies on predators of larvae of Culex tritaenio-rhynchus summorosus Dyar. Jap J Sanit Zool 19: 35-38 (In Japanese, English summary)

    Google Scholar 

  • Watson TF (1964) Influence of host plant condition on population increase of Tetranychus telarius (Linnaeus) (Acarina: Tetranychidae). Hilgardia 35: 273-322

    Google Scholar 

  • Watt KEF (1959) A mathematical model for the effect of densities of attacked and attaching species on the number attacked. Can Entomol 91: 129-144

    Google Scholar 

  • Weidhaas DE (1974) Simplified models of population dynamics related to control technology. J Econ Entomol 67: 620-624

    CAS  PubMed  Google Scholar 

  • Weidhaas DE, Patterson RS, Lofgren CS, Ford HR (1971) Bionomics of a popula-tion of Culex pipiens quinquefasciatus Say. Mosquito News 31: 177-182

    Google Scholar 

  • Weidhaas DE, LaBrecque GC, Lofgren CS, Schmidt CH (1972) Insect sterility in population dynamics research. Bull World Health Organ 47: 309-315

    CAS  PubMed  Google Scholar 

  • Weidhaas DE, Breeland SG, Lofgren CS, Dame DA, Kaiser R (1974) Release of chemosterilized males for the control of Anopheles albimanus in El Salvador. IV. Dynamics of the test population. Am J Trop Med Hyg 23: 298-308

    CAS  PubMed  Google Scholar 

  • Weiser J (1991) Biological Control of Vectors. Manual for Collecting, Field De-termination and Handling of Biofactors for Control of Vectors. John Wiley, Chichester

    Google Scholar 

  • West AS, Eligh GS (1952) The rate of blood digestion in mosquitoes. Precipitin test studies. Can J Zool 30: 267-272

    Google Scholar 

  • Wijeyaratne P, Seawright JA, Weidhaas DE (1974) Development and survival of a natural population of Aedes aegypti. Mosquito News 34: 36-42

    Google Scholar 

  • Willems KJ, Webb CE, Russell RC (2005) Tadpoles of four common Australian frogs are not effective predators of the common pest and vector mosquito Culex annulirostris. J Am Mosq Control Assoc 21: 492-494

    PubMed  Google Scholar 

  • Wohlschlag DE (1954) Mortality rates of whitefish in an arctic lake. Ecology 35: 388-396

    Google Scholar 

  • Yasuda H, Hashimoto T (1995) Prey density effect on cannibalism by Toxorhynchites towadensis (Diptera: Culicidae). J Med Entomol 32: 650-653

    CAS  PubMed  Google Scholar 

  • Yasuno M (1974) Ecology of Culex pipiens fatigans in rural Delhi, India. J Com-mun Dis 6: 106-116

    Google Scholar 

  • Ye-Ebiyo Y, Pollack RJ, Kiszewski A, Spielman A (2003) Enhancement of devel-opment of larval Anopheles arabiensis by proximity to flowering maize (Zea mays) in turbid water and when crowded. Am J Trop Med Hyg 68: 748-752

    PubMed  Google Scholar 

  • Zaidi RH, Jaal Z, Hawkes NJ, Hemingway J, Symondson WOC (1999) Can mul-tiple-copy sequences of prey DNA be detected amongst the gut contents of invertebrate predators? Mol Ecol 8: 2081-2087

    CAS  PubMed  Google Scholar 

  • Zani PA, Cohnstaedt LW, Corbin D, Bradshaw WE, Holzapfel CM (2005) Repro-ductive value in a complex life cycle: heat tolerance of the pitcher-plant mos-quito, Wyeomyia smithii. J Evol Biol 18: 101-105

    CAS  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

(2008). Estimation of the Mortalities of the Immature Stages. In: Mosquito Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6666-5_12

Download citation

Publish with us

Policies and ethics