Skip to main content

Sampling the Larval Population

  • Chapter
Mosquito Ecology

Mosquito larvae and pupae are found in a great variety of habitats, ranging from large expanses of water such as swamps, marshes and rice fields to small collections of water in tyres, domestic utensils, tree-holes, plant axils, snail shells and fallen leaves. A number of often arbitrary classifications of larval habitats have been used (Almirón and Brewer 1996; Bates 1949; Boyd 1930; Hopkins 1952; Mattingly 1969; Mogi 1981). Almirón and Brewer (1996) coded habitat characteristics using a binary presence/ absence system and related these characteristics to the species of mosquito collected in the different habitats in Córdoba, Argentina. A basic matrix of data comprising 19 rows (species) and 86 columns (habitat characteristics) was prepared and species and habitat associations were determined. Other systems have been proposed by Service (1993a), and by Laird (1988) who gives a useful review of past classifications and presents much detail on the community ecology of mosquito larval habitats. Joy and Hildreth-Whitehair (2000) developed a classification of the larval habitats of Ochlerotatus triseriatus, the vector of LaCrosse encephalitis, in West Virginia, USA that was based on Laird’s (1988) proposed standard system, but with the addition of sunlit or shaded as criteria. Joy and Clay (2002) presented a classification of mosquito larval habitats also in West Virginia, USA comprising seven major sunlit categories and eight shaded categories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiken RB (1979) A size selective underwater light trap. Hydrobiologia 65: 65-68

    Google Scholar 

  • Ali M, Wagatsuma Y, Emch M, Breiman RF (2003) Use of a geographic informa-tion system for defining spatial risk for dengue transmission in Bangladesh: role for Aedes albopictus in an urban outbreak. Am J Trop Med Hyg 69: 634-640

    PubMed  Google Scholar 

  • Allan SA, Surgeoner GA, Helson BV, Pengelly DH (1981) Seasonal activity of Mansonia perturbans adults (Diptera: Culicidae) in southwestern Ontario. Can Entomol 113: 133-139

    Google Scholar 

  • Almirón WR, Brewer ME (1996) Classification of immature stage habitats of Cu-licidae (Diptera) collected in Cordoba, Argentina. Mem Inst Oswaldo Cruz 91: 1-9.

    PubMed  Google Scholar 

  • Amerasinghe FP, Ariyasena TG (1990) Larval survey of surface water-breeding mosquitoes during irrigation development in the Mahaweli project, Sri Lanka. J Med Entomol 27: 789-802

    CAS  PubMed  Google Scholar 

  • Amerasinghe FP, Indrajith NG (1994) Postirrigation breeding patterns of surface water mosquitoes in the Mahaweli Project, Sri Lanka, and comparisons with preceding developmental phases. J Med Entomol 31: 516-523.

    CAS  PubMed  Google Scholar 

  • Anderson RM, Gordon DM, Crawley MS, Hassell MS (1982) Variability in the abundance of animal and plant species. Nature 296: 245-248

    Google Scholar 

  • Andis MD, Meek CL (1984) Bionomics of Louisiana ricefield mosquito larvae, II. Spatial dispersion patterns. Mosquito News 44: 371-376

    Google Scholar 

  • Andis MD, Meek CL, Wright VL (1983) Bionomics of Louisiana riceland mos-quito larvae, I. A comparison of sampling techniques Mosquito News 43: 195-203

    Google Scholar 

  • Anon. (1956) Manual de Normas Tecnicas y Administratives de la Campana de Erradicacion de Aedes aegypti. Pan-Am Sanit Bur 244 pp. (mimeographed)

    Google Scholar 

  • Anon. (1973) WHO Computer Survey of Stegomyia Mosquitoes, 1972. VBC/73.11, 2 pp., 50 maps (mimeographed)

    Google Scholar 

  • Apperson CS, Yows DG (1976) A light trap for collecting aquatic organisms. Mosquito News 36: 205-206

    Google Scholar 

  • Arnell JH, Nielsen LT (1967). Notes on the distribution and biology of tree hole mosquitoes in Utah. Proc Utah Mosq Abatement Assoc 20: 28-29

    Google Scholar 

  • Awono-Ambéné HP, Robert V (1999) Survival and emergence of immature Anopheles arabiensis mosquitoes in market-gardener wells in Dakar, Senegal. Parasite 6: 179-184

    PubMed  Google Scholar 

  • Bailey DL (1984) Comparison of diurnal and nocturnal Mansonia larval popula-tions of water lettuce plants. Mosquito News 44: 548-552

    Google Scholar 

  • Bailey DL, Lowe RE, Kaiser PE, Dame DA, Fowler JE (1980) Validity of larval surveys to estimate trends of adult populations of Anopheles albimanus, Mos-quito News 40: 245-251

    Google Scholar 

  • Bailey NTJ (1951) On estimating the size of mobile populations from recapture data. Biometrika 38: 293-306

    Google Scholar 

  • Bailey NTJ (1952) Improvements in the interpretation of recapture data. J Anim Ecol 21: 120-127

    Google Scholar 

  • Bailey SF, Eliason DA, Iltis WG (1962) Some marking and recovery techniques in Culex tarsalis Coq. flight studies. Mosquito News 22: 1-10

    Google Scholar 

  • Balling SS, Resh VH (1984) Seasonal patterns of pondweed standing crop and Anopheles occidentalis densities in Coyote Hills Marsh. Proc California Mosq Vector Control Assoc 52: 122-125

    Google Scholar 

  • Bang YH, Bown DN, Onwubiko AO (1981) Prevalence of larvae of potential yel-low fever vectors in domestic water containers in south-east Nigeria. Bull World Health Organ 59: 107-114

    CAS  PubMed  Google Scholar 

  • Barbosa P, Peters TM (1970) Dye-induced changes in the developmental physiol-ogy of Aedes aegypti larvae. Entomol Exp Appl 13: 293-299

    CAS  Google Scholar 

  • Barbosa P, Peters TM (1971) The effects of vital dyes on living organisms with special reference of methylene blue and natural red. Histochemistry J 3: 71-93

    CAS  Google Scholar 

  • Barker CM, Brewster CC, Paulson SL (2003). Spatiotemporal oviposition and habitat preferences of Ochlerotatus triseriatus and Aedes albopictus in an emerging focus of La Crosse virus. J Am Mosq Control Assoc 19: 382-391

    PubMed  Google Scholar 

  • Barnes CM. Cibula WG (1979) Some implications of remote sensing technology in insect control programs including mosquitoes. Mosquito News 39: 271-282

    Google Scholar 

  • Barrera R (1996) Species concurrence and the structure of a community of aquatic insects in tree holes. J Vector Ecol 21: 66-80

    Google Scholar 

  • Barton WI (1964) A survey technique for Mansonia perturbans. Mosquito News 24: 224-225

    Google Scholar 

  • Bates M (1941). Field studies of the anopheline mosquitoes of Albania. Proc En-tomol Soc Wash 43: 37-58

    Google Scholar 

  • Bates M (1949). The Natural History of Mosquitoes. The MacMillan Co., New York

    Google Scholar 

  • Bates M, de Zulueta J (1949) The seasonal cycle of anopheline mosquitoes in a pond in eastern Colombia. Am J Trop Med 29: 129-150

    CAS  Google Scholar 

  • Batzer DP (1993) Technique for surveying larval populations of Coquillettidia perturbans. J Am Mosq Control Assoc 9: 349-351

    CAS  PubMed  Google Scholar 

  • Batzer DP, Sjogren RD (1986) Larval habitat characteristics of Coquillettidia per-turbans (Diptera: Culicidae) in Minnesota. Can Entomol 118: 1193-1198

    Google Scholar 

  • Baylis M, Bouayoune H, Touti J, El Hasnaoui H (1998) Use of climatic data and satellite imagery to model the abundance of Culicoides imicola, the vector of African horse sickness virus, in Morocco. Med Vet Entomol 12: 255-266

    CAS  PubMed  Google Scholar 

  • Bayoh MN, Thomas CJ, Lindsay SW (2001) Mapping distributions of chromoso-mal forms of Anopheles gambiae in West Africa using climate data. Med Vet Entomol 15: 267-274

    CAS  PubMed  Google Scholar 

  • Beck LR, Rodriguez MH, Dister SW, Rodriguez AD, Rejmankova E, Ulloa A, Meza RA, Roberts DR, Paris JF, Spanner MA, Washino RK, Hacker C, Legters LJ (1994) Remote sensing as a landscape epidemiologic tool to identify villages at high risk for malaria transmission. Am J Trop Med Hyg 51: 271-280

    CAS  PubMed  Google Scholar 

  • Beck LR, Rodriguez MH, Dister SW, Rodriguez AD, Washino RK, Roberts DR, Spanner MA (1997) Assessment of a remote-sensing based model for predict-ing malaria transmission risk in villages of Chiapas, Mexico. Am J Trop Med Hyg 56: 99-106

    CAS  PubMed  Google Scholar 

  • Begon M (1979) Investigating Animal Abundance: Capture-recapture for Biolo-gists. Edward Arnold, London

    Google Scholar 

  • Beier JC, Travis M, Patricoski C, Kranzfelder J (1983) Habitat segregation among larval mosquitoes (Diptera: Culicidae) in tire yards in Indiana, USA. J Med Entomol 20: 76-80

    CAS  PubMed  Google Scholar 

  • Belkin JN (1954) Simple larval and adult mosquito indexes for routine mosquito control operations. Mosquito News 14: 127-131

    Google Scholar 

  • Bertram DS, Varma MGR, Page RC, Heathcote OHU (1970) A betalight trap for mosquito larvae. J Med Entomol 7: 267-270

    CAS  PubMed  Google Scholar 

  • Bidlingmayer WL (1954) Description of a trap for Mansonia larvae. Mosquito News 14: 55-58

    Google Scholar 

  • Bidlingmayer WL (1968) Larval development of Mansonia mosquitoes in central Florida. Mosquito News 28: 51-57

    Google Scholar 

  • Blower JG, Cook LM, Bishop JA (1981) Estimating the Size of Animal Popula-tions. Allen & Unwin, London

    Google Scholar 

  • Bøgh C, Clarke SE, Jawara M, Thomas CJ, Lindsay SW (2003) Localized breed-ing of the Anopheles gambiae complex (Diptera: Culicidae) along the River Gambia, West Africa. Bull Entomol Res 93: 279-287

    PubMed  Google Scholar 

  • Bonnet D, Chapman H (1956) The importance of mosquito breeding in tree holes with special reference to the problem in Tahiti. Mosquito News 16: 301-305

    Google Scholar 

  • Bonne-Wepster J, Brug SL (1939) Observations on the breeding habits of the sub-genus Mansonioides (genus Mansonia, Culicidae). Tijdschr Entomol 82: 81-90

    Google Scholar 

  • Bown DN, Bang YH (1980) Ecological studies on Aedes simpsoni (Diptera: Culi-cidae) in southeastern Nigeria. J Med Entomol 17: 367-374

    CAS  PubMed  Google Scholar 

  • Boyd MF (1930) An Introduction to Malariology. Harvard University Press, Cam-bridge, Massachussets

    Google Scholar 

  • Boyd MF (1949) Malariology. A Comprehensive Survey of All Aspects of this Group of Diseases from a Global Standpoint. Volume 1. W. B. Saunders Co. London

    Google Scholar 

  • Bradshaw WE (1983) Interaction between the mosquito Wyeomia smithii, the midge Metriocnemus knabi, and their carnivorous host Sarracenia purpurea, In: Frank JH, Lounibos LP (eds) Phytotelemata: Terrestrial Plants as Hosts for Aquatic Insect Communities. Plexus Publishing Inc., Medford, New Jersey, pp 161-189

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (1983) Predator-mediated, non-equilibrium coexis-tence of tree-hole mosquitoes in southeastern North America. Oecologia (Berl.) 57: 239-256

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (1984) Seasonal development of tree-hole mosqui-toes (Diptera: Culicidae) and Chaoboridae in relation to weather and preda-tion. J Med Entomol 21: 366-378

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (1985) The distribution and abundance of tree-hole mosquitoes in eastern North America: perspectives from north Florida. In: Lounobos LP, Rey JR, Frank JH (eds) Ecology of Mosquitoes: Proceedings of a Workshop. Florida Medical Entomology Laboratory, Vero Beach, Florida, pp 3-23

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (1986a) Habitat segregation among European tree-hole mosquitoes. Natn Geogr Res 2: 167-178

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (1986b). Geography of density-dependent selection in pitcher-plant mosquitoes. In: Taylor F, Karban R (eds) The Evolution of In-sect Life Cycles. Springer-Verlag, New York, pp 48-65

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (1988) Drought and the organization of tree-hole mosquito communities. Oecologia (Berl.) 74: 507-514

    Google Scholar 

  • Bradshaw WE, Hopzapfel CM (1989) Life-historical consequences of density-dependent selection in the pitcher-plant mosquito, Wyeomyia smithii. Am Nat 133: 869-887

    Google Scholar 

  • Bradshaw WE, Hopzapfel CM (1991) Fitness and habitat segregation of British tree-hole mosquitoes. Ecol Entomol 16: 133-144

    Google Scholar 

  • Breev KA, Kornikov VV, Bart AG, Boyko VI, Kalinin OM (1983) A method of calibrating catching facilities using as an example the quantitative estimation of mosquitos in a region of the Baikal-Amur railway (beta-scheme). Parazitol. Sbornik., 31: 48-61 (In Russian, English summary)

    Google Scholar 

  • Brown AWA (1971) World wide surveillance of Aedes aegypti. Proc California Mosq Control Assoc 42: 20-25

    Google Scholar 

  • Bruce-Chwatt LJ, Fitzjohn RA (1951) Mosquitoes in crab-burrows on the coast of West Africa and their control. J Trop Med Hyg 54: 116-121

    Google Scholar 

  • Brust RA (1990) Oviposition behavior of natural populations of Culex tarsalis and Culex restuans (Diptera: Culicidae) in artificial pools. J Med Entomol 27: 248-255

    CAS  PubMed  Google Scholar 

  • Bugher JC, Taylor M (1949) Radiophosphorous and radiostrontium in mosquitoes. Preliminary report. Science 110: 146-147

    CAS  PubMed  Google Scholar 

  • Callahan, JL, Morris CD (1987) Habitat characteristics of Coquillettidia pertur-bans in central Florida. J Am Mosq Control Assoc 3: 176-180

    CAS  PubMed  Google Scholar 

  • Cambournac FJC (1939) A method for determining the larval Anopheles popula-tion and its distribution in rice fields and other breeding places. Ric Malar 18: 17-22

    Google Scholar 

  • Campos RE, Garcia JJ (1993) A simple apparatus to separate mosquito larvae from field collected samples. J Am Mosq Control Assoc 9: 100-101

    CAS  PubMed  Google Scholar 

  • Campos, RE, Fernández LA, Sy VE (2004) Study of the insects associated with the floodwater mosquito Ochlerotatus albifasciatus (Diptera: Culicidae) and their possible predators in Buenos Aires Province, Argentina. Hydrobiologia 524: 91-102

    Google Scholar 

  • Carlson D (1971) A method for sampling larval and emerging insects using an aquatic black light trap. Can Entomol 103: 1365-1369

    Google Scholar 

  • Carron A, Duchet C, Gaven B, Lagneau C (2003) An easy field method for deter-mining the abundance of culicid larval instars. J Am Mosq Control Assoc 19: 353-360

    PubMed  Google Scholar 

  • Ceccato P, Connor SJ, Jeanne I, Thomson MC (2005) Application of Geographical Information Systems and Remote Sensing technologies for assessing and monitoring malaria risk. Parassitol 47: 81-96

    CAS  Google Scholar 

  • Chadee DD (2003) Surveillance for the dengue vector Aedes aegypti in Tobago, West Indies. J Am Mosq Control Assoc 19: 199-205

    PubMed  Google Scholar 

  • Chadee DD (2004) Key premises, a guide to Aedes aegypti (Diptera: Culicidae) surveillance and control. Bull Entomol Res 94: 201-207

    CAS  PubMed  Google Scholar 

  • Chadee DD, Rahaman A (2000). Use of water drums by humans and Aedes ae-gypti in Trinidad. J Vector Ecol 25: 28-35

    CAS  PubMed  Google Scholar 

  • Chambers DM, Steelman CD, Schilling PE (1979) Mosquito species and densities in Louisiana ricefields. Mosquito News 39: 658-668

    Google Scholar 

  • Chambers DM, Young LF, Hill HS (1986) Backyard mosquito larval habitat availability and use as influenced by census tract determined resident income levels. J Am Mosq Control Assoc 2: 539-544

    CAS  PubMed  Google Scholar 

  • Chan KL (1985) Methods and indices used in the surveillance of dengue vectors. Mosq-Borne Dis Bull 1: 79-88

    Google Scholar 

  • Chan KL, Ho BC, Chan YC (1971a) Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City. 2. Larval habitats. Bull World Health Organ 44: 629-363

    CAS  PubMed  Google Scholar 

  • Chan YC, Chan KL, Ho BC (1971b) Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City. 1. Distribution and density. Bull World Health Organ 44: 617-627

    CAS  PubMed  Google Scholar 

  • Chandler JA, Highton RB (1975) The succession of mosquitoes species in rice-fields in the Kisumu area of Kenya, and their possible control. Bull Entomol Res 65: 295-302

    Google Scholar 

  • Chandler JA, Highton RB (1976) The breeding of Anopheles gambiae Giles (Dip-tera; Culicidae) in rice fields in the Kisumu area of Kenya. J Med Entomol 113: 211-215

    Google Scholar 

  • Chang HT (1946) Studies on the use of fluorescent dyes for marking Anopheles quadrimaculatus Say. Mosquito News 6: 122-125

    Google Scholar 

  • Chapman DG (1955) Population estimation based on change of composition caused by a selective removal. Biometrika 42: 279-290

    Google Scholar 

  • Chareonsook O, Sethaputra S, Singklang K, Yawwa T, Purahong S, Suwankiri P (1985) Prevalence of Aedes mosquito in big cement jars and rain water tanks. Commun Dis J 11: 247-263 (In Thai, English Summary)

    Google Scholar 

  • Chareonviriyaphap T, Akratanakul P, Nettanomsak S, Huntamai S (2003) Larval habitats and distribution patterns of Aedes aegypti (Linnaeus) and Aedes al-bopictus (Skuse) in Thailand. Southeast Asian J Trop Med Public Health 34: 529-535

    PubMed  Google Scholar 

  • Chavasse DC, Lines JD, Ichimori K, Marijani J (1995) Mosquito control in Dar es Salaam. I. Assessment of Culex quinquefasciatus breeding sites prior to inter-vention. Med Vet Entomol 9: 141-146

    CAS  PubMed  Google Scholar 

  • Chevone BI, Peters TM (1969) Retardation of larval development of Aedes aegypti (L.) by the vital dye, nile blue sulphate (A). Mosquito News 29: 243-251

    CAS  Google Scholar 

  • Christensen JB, Washino RK (1978) Sampling larval mosquitoes in a rice field: a comparison of three techniques. Proc California Mosq Vector Control Assoc 46: 46

    Google Scholar 

  • Christie M (1954) A method for the numerical study of larval populations of Anopheles gambiae and other pool-breeding mosquitoes. Ann Trop Med Para-sitol 48: 271-276

    CAS  Google Scholar 

  • Christie M (1958). Predation on larvae of Anopheles gambiae Giles. J Trop Med Hyg 61: 168-176

    CAS  PubMed  Google Scholar 

  • Chubachi R (1976) The efficiency of the dipper in sampling of mosquito larvae and pupae under differing conditions. Sci. Rep. Tohoku Univ., Ser. IV (Biol.), 37: 145-149

    Google Scholar 

  • Chubachi R (1979) An analysis of the generation-mean life table of the mosquito, Culex tritaeniorhynchus summorosus, with particular reference to population regulation. J Anim Ecol 48: 681-702

    Google Scholar 

  • Claborn DM, Hshieh PB, Roberts DR, Klein TA, Zeichner BC, Andre RG (2002) Environmental factors associated with larval habitats of malaria vectors in northern Kyunggi province, Republic of Korea. J Am Mosq Control Assoc 18: 178-185

    PubMed  Google Scholar 

  • Clarke KC, McLafferty SL, Tempalski BJ (1996) On epidemiology and Geo-graphic Information Systems: a review and discussion of future directions. Emerg Infect Dis 2: 85-92

    CAS  PubMed  Google Scholar 

  • Coetzee M, Craig M, le Sueur D (2000) Distribution of African malaria mosqui-toes belonging to the Anopheles gambiae complex. Parasitol Today 16: 74-77

    CAS  PubMed  Google Scholar 

  • Coll C, Casselles V, Sobrino JA, Valor E (1994) On the atmospheric dependence of the split-window equation for land surface temperature. Int J Remote Sensing 15: 105-122

    Google Scholar 

  • Collins JN, Resh VH (1989) Guidelines for ecological control of mosquitoes in non-tidal wetlands of the San Francisco Bay area. California Mosquito and Vector Control Association, Sacramento, California

    Google Scholar 

  • Corbett JD, O’Brien RF (1997) The Spatial Characterization Tool - Africa. Texas A&M University, Texas

    Google Scholar 

  • Costanzo KS, Mormann K, Juliano SA (2005) Asymmetrical competition and pat-terns of abundance of Aedes albopictus and Culex pipiens (Diptera: Culici-dae). J Med Entomol 42: 559-570

    PubMed  Google Scholar 

  • Cousserans J, Gabinaud A, Simonneau P, Sinègre G (1969) Les bases écologiques de la démoustification: méthodes de réalisation et d’utilisation de la carte phy-toécologique. Vie et Mielieu C 20: 1-20

    Google Scholar 

  • Croset H, Papierok B, Rioux JA, Gabinaud A, Cousserans J, Arnaud D (1976) Absolute estimates of larval populations of culicid mosquitoes: comparison of ‘capture-recapture’, ‘removal’ and ‘dipping’ methods. Ecol Entomol 1: 251-256

    Google Scholar 

  • Cross ER, Newcomb WW, Tucker CJ (1996) Use of weather data and remote sensing to predict the geographic and seasonal distribution of Phlebotomus papatasi in southwest Asia. Am J Trop Med Hyg 54: 530-536

    CAS  PubMed  Google Scholar 

  • Curtis GA, Frank JH (1981) Establishment of Aedes vexans in citrus groves in southeastern Florida. Environ Entomol 10: 180-182

    Google Scholar 

  • Dale PER, Morris CD (1996) Culex annulirostris breeding sites in urban areas: using remote sensing and digital image analysis to develop a rapid predictor of po-tential breeding areas. J Am Mosq Control Assoc 12: 316-320

    CAS  PubMed  Google Scholar 

  • Dale, PER, Ritchie SA, Territo BM, Morris CD, Muhar A, Kay BH (1998) An overview of remote sensing and GIS for surveillance of mosquito vector habi-tats and risk assessment. J Vector Ecol 23: 54-61

    CAS  PubMed  Google Scholar 

  • Darrow EM (1949) Factors in the elimination of the immature stages of Anopheles quadrimaculatus Say in a water level fluctuation cycle. Am J Hyg 50: 207-235

    CAS  PubMed  Google Scholar 

  • David J (1963) Les effets physiologiques de l’intoxication par le bleu de methyl-ene sur la Drosophile. Bull Biol Fr Belg 97: 515-530

    Google Scholar 

  • Davidson G, Lane J (1981) Distribution maps for the Anopheles gambiae com-plex. Mosquito Studies at the London School of Hygiene and Tropical Medi-cine. Progress Report 40: 2-4

    Google Scholar 

  • Davis DE (1944) Larval habitats of some Brazilian mosquitoes. Rev Entomol Rio de Janeiro 15: 221-235

    Google Scholar 

  • Dister SW, Fish D, Bros SM, Frank DH, Wood BL (1997) Landscape characteri-zation of peridomestic risk for lyme disease using satellite imagery. Am J Trop Med Hyg 57: 687-692

    CAS  PubMed  Google Scholar 

  • Diuk-Wasser MA, Bagayoko M, Sogoba N, Dolo G, Touré MB, Traoré SF, Taylor CE (2004) Mapping rice field anopheline breeding habitats in Mali, West Africa, using Landsat ETM + sensor data. Int J Remote Sensing 25: 359-376

    Google Scholar 

  • Dixon RO, Brust RA (1972) Mosquitoes of Manitoba. III. Ecology of larvae in the Winnipeg area. Can Entomol 104: 961-968

    Google Scholar 

  • Dixon WJ, Massey FJ (1969) Introduction to Statistical Analysis, McGraw-Hill Book Co., New York

    Google Scholar 

  • Doran BR, Lewis DJ (2003) The species composition and seasonal distribution of mosquitoes in vernal pools in suburban Montreal, Quebec. J Am Mosq Control Assoc 19: 339-346

    PubMed  Google Scholar 

  • Dorer RE, Carter RG, Bickley WE (1950) Observations on the pupae of Mansonia perturbans (Walk.) in Virginia. Proc New Jers Mosq Exterm Assoc 37: 110-113

    Google Scholar 

  • Downing JA (1986) Spatial heterogeneity: evolved behaviour or mathematical artefact? Nature 323: 255-257

    Google Scholar 

  • Downing JD (1977) A comparison of the distribution of Aedes canadensis larvae within woodland pools using the cylindrical sampler and the standard pint dipper. Mosquito News 37: 362-366

    Google Scholar 

  • Downs WG, Pittendrigh CS (1946) Bromeliad malaria in Trinidad, British West Indies. Am J Trop Med 26: 47-66

    Google Scholar 

  • Drake CM (1983) Spatial distribution of chironomid larvae (Diptera) on leaves of the bullrush in a chalk stream. J Anim Ecol 52: 421-437

    Google Scholar 

  • Driggers DP, Cranford HB, Parsons RE, Desrosiers RE, Kardatzke JT (1978) De-velopment and evaluation of the army improved portable immature mosquito concentrator system. Mosquito News 38: 480-485

    Google Scholar 

  • Duhrkopf RE, Benny H (1990) Differences in the larval alarm reactions in popula-tions of Aedes aegypti and Aedes albopictus. J Am Mosq Control Assoc 6: 411-414

    CAS  PubMed  Google Scholar 

  • Dunn LH (1928) Further observations on mosquito breeding in tree-holes and crabholes. Bull Entomol Res 18: 247-250

    Google Scholar 

  • Dutta P, Khan SA, Sharma CK, Doloi P, Hazarika NC, Mahanta J (1998) Distribu-tion of potential dengue vectors in major townships along the national high-ways and trunk roads of northeast India. Southeast Asian J Trop Med Public Health 29: 173-176

    CAS  PubMed  Google Scholar 

  • Dye C (1983) Insect movement and fluctuations in insect population size. Antenna 7: 174-178

    Google Scholar 

  • Earle HH (1956). Automatic device for the collection of aquatic specimens. J Econ Entomol 49: 261-262

    Google Scholar 

  • Elliott JM (1977) Some Methods for the Statistical Analysis of Samples of Benthic Invertebrates. Freshwater Biological Association Scientific Publi-cation No. 25

    Google Scholar 

  • Elnaiem DA, Schorscher J, Bendall A, Obsomer V, Osman ME, Mekkawi AM, Connor SJ, Ashford RW, Thomson MC (2003) Risk mapping of visceral leishmaniasis: the role of local variation in rainfall and altitude on the pres-ence and incidence of kala-azar in eastern Sudan. Am J Trop Med Hyg 68: 10-17

    PubMed  Google Scholar 

  • Enfield MA, Pritchard G (1977a) Methods for sampling immature stages of Aedes spp. (Diptera: Culicidae) in temporary ponds. Can Entomol 109: 1435-1444

    Google Scholar 

  • Enfield MA, Pritchard G (1977b). Estimation of population size and survival of immature stages of four species of Aedes (Diptera: Culicidae) in a temporary pond. Can Entomol 109: 1425-1434

    Google Scholar 

  • Evans BR (1962) Survey for possible mosquito breeding in crawfish holes in New Orleans, Louisiana. Mosquito News 22: 255-257

    Google Scholar 

  • Faber DJ (1981) A light-trap to sample littoral and limnetic regions of lakes. Verh Int Ver Limnol 21: 776-781

    Google Scholar 

  • Fanara DM (1973) An efficient aquatic sample concentrator. Mosquito News 33: 603-604

    Google Scholar 

  • Fanara DM, Mulla MS (1974) Population dynamics of larvae of Culex tarsalis Coquillett and Culiseta inornata (Williston) as related to flooding and tem-perature of ponds. Mosquito News 34: 98-104

    Google Scholar 

  • Farlow JE, Breaud TP, Steelman CD, Schilling PE (1978). Effects of the insect growth regulator diflubenzuron on non-target aquatic populations in a Louisi-ana intermediate marsh. Environ Entomol 7: 199-204

    CAS  Google Scholar 

  • Fauran P (1996) Lutte contre Aedes aegypti en Martinique. Rapport des études en-tomologiques. Bull Soc Pathol Exot 89: 161-162

    Google Scholar 

  • Ferreira RLM, Oliveira AF, Pereira ES, Hamada N (2001) Occurence of larval Culicidae (Diptera) in water retained in Aquascypha hydrophora (Fungus: Stereaceae) in Central Amazônia, Brazil. Mem Inst Oswaldo Cruz 96: 1165-1167

    CAS  PubMed  Google Scholar 

  • Fischer S, Schweigmann N (2004) Culex mosquitoes in temporary urban rain pools: Seasonal dynamics and relation to environmental variables. J Vector Ecol 29: 365-373

    PubMed  Google Scholar 

  • Fischer S, Marinone MC, Schweigmann N (2002) Ochlerotatus albifasciatus in rain pools of Buenos Aires: seasonal dynamics and relation to environmental variables. Mem Inst Oswaldo Cruz 97: 767-773

    PubMed  Google Scholar 

  • Fish D, Carpenter SR (1982) Leaf litter and larval mosquito dynamics in tree-hole ecosystems. Ecology 63: 283-288

    Google Scholar 

  • Fish D, Joslyn DJ (1984) Larval population estimates of Aedes communis using Giemsa marking. Mosquito News 44: 565-567

    Google Scholar 

  • Fisher IJ, Bradshaw WE, Kammeyer C (1990) Fitness and its correlates assessed by intra- and interspecific interactions among tree-hole mosquitoes. J Anim Ecol 59: 819-829

    Google Scholar 

  • Flasse SP, Verstraete MM (1994). Monitoring the environment with vegetation indices: comparison of NDVI and GEMI using AVHRR data over Africa. In: Veroustraete F, Ceulemans R (eds) Vegetation, Modelling and Climate Change Effects. SPB Academic, The Hague, Netherlands, pp 107-135

    Google Scholar 

  • Fleetwood SC, Steelman CD, Schilling PE (1978) The effects of waterfowl man-agement practices on mosquito abundance and distribution in Louisiana coastal marshes. Mosquito News 38: 105-111

    Google Scholar 

  • Fleetwood SC, Chambers MD, Terracina L (1981) An effective and economical mapping system for monitoring Psorophora columbiae in rice and fallow fields in southwestern Louisiana. Mosquito News 41: 174-177

    Google Scholar 

  • Focks DA (2003) A review of entomological sampling methods and indicators for dengue vectors. World Health Organization TDR, Geneva

    Google Scholar 

  • Focks DA, Chadee DD (1997) Pupal survey: an epidemiologically significant sur-veillance method for Aedes aegypti: an example using data from Trindad. Am J Trop Med Hyg 56: 159-167

    CAS  PubMed  Google Scholar 

  • Focks DA, Dame DA, Cameron AL, Boston MD (1980) Predator-prey interaction between insular populations of Toxorhynchites rutilus rutilus and Aedes ae-gypti. Environ Entomol 9: 37-42

    Google Scholar 

  • Focks DA, Sackett SR, Bailey DL, Dame DA (1981) Observations on con-tainer-breeding mosquitoes in New Orleans, Louisiana, with an estimate of the population density of Aedes aegypti (L.). Am J Trop Med Hyg 30: 1329-1335

    CAS  PubMed  Google Scholar 

  • Focks DA, Haile DG, Daniels E, Mount GA (1993a). Dynamic life table model for Aedes aegypti (Diptera:Culicidae): Analysis of the literature and model development. J Med Entomol 30: 1003-1017

    CAS  PubMed  Google Scholar 

  • Focks DA, Haile DG, Daniels E, Mount GA (1993b). Dynamic life table model for Aedes aegypti (Diptera:Culicidae): Simulation results and validation. J Medl Entomol 30: 1018-1028

    CAS  Google Scholar 

  • Focks DA, Daniels E, Haile, DG, Keesling, JE (1995). A simulation model of the epidemiology of urban dengue fever: Literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg 53: 489-506

    CAS  PubMed  Google Scholar 

  • Focks DA, Brenner RJ, Hayes J, Daniels E (2000) Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. Am J Trop Med Hyg 62: 11-18

    CAS  PubMed  Google Scholar 

  • Fontanarrosa MS, Marinone MC, Fischer S, Orellano PW, Schweigmann N (2000) Effects of flooding and temperature on Aedes albifasciatus development time and larval density in two rain pools at Buenos Aires University City. Mem Inst Oswaldo Cruz 95: 787-793

    CAS  PubMed  Google Scholar 

  • Forattini OP, Kakitani I, Massad E, Marucci D (1993) Studies on mosquitoes (Diptera: Culicidae) and anthropic environment. 2-Immature stages research at a rice irrigation system location in South-Eastern Brazil. Rev Saúde Pública 27: 227-236

    CAS  PubMed  Google Scholar 

  • Forattini OP, Kakitani I, Massad E, Marucci D (1994a) Studies on mosquitoes (Diptera: Culicidae) and anthropic environment. 5-Breeding of Anopheles al-bitarsis in flooded rice fields in South-Eastern Brazil. Rev Saúde Pública 28: 329-331

    CAS  PubMed  Google Scholar 

  • Forattini OP, Kakitani I, Massad E, Marucci D (1994b). Studies on mosquitoes (Diptera: Culicidae) and anthropic environment. 6-Breeding in empty condi-tions of rice fields in South-Eastern Brazil. Rev Saúde Pública 28: 395-399

    CAS  PubMed  Google Scholar 

  • Forattini OP, Kakitani I, Massad E, Marucci D. (1995a). Studies on mosquitoes (Diptera: Culicidae) and anthropic environment. 9-Synanthropy and epidemi-ological vector role of Aedes scapularis in south-eastern Brazil. Rev Saúde Pública 29: 199-207

    CAS  PubMed  Google Scholar 

  • Forattini OP, Kakitani I, Massad E, Marucci D (1995b). Studies on mosquitoes (Diptera: Culicidae) and anthropic environment. 10-Survey of adult behaviour of Culex nigripalpus and other species of Culex (Culex) in south-eastern Brazil. Rev Saúde Pública 29: 271-278

    CAS  PubMed  Google Scholar 

  • Forattini OP, Kakitani I, Sallum MAM, de Rezende L (1997) Produtividade de criadouro de Aedes albopictus em ambiente urbano. Rev Saúde Pública 31: 545-555

    CAS  PubMed  Google Scholar 

  • Fox I, Specht P (1988) Evaluating ultra-low volume ground applications of malathion against Aedes aegypti using landing counts in Puerto Rico, 1980-84. J Am Mosq Control Assoc 4: 163-167

    CAS  PubMed  Google Scholar 

  • Frank JH, Curtis GA, Evans HT (1976) On the bionomics of bromeliad-inhabiting mosquitoes. I. Some factors influencing oviposition by Wyeomyia vanduzeei. Mosquito News 36: 25-30

    Google Scholar 

  • Frank JH, Curtis GA, Evans HT (1977) On the bionomics of bromeliad-inhabiting mosquitoes. II. The relationship of bromeliad size to the numbers of immature Wyeomyia vanduzeei and Wy. medioalbipes. Mosquito News 37: 180-192

    Google Scholar 

  • Frank JH, Lounibos LP (eds) (1983). Phytotelmata: Terrestrial Plants as Hosts for Aquatic Insect Communities. Plexus Publishing Inc., New Jersey

    Google Scholar 

  • Gast RT, Landin M (1966) Adult boll weevils and eggs marked with dye fed in larval diet. J Econ Entomol 59: 474-475

    Google Scholar 

  • Geevarghese G, Kaul HN, Dhanda V (1975) Observations on the re-establishment of Aedes aegypti population in Poona city and suburb, Maharashtra State, In-dia, Indian J Med Res 63: 1155-1163

    CAS  Google Scholar 

  • Germain M, Francy DB, Monath TP, Ferrara L, Bryan J, Salaun J-J, Heme G, Renaudet J, Adam C, Digoutte J-P (1980) Yellow fever in The Gambia, 1978-1979; Entomological aspects and epidemiological correlations. Am J Trop Med Hyg 29: 929-940

    CAS  PubMed  Google Scholar 

  • Getis A, Morrison AC, Gray K, Scott TW (2003) Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am J Trop Med Hyg 69: 494-505

    PubMed  Google Scholar 

  • Gettman AD, Hall DW (1989) A modification of scrap automobile tires for field studies of artificial container-breeding mosquitoes. J Am Mosq Control Assoc 5: 439

    CAS  PubMed  Google Scholar 

  • Gillett JD (1946) Notes on the subgenus Coquillettidia Dyar (Diptera: Culicidae). Bull Entomol Res 36: 425-438

    Google Scholar 

  • Gionar YR, Rusmiarto S, Susapto D, Bangs MJ (1999) Use of a funnel trap for collecting immature Aedes aegypti and copepods from deep wells in Yogya-karta, Indonesia. J Am Mosq Control Assoc 15: 576-580

    CAS  PubMed  Google Scholar 

  • Goettel MS, Toohey MK, Engber BR, Pillai JS (1981) A modified garden sprayer for sampling crab hole water. Mosquito News 41: 789-790

    Google Scholar 

  • Goodwin MH, Eyles DE (1942) Measurements of larval populations of Anopheles quadrimaculatus Say. Ecology 23: 376

    Google Scholar 

  • Gooley BR, Lesser FH (1975) Formulation and interpretation of aerial mapping of breeding areas. Proc New Jers Mosq Control Assoc 63: 106-110

    Google Scholar 

  • Gould DJ, Mount GA, Scanlon JE Sullivan MF, Winter PE (1971) Dengue control on an island in the gulf of Thailand. I. Results of an Aedes aegypti control program. Am J Trop Med Hyg 20: 705-714

    CAS  PubMed  Google Scholar 

  • Gozhenko VA (1978) Biotopes and times of development of Mansonia richiardii (Ficalbi) 1889 in the conditions of the Ukrainian steppes. Medskaya Parazi-tol., 47: 36-40 (In Russian)

    CAS  Google Scholar 

  • Graham JE, Bradley IE (1962) The effects of species on density of mosquito larval populations in Salt Lake County, Utah. Mosquito News 22: 239-247

    Google Scholar 

  • Graham JE, Bradley IE (1969) Mode of action of factors responsible for increases in Culex tarsalis Coq. populations in Utah. Mosquito News 29: 678-687

    Google Scholar 

  • Graham JE, Collett GC (1969) Ten years of surveillance for western equine en-cephalitis in Utah. Mosquito News 29: 451-456

    Google Scholar 

  • Greenstone MH (1979) A sampling device for aquatic arthropods active at the wa-ter surface. Ecology 60: 642-644

    Google Scholar 

  • Grillet EM (2000) Factors associated with distribution of Anopheles aquasalis and Anopheles oswaldoi (Diptera: Culicidae) in a malarious area, northeastern Venezuela. J Med Entomol 37: 231-238

    CAS  PubMed  Google Scholar 

  • Grimes D, Bonifacio R, Dugdale G, Diop M (1995) Flow forecasting of a semi-arid catchment with METEOSAT and NOAA AVHRR data. Proceedings of the Meteorological Satellite Data Users’ Conference, Winchester, 4-8 September 1995

    Google Scholar 

  • Guille G (1973) Mode d’alimentation de la larve de Coquillettidia (Coquillettidia) richiardii (Diptera: Culicidae). Bull Biol Fr Belge 107: 265-269

    Google Scholar 

  • Guille G (1975). Recherches éco-éthologiques sur Coquillettidia (Coquillet-tidia) richiardii (Ficalbi), 1889 (Diptera-Culicidae) du littoral méditerranéen Français, I.—Techniques d’étude et morphologie. Ann Sci Nat Zool Paris 17: 229-272

    Google Scholar 

  • Hagmann LE (1953) Biology of ‘Mansonia perturbans’ (Walker). Proc New Jers Mosq Exterm Assoc 40: 20-22

    Google Scholar 

  • Hagstrum DW (1971a). Evaluation of the standard pint dipper as a quantitative sampling device for mosquito larvae. Ann Entomol Soc Am 64: 537-540

    Google Scholar 

  • Hagstrum DW (1971b). A model of the relationship between densities of larvae and adults in an isolated population of Culex tarsalis (Diptera: Culicidae). Ann Entomol Soc Am 64: 1074-1077

    Google Scholar 

  • Hamad AA, Nugud AEHD, Arnot DE, Giha HA, Abdel-Muhsin AMA, Satti GMH, Theander TG, Creasey AM, Babiker HA, Elnaiem DEA (2002) A marked seasonality of malaria transmission in two rural sites in eastern Sudan. Acta Trop 83: 71-82

    PubMed  Google Scholar 

  • Hamon J, Pichon G, Cornet M (1971) La transmission du virus amaril en Afrique occidentale. Ecologie, répartition, fréquence et contrôle des vecteurs, et ob-servations concernant l’épidemiologie de la fièvre jaune. Cah ORSTOM sér. Entomol Méd Parasitol 9: 3-60

    Google Scholar 

  • Hansen MH, Hurwitz WN, Madow WG (1953). Sample Survey Methods and Theory, Vol. 1. John Wiley & Sons, London

    Google Scholar 

  • Hanski I (1982) On patterns of temporal and spatial variation in animal popula-tions. Ann Zool Fenn 19: 21-37

    Google Scholar 

  • Hanski I (1987) Cross-correlation in population dynamics and the slope of spatial variance-mean regressions. Oikos 50: 148-151

    Google Scholar 

  • Haramis LD (1984) Aedes triseriatus: A comparison of density in tree holes vs. discarded tires. Mosquito News 44: 485-489

    Google Scholar 

  • Hard JJ, Bradshaw WE, Malarkey DJ (1989) Resource- and density-dependent development in tree-hole mosquitoes. Oikos 54: 137-144

    Google Scholar 

  • Harrison BA, Callahan MC, Watts DM, Panthusiri L (1982) An efficient floating larval trap for sampling Aedes aegypti populations. J Med Entomol 19: 722-727

    CAS  PubMed  Google Scholar 

  • Hatfield LD, Riner JL, Norment BR (1985) A dredge sampler for mosquito larvae. J Am Mosq Control Assoc 1: 372-373

    CAS  PubMed  Google Scholar 

  • Hay SI, Tucker CJ, Rogers DJ, Packer MJ (1996) Remotely sensed surrogates of meteorological data for the study of the distribution and abundance of arthro-pod vectors of disease. Ann Trop Med Parasitol 90: 1-19

    CAS  PubMed  Google Scholar 

  • Hay SI, Packer MJ, Rogers DJ (1997) The impact of remote sensing on the study and control of invertebrate intermediate host and vectors for disease. Int J Remote Sensing 18: 2899-2930

    Google Scholar 

  • Hay SI, Snow RW, Rogers DJ (1998). From predicting mosquito habitat to ma-laria seasons using remotely sensed data: practice, problems and perspectives. Parasitol Today 14: 306-313

    CAS  PubMed  Google Scholar 

  • Hayes RO, Maxwell EL, Mitchell CJ, Woodzick TL (1985) Detection, identifica-tion, and classification of mosquito larval habitats using remote sensing scan-ners in earth-orbiting satellites. Bull World Health Organ 63: 361-374

    CAS  PubMed  Google Scholar 

  • Heathcote OHU (1970) Japanese encephalitis in Sarawak: studies on juvenile mosquito populations. Trans R Soc Trop Med Hyg 64: 483-488

    CAS  PubMed  Google Scholar 

  • Heron RJ (1968) Vital dyes as markers for behavioral and population studies of the larch sawfly, Pristophora erichsonii (Hymenoptera: Tenthredinidae). Can Entomol 100: 470-475

    Google Scholar 

  • Hess AD (1941) New Limnological Sampling Equipment. Special Publications of the Limnological Society of America 6

    Google Scholar 

  • Hess AD, Hall TF (1943) The intersection line as a factor in anopheline ecology. J Natn Malar Soc 2: 93-98

    Google Scholar 

  • Hii JLK (1979) Evaluation of an Aedes control trial using the one-larva-per-container method in Labuan island, Sabah, Malaysia. Jap J Sanit Zool 30: 127-134

    Google Scholar 

  • Hiriyan J, Tyagi BK (2004) Cocoa pod (Theobroma caco) - a potential breeding habit (sic) of Aedes albopictus in dengue-sensitive Kerala State, India. J Am Mosq Control Assoc 20: 323-325

    CAS  PubMed  Google Scholar 

  • Hocking B (1953) Notes on the activities of Aedes larvae. Mosquito News 13: 77-81

    Google Scholar 

  • Holck AR, Puissegur WJ, Meek CL (1988) Mosquito productivity of crawfish ponds and irrigation canals in Louisiana ricelands. J Am Mosq Control Assoc 4: 82-84

    CAS  PubMed  Google Scholar 

  • Hopkins GHE (1952) Mosquitoes of the Ethiopian Region. 1. Larval Bionomics of Mosquitoes and the Taxonomy of Culicine Larvae. British Museum (Natural History), London

    Google Scholar 

  • Horsfall WR (1942) Biology and Control of Mosquitoes in the Rice Area. Bull Agric Exp Stn Arkansas 427

    Google Scholar 

  • Horsfall WR (1946) Area sampling of populations of larval mosquitoes in rice fields. Entomol News 57: 242-244

    Google Scholar 

  • Hugh-Jone, M (1989) Applications of remote sensing to the identification of para-sites and disease vectors. Parasitol Today 5: 244-251

    Google Scholar 

  • Husbands RC (1967) A subsurface light trap for sampling aquatic insect popula-tions. California Vector Views 14: 81-82

    Google Scholar 

  • Husbands RC (1969) An improved technique of collecting mosquito larvae for control operations. California Vector Views 16: 67-69

    Google Scholar 

  • Hutchings RSG (1994) Palm bract breeding sites and their exploitation by Toxorhynchites (Lynchiella) haemorrhoidalis haemorrhoidalis (Diptera: Culi-cidae) in an upland forest of the central Amazon. J Med Entomol 31: 186-191

    CAS  PubMed  Google Scholar 

  • Ikemoto T (1976) A method, using a standard quadrat device and a small suction pump for sampling of the immature stages of mosquitoes in rice fields. Jap J Sanit Zool 27: 153-156

    Google Scholar 

  • Ikemoto T (1978) Studies on the spatial distribution pattern of larvae of the mos-quito, Anopheles sinensis, in rice fields. Res Popul Ecol 19: 237-249

    Google Scholar 

  • Imai C, Ikemoto T, Takagi M, Yamugi H, Pohan W, Hasibuan H, Sirait H, Panjai-tan W (1988) Ecological studies of Anopheles sundaicus larvae in a coastal village of North Sumatra, Indonesia, I. Topography, land use, and larval breeding. Jap J Sanit Zool 39: 293-300

    Google Scholar 

  • Ingram A (1912) Notes on the mosquitos observed at Bole, Northern Territories, Gold Coast. Bull Entomol Res 3: 73-78

    Google Scholar 

  • Istock CA, Zisfeln J, Vavra KJ (1976a) Ecology and evolution of the pitcherplant mosquito: 2. The substructure of fitness. Evolution 30: 535-547

    Google Scholar 

  • Istock CA, Vavra KJ, Zimmer H. (1976b). Ecology and evolution of the pitcherplant mosquito: 3. Resources tracking by a natural population. Evolution 30: 548-557

    Google Scholar 

  • Iwao S (1968) A new regression method for analyzing the aggregation pattern of animal populations. Res Popul Ecol 10: 1-20

    Google Scholar 

  • Iwao S (1970) Problems of spatial distribution in animal population ecology. In: Patil GP, Pielou EC, Water WE (eds) Random Counts in Biomedical and Social Sciences, Vol. 2. Pennsylvania State University Press, University Park, pp. 117-149

    Google Scholar 

  • Iwao S (1975) A new method of sequential sampling to classify populations rela-tive to a critical density. Res Popul Ecol 16: 281-288

    Google Scholar 

  • Iwao S, Kuno E (1971) An approach to the analysis of aggregation pattern in bio-logical populations. In: Patil GP, Pielou EC, Water WE (eds) Random Counts in Biomedical and Social Sciences, Vol. 2. Pennsylvania State University Press, University Park, pp. 461-513.

    Google Scholar 

  • Jaal Z, Macdonald WW (1993) The ecology of anopheline mosquitos in northwest coastal Malaysia: larval habitats and adult seasonal abundance. Southeast Asian J Trop Med Public Health 24: 522-529

    CAS  PubMed  Google Scholar 

  • Jacob BG, Arheart KL, Griffith DA, Mbogo CM, Githeko AK, Regens JL, Githure JI, Novak R, Beier JC (2005) Evaluation of environmental data for identifica-tion of Anopheles larval habitats in Kisumu and Malindi, Kenya. J Med Entomol 42: 751-755

    PubMed  Google Scholar 

  • Janousek TE, Lowrie RC (1989) Vector competency of Culex quinquefasciatus (Haitian strain) following infection with Wuchereria bancrofti. Trans R Soc Trop Med Hyg 83: 679-680

    CAS  PubMed  Google Scholar 

  • Jolivet P, Yi BG, Ree HI, Lee KW (1974) Application of phytoecological cartog-raphy to detect the mosquito breeding places on an island in the Yellow Sea, Korea. WHO/VBC/74.485, 14 pp. (mimeographed)

    Google Scholar 

  • Joslyn DJ, Conrad LB (1984) Larval density estimates of Aedes sollicitans (Walker) using the Giemsa self-marker. Proc New Jers Mosq Control Assoc 71: 72-73

    Google Scholar 

  • Joy JE (2004) Larval mosquitoes in abandoned tire pile sites from West Virginia. J Am Mosq Control Assoc 20: 12-17

    PubMed  Google Scholar 

  • Joy JE, Clay JT (2002) Habitat use by larval mosquitoes in West Virginia. Am Midl Nat 148: 363-375

    Google Scholar 

  • Joy JE, Hildreth-Whitehair A (2000) Larval habitat characterization for Aedes tris-eriatus (Say), the mosquito vector of LaCrosse encephalitis in West Virginia. Wilderness Environ Med 11: 79-83

    CAS  PubMed  Google Scholar 

  • Joy JE, Hanna AA, Kennedy BA (2003) Spatial and temporal variation in the mosquitoes (Diptera: Culicidae) inhabiting waste tires in Nicholas County, West Virginia. J Med Entomol 40: 73-77

    PubMed  Google Scholar 

  • Jupp DLB, Heggan SJ, Mayo KK, Kenwal SW (1985) The BRIAN handbook - an introduction to Landsat and the BRIAN system for users. CSIRO Division of Land and Water Resources, Natural Resources Series, 3

    Google Scholar 

  • Kaur R, Reuben R (1981) Studies of density and natural survival of immatures of Anopheles stephensi Liston in wells in Salem (Tamil Nadu). Ind J Med Res 73 (Suppl.): 129-135

    Google Scholar 

  • Kay BH, Cabral CP, Araujo DB, Ribeiro ZM, Braga PH, Sleigh AC (1992) Evaluation of a funnel trap for collecting copepods and immature mosquitoes from wells. J Am Mosq Control Assoc 8: 372-375

    CAS  PubMed  Google Scholar 

  • Kay BH, Ryan PA, Russell BM, Holt JS, Lyons SA, Foley PN (2000) The impor-tance of subterranean mosquito habitat to arbovirus vector control strategies in North Queensland, Australia. J Med Entomol 37: 846-853

    CAS  PubMed  Google Scholar 

  • Kay BH, Ryan PA, Lyons SA, Foley PN, Pandeya N, Purdie D (2002) Winter in-tervention against Aedes aegypti (Diptera: Culicidae) larvae in subterranean habitats slows surface recolonization in summer. J Med Entomol 39: 356-361

    CAS  PubMed  Google Scholar 

  • Kelker GH (1940) Estimating deer populations by a differential hunting loss in the sexes. Proc Utah Acad Sci 17: 65-69

    Google Scholar 

  • Kent RB, Sutherland DJ (1977) A compact map-panel system for large acreage. Mosquito News 37: 765-767

    Google Scholar 

  • Kitron U (1998) Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. J Med Entomol 35: 435-445

    CAS  PubMed  Google Scholar 

  • Kitron UD, Webb DW, Novak RJ (1989) Oviposition behavior of Aedes triseria-tus (Diptera: Culicidae): Prevalence, intensity, and aggregation of eggs in ovi-position traps. J Med Entomol 26: 462-467

    CAS  PubMed  Google Scholar 

  • Kitron U, Kazmierczak JJ (1997) Spatial analysis of the distribution of Lyme dis-ease in Wisconsin. Am J Epidemiol 145: 558-566

    CAS  PubMed  Google Scholar 

  • Kitron U, Otieno LH, Hungerford LL, Odulaja A, Brigham WU, Okello OO, Joselyn M, Mohamed-Ahmed MM, Cook E (1996) Spatial analysis of the distribution of tsetse flies in the Lambwe valley, Kenya, using Landsat TM satellite imagery and GIS. J Anim Ecol 65: 371-380.

    Google Scholar 

  • Kitron U, Michael J, Swanson J, Haramis L (1997) Spatial analysis of the distribu-tion of LaCrosse encephalitis in Illinois, using a geographic information sys-tem and local and global spatial statistics. Am J Trop Med Hyg 57: 469-475

    CAS  PubMed  Google Scholar 

  • Kittayapong P, Strickman D (1993) Distribution of container-inhabiting Aedes larvae (Diptera: Culicidae) at a dengue focus in Thailand. J Med Entomol 30: 601-606

    CAS  PubMed  Google Scholar 

  • Klinkenberg E, Takken W, Huibers F, Touré YT (2003) The phenology of malaria mosquitoes in irrigated rice fields in Mali. Acta Trop 85: 71-82

    CAS  PubMed  Google Scholar 

  • Knight KL (1964) Quantitative methods for mosquito larval surveys. J Med Entomol 1: 109-115

    CAS  PubMed  Google Scholar 

  • Knowles R, Senior White R (1927) Malaria. Its Investigation and Control with Special Reference to Indian Conditions. Thacker, Spink & Co., Calcutta

    Google Scholar 

  • Kobayashi M, Nihei N, Kurihara T (2002) Analysis of northern distribution of Aedes albopictus (Diptera: Culicidae) in Japan by geographical information system. J Med Entomol 39: 4-11

    CAS  PubMed  Google Scholar 

  • Kogan F (1995) AVHRR data for detection and analysis of vegetation stress. Pro-ceedings of the Meteorological Satellite Data Users’ Conference, Winchester, 4-8 September 1995

    Google Scholar 

  • Kogan M, Herzog DC (eds) (1980) Sampling Methods in Soybean Entomology. Springer-Verlag, New York

    Google Scholar 

  • Kono T (1953) On the estimation of insect populations by time unit collecting. Res Popul Ecol 2: 85-94 (In Japanese, English summary)

    Google Scholar 

  • Kronenwetter-Koepel TA, Meece JK, Miler CA, Reed KD (2005) Surveillance of above- and below-ground mosquito breeding habitats in a rural midwestern community: baseline data for larvicidal control measures against West Nile virus vectors. Clin Med Res 3: 3-12

    PubMed  Google Scholar 

  • Kruger RM, Pinger RR (1981) A larval survey of the mosquitoes of Delaware county, Indiana. Mosquito News 41: 484-489

    Google Scholar 

  • Kubota RL, de Brito M, Voltolini JC (2003) Método de varredura para exame de criadouros de vetores de dengue e febre amarela urbana. Rev Saúde Pública 37: 263-265

    PubMed  Google Scholar 

  • Kuno E (1991) Sampling and analysis of insect populations. Annu Rev Entomol 36: 285-304

    Google Scholar 

  • Kuno E, Yamamoto S, Satomi H, Outi Y, Okada T (1963) On the assessment of insect populations in a large area of paddy field based on the negative bino-mial distribution. Proc Assoc Pl Prot Kyushu 9: 33-36 (In Japanese, English summary)

    Google Scholar 

  • Kutz FW, Wade TG, Pagac BB (2003) A geospatial study of the potential of two exotic species of mosquitoes to impact the epidemiology of West Nile virus in Maryland. J Am Mosq Control Assoc 19: 190-198

    PubMed  Google Scholar 

  • Lacey LA, Lacey CM (1990) The medical importance of riceland mosquitoes and their control using alternatives to chemical insecticides. J Am Mosq Control Assoc 6 (Suppl. No. 2): 1-93

    Google Scholar 

  • Laird M (1988) The Natural History of Larval Mosquito Habitats. Academic Press, London

    Google Scholar 

  • Lamblin EF, Strahler AH (1994) Indicators in land cover change for change vector analysis in multi-temporal space at coarse spatial scales. Int J Remote Sensing, 15: 2099-2119

    Google Scholar 

  • Lang JT, Ramos AC (1981) Ecological studies of mosquitoes in banana leaf axils on Central Luzon, Philippines. Mosquito News 41: 665-673

    Google Scholar 

  • Lardeux F, Sechan Y, Loncke S, Deparis X, Cheffort J, Faaruia M (2002) Inte-grated control of peridomestic larval habitats of Aedes and Culex mosquitoes (Diptera: Culicidae) in atoll villages of French Polynesia. J Med Entomol 39: 493-498

    PubMed  Google Scholar 

  • Laurence BR (1960) The biology of two species of mosquito, Mansonia africana (Theobald) and Mansonia uniformis (Theobald), belonging to the subgenus Mansonioides (Diptera: Culicidae). Bull Entomol Res 51: 491-517

    Google Scholar 

  • Lemenager DC, Bauer SD, Kauffman EE (1986) Abundance and distribution of immature Culex tarsalis and Anopheles freeborni in rice fields of the Sulter-Yuba M. A. D.: 1. Initial sampling to detect major mosquito producing rice fields, augmented by adult light trapping. Proc California Mosq Vector Con-trol Assoc 53: 101-104

    Google Scholar 

  • Le Pelley RH (1935) Observations on the control of insects by hand-collection. Bull Entomol Res 26: 533-541

    Google Scholar 

  • Lesser CR (1977) A method to estimate populations of mosquito larvae in shallow water. Mosquito News 37: 517-519

    Google Scholar 

  • Le Sueur D (1991) The ecology, overwintering and population dynamics of the preimaginal stages of the Anopheles gambiae Giles complex (Diptera: Culici-dae) in northern Transvaal, South Africa. Ph.D. thesis, University of Natal

    Google Scholar 

  • Levine RS, Peterson AT, Benedict MQ (2004a). Geographic and ecologic distri-butions of the Anopheles gambiae complex predicted using a genetic algo-rithm. Am J Trop Med Hyg 70: 105-109

    PubMed  Google Scholar 

  • Levine RS, Peterson AT, Benedict MQ (2004b). Distribution of members of Anopheles quadrimaculatus Say s.l. (Diptera: Culicidae) and implications for their roles in malaria transmission in the United States. J Med Entomol 41: 607-613

    PubMed  Google Scholar 

  • Liebhold AM, Rossi RE, Kemp WP (1993) Geostatistics and geographic informa-tion systems in applied insect ecology. Annu Rev Entomol 38: 303-327

    Google Scholar 

  • Lien JC, Lin TH, Huang HM (1993) Dengue vector surveillance and control in Taiwan. Trop Med (Nagasaki) 35: 269-276

    Google Scholar 

  • Lindsay SW, Bayoh MN (2004) Mapping members of the Anopheles gambiae complex using climate data. Physiol Entomol 29: 204-209

    Google Scholar 

  • Lindsay SW, Parson L, Thomas CJ (1998) Mapping the range and relative abun-dance of the two principle African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data. Proc R Soc London Series B 265: 847-854

    CAS  Google Scholar 

  • Linthicum KJ, Davies FG, Bailey CL, Kairo A (1983) Mosquito species succes-sion in a dambo in an East African forest. Mosquito News 43: 464-470

    Google Scholar 

  • Linthicum KJ, Davies FG, Bailey CL, Kairo A (1984) Mosquito species encoun-tered in a flooded grassland dambo in Kenya. Mosquito News 44: 228-232

    Google Scholar 

  • Linthicum KJ, Bailey CL, Davies FG, Kairo A (1985) Observations on the disper-sal and survival of a population of Aedes lineatopennis (Ludlow) (Diptera: Culicidae) in Kenya. Bull Entomol Res 75: 661-670

    Google Scholar 

  • Linthicum KJ, Bailey CL, Davies FG, Tucker CJ (1987) Detection of Rift Valley fever viral activity in Kenya by satellite remote sensing imagery. Science 235: 1656-1659

    CAS  PubMed  Google Scholar 

  • Linthicum KJ, Bailey CL, Tucker CJ, Mitchell KD, Logan TM, Davies FG, Kamau CW, Thande PC, Wagateh JN (1990) Application of polar-orbiting, metereological satellite data to detect flooding of Rift Valley Fever virus vector mosquito habitats in Kenya. Med Vet Entomol 4: 433-438

    CAS  PubMed  Google Scholar 

  • Lloyd M (1967) Mean crowding. J Anim Ecol 36: 1-30

    Google Scholar 

  • Loomis EC (1959) The function of larval surveys in the California encephalitis surveillance program. Proc California Mosq Control Assoc 21: 64-67

    Google Scholar 

  • Lopes J, Lozovei AL (1995) Ecologia de mosquitos (Diptera: Culicidae) em criadouros naturais e artificiais de área rural do norte do Estado do Paraná, Brasil. I - Coletas ao longo do leito de ribeirão. Rev Saúde Pública 29: 183-191

    CAS  PubMed  Google Scholar 

  • Lothrop HD, Resisen WK (1999) A geographical information system to manage mosquito and arbovirus surveillance and control data in the Coachella valley of California. J Am Mosq Control Assoc 15: 299-307

    CAS  PubMed  Google Scholar 

  • Lounibos LP (1979) Mosquitoes occurring in the axils of Pandanus rabaiensis Rendle on the Kenya coast. Cah ORSTOM sér Entomol Méd Parasitol 17: 25-29

    Google Scholar 

  • Lounibos LP (1981) Habitat segregation among African tree-hole mosquitoes. Ecol Entomol 6: 129-154

    Google Scholar 

  • Lounibos LP, Escher RL (1983) Seasonality and sampling of Coquillettidia pertur-bans (Diptera: Culicidae) in south Florida. Environ Entomol 12: 1087-1093

    Google Scholar 

  • Lounibos LP, Rey JR, Frank JH (eds) (1985) Ecology of Mosquitoes: Proceedings of a Workshop. Florida Medical Entomology Laboratory, Vero Beach, Florida

    Google Scholar 

  • Lounibos LP, Frank JH, Machado-Allison CE, Ocanto P, Navarro JC (1987) Sur-vival, development and predatory effects of mosquito larvae in Venezuelan phytotelmata. J Trop Ecol 3: 221-242

    Google Scholar 

  • Lutwama JJ, Mukwaya LG (1994) Studies on some of the physical and biological factors affecting the abundance of the Aedes simpsoni (Diptera: Culicidae) complex-larvae and pupae in plant axils. Bull Entomol Res 84: 255-263

    Google Scholar 

  • Lutwama JJ, Mukwaya LG (1995) Estimates of mortalities of larvae and pupae of the Aedes simpsoni (Theobald) (Diptera: Culicidae) complex in Uganda. Bull Entomol Res 85: 93-99

    Google Scholar 

  • Macdonald WW (1956) Aedes aegypti in Malaya. 1. Distribution and dispersal. Ann Trop Med Parasitol 50: 385-398

    CAS  PubMed  Google Scholar 

  • Macdonald WW, Rajapaksa N (1972) A survey of the distribution and relative prevalence of Aedes aegypti in Sabah, Brunei and Sarawak. Bull World Health Organ 46: 203-209

    CAS  PubMed  Google Scholar 

  • Mackey BE, Hoy JB (1978) Culex tarsalis: Sequential sampling as a means of es-timating populations in Californian rice fields. J Econ Entomol 71: 329-334

    CAS  PubMed  Google Scholar 

  • Madder DJ, MacDonald RS, Surgeoner GA, Helson BV (1980) The use of ovi-position activity to monitor populations of Culex pipiens and Culex restuans (Diptera: Culicidae). Can Entomol 112: 1013-1017

    Google Scholar 

  • Mahadev PVM (1983) A case study of Aedes aegypti prevalence by settle-ment types in Dehu town group of Maharashtra state. Indian J Med Res 78: 537-546

    CAS  PubMed  Google Scholar 

  • Mahadev PVM, Geevarghese G (1978) Comparison of single larva and conven-tional pool methods for the study of Aedes aegypti in tyre dumps. Indian J Med Res 68: 934-939

    CAS  PubMed  Google Scholar 

  • Mahadev PVM, Dhanda V, Shetty PS (1978) Aedes aegypti (L.) in Maharashtra state—distribution and larval habitats. Indian. J Med Res 67: 562-580

    CAS  PubMed  Google Scholar 

  • Maire A (1982) Selectivity by six snow-melt mosquito species for larval habitats in Quebec subarctic string bogs. Mosquito News 42: 236-243

    Google Scholar 

  • Malone JB, Huh OK, Fehler DP, Wilson PA, Wilensky DE, Holmes RA, Elmagdoub AI (1994). Temperature data from satellite imagery and the dis-tribution of schistosomiasis in Egypt. Am J Trop Med Hyg 50: 714-722

    CAS  PubMed  Google Scholar 

  • Marcondes CB, Mafra H (2003) Nova técnica para o estudo da fauna de mosquitos (Diptera: Culicidae) em internódios de bambus, com resultados preliminares. Rev Soc Bras Med Trop 36: 763-764

    PubMed  Google Scholar 

  • Markos BG (1951) Distribution and control of mosquitoes in rice fields in Stanis-laus County, California. J Natn Malar Soc 10: 233-247

    CAS  Google Scholar 

  • Marten GG, Suarez MF, Astaeza R (1996) An ecological survey of Anopheles albimanus larval habitats in Colombia. J Vector Ecol 21: 122-131

    Google Scholar 

  • Mattingly PF (1969) The Biology of Mosquito-Borne Disease. George Allen & Unwin, London

    Google Scholar 

  • McDonald JL (1970) Preliminary results on experimental detection of Mansonia uniformis (Theob.) mosquito immatures. Mosquito News 30: 614-619

    Google Scholar 

  • McLaughlin RE, Brown MA, Vidrine MF (1987) The sequential sampling of Pso-rophora columbiae larvae in rice fields. J Am Mosq Control Assoc 3: 423-428

    CAS  PubMed  Google Scholar 

  • McNeel TE (1931) A method for locating the larvae of the mosquito Mansonia. Science 74: 155

    PubMed  Google Scholar 

  • Meek CL, Olson JK (1991) Determination of riceland mosquito population dy-namics. In: Heinricks EA, Miller TA (eds) Rice Insects: Management Strate-gies. Springer-Verlag, New York, pp. 107-139

    Google Scholar 

  • Meisch MV, Anderson AL, Watson RL, Olson L (1982) Mosquito species inhabit-ing ricefields in five growing regions of Arkansas. Mosquito News 42: 341-346

    Google Scholar 

  • Menon PKB, Rajagopalan PK (1979) Seasonal changes in the density and natural mortality of immature stages in the urban malaria vector, Anopheles stephensi (Liston) in wells in Pondicherry. Indian J Med Res 70 (Suppl.): 123-127

    PubMed  Google Scholar 

  • Minakawa N, Sonye G, Mogi M, Yan G (2004) Habitat characteristics of Anophe-les gambiae s.s. larvae in a Kenyan highland. Med Vet Entomol 18: 301-305

    CAS  PubMed  Google Scholar 

  • Miura T (1980) Estimation of mosquito population size in confined natural breed-ing sites. Proc California Mosq Vector Control Assoc 48: 108-112

    Google Scholar 

  • Miura T, Husbands RC, Reed DE (1970) Field evaluation of the concentrator-dipper technique for sampling mosquito larvae. Mosquito News 30: 448-452

    Google Scholar 

  • Mogi M (1978) Population studies on mosquitoes in the rice field area of Nagasaki, Japan, especially on Culex tritaeniorhynchus. Trop Med 20: 173-263

    Google Scholar 

  • Mogi M (1981) Population dynamics and methodology for biocontrol of mosqui-toes. In: Laird M (ed) Biocontrol of Medical and Veterinary Pests. Praeger Science, New York, pp. 140-172

    Google Scholar 

  • Mogi M (1984a) Distribution and overcrowding effects in mosquito larvae (Dip-tera: Culicidae) inhabiting taro axils in the Ryukyus, Japan. J Med Entomol 21: 63-68

    Google Scholar 

  • Mogi M (1984b) Mosquito problems and their solution in relation to paddy rice production. Protect Ecol 7: 219-240

    Google Scholar 

  • Mogi M, Mokry J (1980) Distribution of Wyeomyia smithii (Diptera: Culicidae) eggs in pitcher plants in Newfoundland, Canada. Trop Med 22: 1-12

    Google Scholar 

  • Mogi M, Suzuki H (1983) The biotic community in the water-filled internode of bamboos in Nagasaki, Japan, with special reference to mosquito ecology. Jap J Ecol 33: 271-279

    Google Scholar 

  • Mogi M, Wada Y (1973) Spatial distribution of larvae of the mosquito Culex tri-taeniorhynchus summorosus in a rice field area. Trop Med 15: 69-83

    Google Scholar 

  • Mogi M, Miyagi I, Okazawa T (1984) Population estimation by removal methods and observations on population-regulation factors of crab-hole mosquito im-matures (Diptera: Culicidae) in the Ryukus, Japan. J Med Entomol 21: 720-726

    Google Scholar 

  • Mogi M, Horio M, Miyagi I, Cabrera BD (1985) Succession, distribution, overcrowding and predation in the aquatic community in aroid axils, with special reference to mosquitoes. In: Lounibos LP, Rey JR, Frank JH (eds) Ecology of Mosquitoes: Proceedings of a Workshop. Florida Medical Ento-mology Laboratory, Vero Beach, Florida, pp. 95-119

    Google Scholar 

  • Mogi M, Okazawa T, Miyagi I, Sucharit S, Tumrasvin W, Deesin T, Khamboonruang C (1986) Development and survival of anopheline immatures (Diptera: Culicidae) in rice fields in northern Thailand. J Med Entomol 23: 244-250

    CAS  PubMed  Google Scholar 

  • Mogi M, Memah V, Miyagi I, Toma T, Sembel DT (1995) Mosquito (Diptera: Culicidae) and predator abundance in irrigated and rain-fed rice fields in north Sulawesi, Indonesia. J Med Entomol 32: 361-367

    CAS  PubMed  Google Scholar 

  • Moloney JM, Skelly C, Weinstein P, Maguire M, Ritchie S (1998) Domestic Aedes aegypti breeding site surveillance: limitations of remote sensing as a predictive surveillance tool. Am J Trop Med Hyg 59: 261-264

    CAS  PubMed  Google Scholar 

  • Moncayo AC, Edman JD, Finn JT (2000) Application of geographic information technology in determining risk of eastern equine encephalomyelitis virus transmission. J Am Mosq Control Assoc 16: 28-35

    CAS  PubMed  Google Scholar 

  • Montgomery B, Ritchie SA (2002) Roof gutters: a key container for Aedes aegypti and Ochlerotatus notoscriptus (Diptera: Culicidae) in Australia. Am J Trop Med Hyg 67: 244-246

    PubMed  Google Scholar 

  • Montgomery BL, Ritchie SA, Hart AJ, Long SA, Walsh ID (2004) Subsoil drain sumps are a key container for Aedes aegypti in Cairns, Australia. J Am Mosq Control Assoc 20: 365-369

    PubMed  Google Scholar 

  • Moore CG, Cline BL, Ruiz-Tibén E, Lee D, Romney-Joseph H, Rivera-Correra E (1978) Aedes aegypti in Puerto Rico; Environmental determinants of larval abundance and relation to dengue virus transmission. Am J Trop Med Hyg 27: 1225-1231

    CAS  PubMed  Google Scholar 

  • Moore CG, Francy DB, Eliason DA, Bailey RE, Campos EG (1990) Aedes al-bopictus and other container-inhabiting mosquitoes in the United States; re-sults of an eight-city survey. J Am Mosq Control Assoc 6: 173-178

    CAS  PubMed  Google Scholar 

  • Moran PAP (1951) A mathematical theory of animal trapping. Biometrika 38: 307-311

    Google Scholar 

  • Mori A (1989) A simple method for sampling the immature stages of Aedes togoi. Trop Med 31: 171-174

    Google Scholar 

  • Morozov VA (1965) Spread of Mansonia richiardii Fic. in the Krasnodar region and methods of collection of their larvae. Medskaya Parazitol. 34: 514-517 (In Russian, English summary)

    CAS  Google Scholar 

  • Morris CD, Callahan JL, Lewis RH (1985) Devices for sampling and sorting im-mature Coquillettidia perturbans. J Am Mosq Control Assoc 1: 247-250

    CAS  PubMed  Google Scholar 

  • Morris CD, Callahan JL, Lewis RH (1990) Distribution and abundance of larval Coquillettidia perturbans in a Florida freshwater marsh. J Am Mosq Control Assoc 6: 452-460

    CAS  PubMed  Google Scholar 

  • Morrison AC, Gray K, Getis A, Astete H, Sihuincha M, Focks D, Watts D, Stancil JD, Olson JG, Blair P, Scott TW (2004a). Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos, Peru. J Med Entomol 41: 1123-1142

    PubMed  Google Scholar 

  • Morrison AC, Astete H, Chapilliquen F, Ramirez-Prada G, Diaz G, Getis A, Gray K, Scott TW (2004b). Evaluation of a sampling methodology for rapid assess-ment of Aedes aegypti infestation levels in Iquitos, Peru. J Med Entomol 41: 502-510

    CAS  PubMed  Google Scholar 

  • Mouchet J (1972a) Etude préliminaire sur les vecteurs potentiels de fièvre jaune au Ghana. Cah ORSTOM sér Entomol Méd Parasitol 10: 177-188

    Google Scholar 

  • Mouchet J (1972b). Prospection sur les vecteurs potentiels de fièvre jaune en Tan-zanie. Bull World Health Organ 46: 675-684

    CAS  PubMed  Google Scholar 

  • Muul I, Johnson BK, Harrison BA (1975) Ecological studies of Culiseta melanura (Diptera: Culicidae) in relation to eastern and western equine encephalomye-litis viruses on the eastern shore of Maryland. J Med Entomol 11: 739-748

    CAS  PubMed  Google Scholar 

  • Nagamine LR, Brown JK, Washino RK (1979) A comparison of the effectiveness and efficiency of three larval sampling techniques. Proc California Mosq Vec-tor Control Assoc 47: 79-82

    Google Scholar 

  • Nagao Y, Thavara U, Chitnumsup P, Tawatsin A, Chansang C, Campbell-Lendrum D (2003) Climatic and social risk factors for Aedes infestation in rural Thailand. Trop Med Int Health 8: 650-659

    PubMed  Google Scholar 

  • Nam VS, Ryan PA, Yen NT, Phong TV, Marchand RP, Kay BH (2003) Quantita-tive evaluation of funnel traps for sampling immature Aedes aegypti from wa-ter storage jars. J Am Mosq Control Assoc 19: 220-227

    PubMed  Google Scholar 

  • Nasci RS (1988) Biology of Aedes triseriatus (Diptera: Culicidae) developing in tires in Louisiana. J Med Entomol 25: 402-405

    CAS  PubMed  Google Scholar 

  • Nathan MB (1993) Critical review of Aedes aegypti control programs in the Caribbean and selected neighbouring countries. J Am Mosq Control Assoc 9: 1-7

    CAS  PubMed  Google Scholar 

  • Nayar JK, Sauerman DM (1968) Larval aggregation formation and population density interrelations in Aedes taeniorhynchus, their effects on pupal ecdysis and adult characteristics at emergence. Entomol Exp Appl 11: 423-442

    Google Scholar 

  • Nelson MJ, Usman S, Pant CP, Self LS (1976) Seasonal abundance of adult and immature Aedes aegypti (L.) in Jakarta. Bull Penel Keseh Health Std Indone-sia 4: 1-8

    Google Scholar 

  • Neto FC, Costa AIP da Soares MRD, Scandar SAS, Cardoso Junior RP (1996) Descrição da colonização de Aedes albopictus (Diptera: Culicidae) na região de São José do Rio Preto, SP, 1991-1994. Rev Soc Bras Med Trop 29: 543-548

    Google Scholar 

  • Neto FC, Dibo MR, Anália A, Barbosa C, Battigaglia M (2002) Aedes albopictus (S) na região de São José do Rio Preto, SP: estudo da sua infestação em área já ocupada pelo Aedes aegypti e discussão de seu papel como possível vetor de dengue e febre amarela. Rev Soc Bras Med Trop 35: 351-357

    Google Scholar 

  • Nielsen ET, Greve H (1950) Studies on the swarming habits of mosquitoes and other Nematocera. Bull Entomol Res 41: 227-258

    Google Scholar 

  • Nielsen ET, Nielsen AT (1953) Field observations on the habits of Aedes taenio-rhynchus. Ecology 34: 141-156

    Google Scholar 

  • Nikolaeva NV, Ol’shvang VN (1978) Simple biocenometer for counting aquatic organisms in small water bodies. Ekologiya, 5: 93-95 (In Russian)

    Google Scholar 

  • Nogueira LA, Gushi LT, Miranda JE, Madeira NG, Ribolla PEM (2005) Short report: application of an alternative Aedes species (Diptera: Culicidae) surveillance method in Botucatu City, São Paulo, Brazil. Am J Trop Med Hyg 73: 309-311

    PubMed  Google Scholar 

  • Okazawa T, Mogi M (1984) Efficiency of the dipper in collecting larvae of Anopheles sinensis (Diptera: Culicidae) in rice fields. Jap J Sanit Zool 35: 367-371

    Google Scholar 

  • Olds EJ, Merritt RW, Walker ED (1989) Sampling, seasonal abundance, and mermithid parasitism of larval Coquillettidia perturbans in south-central Michigan. J Am Mosq Control Assoc 5: 586-592

    CAS  PubMed  Google Scholar 

  • O’Meara GF, Evans LF Jr, Gettman AD, Patteson AW (1995) Exotic tank brome-liads harboring immature Aedes albopictus and Aedes bahamensis (Diptera: Culicidae) in Florida. J Vector Ecol 20: 216-224

    Google Scholar 

  • O’Meara GF, Cutwa MM, Evans LF Jr (2003) Bromeliad-inhabiting mosquitoes in south Florida: native and exotic plants differ in species composition. J Vector Ecol 28: 37-46

    PubMed  Google Scholar 

  • Onsager JA (1976). The rationale of sequential sampling, with emphasis on its use in pest management. Tech Bull Agr Res Serv USDA, No. 1526

    Google Scholar 

  • Oo TT, Storch V, Becker N (2002) Studies on the bionomics of Anopheles dirus (Culicidae: Diptera) in Mudon, Mon State, Myanmar. J Vector Ecol 27: 44-54

    PubMed  Google Scholar 

  • Orr BK, Resh VH (1989) Experimental test on the influence of aquatic macro-phyte cover on the survival of Anopheles larvae. J Am Mosq Control Assoc 5: 579-585

    CAS  PubMed  Google Scholar 

  • Otis DL, Burnham KP, White GC, Anderson DR (1978). Statistical inferences from capture data on closed animal populations. Wld Monogr 62: 1-135

    Google Scholar 

  • Overgaard HJ, Tsuda Y, Suwonkerd W, Takagi M (2002) Characteristics of Anopheles minimus (Diptera: Culicidae) larval habitats in Northern Thailand. Environ Entomol 31: 134-141

    Google Scholar 

  • Pan American Health Organization (1994) Dengue and dengue hemorrhagic fever in the Americas. Guidelines for prevention and control. Scientific Publication, 548

    Google Scholar 

  • Panicker KN, Bai MG, Kalyanasundaram M (1982) Well breeding behaviour of Aedes aegypti. Indian J Med Res 76: 689-691

    CAS  PubMed  Google Scholar 

  • Papierok B, Croset H, Rioux JA (1973) Estimation de l’effectif des populations larvaires d’Aedes(O.) cataphylla Dyar,1916(Diptera-Culicidae).1.—

    Google Scholar 

  • Méthode de ‘capture-marquage-recapture’. Cah ORSTOM sér Entomol Méd Parasitol 11: 243-249

    Google Scholar 

  • Papierok B, Croset H, Rioux JA (1975) Estimation de l’effectif des populations larvaires d’Aedes (O.) cataphylla Dyar, 1916 (Diptera, Culicidae), II, Méth-ode utilisant le ‘coup de louche’ ou ‘dipping’. Cah ORSTOM sér Entomol Méd Parasitol 13: 47-51

    Google Scholar 

  • Paterson CG (1971) Overwintering ecology of the aquatic fauna associated with the pitcher plant Sarracenia purpurea L. Can J Zool 49: 1455-1459

    Google Scholar 

  • Paulik GJ, Robson DS (1969) Statistical calculations for change-in ratio estimators of population parameters. J Wildl Mgmt 33: 1-27

    Google Scholar 

  • Pausch RD, Provost MW (1965) The dispersal of Aedes taeniorhynchus. IV. Con-trolled field production. Mosquito News 25: 1-8

    Google Scholar 

  • Pautou P, Aïn G, Gilot B, Cousserans J, Gabinaud A, Simonneau P (1973) Cartographie écologique appliquée à la démoustication. Doc Cartogr Écol Univ Scient Méd. Grenoble, France, 11: 1-16

    Google Scholar 

  • Pena CJ, Gonzalvez G, Chadee DD (2003) Seasonal prevalence and container preferences of Aedes albopictus in Santo Domingo City, Dominican Republic. J Vector Ecol 28: 208-212

    PubMed  Google Scholar 

  • Perry JN, Taylor LR (1986) Stability of real interacting populations in space and time: implications, alternatives and the negative binomial kc. J Anim Ecol 55: 1053-1068

    Google Scholar 

  • Peters TM, Chevone BI (1968) Marking Culex pipiens Linn. larvae with vital dyes for larval ecological studies. Mosquito News 28: 24-28

    Google Scholar 

  • Pichon G, Gayral P (1970) Dynamique des populations d’Aedes aegypti dans trois villages de savane d’Afrique de l’Ouest. Cah. ORSTOM, sér. Entomol. méd. Parasit., 8: 49-68

    Google Scholar 

  • Pichon G, Hamon J, Mouchet J (1969) Groupes ethniques et foyers potentiels de fièvre jaune dans les états francophone d’Afrique occidentale; considerations sur les methodes de lutte contre Aedes aegypti. Cah. ORSTOM, sér. Entomol. méd. Parasit., 7: 39-50

    Google Scholar 

  • Pipitkool V, Srisawangwonk T, Sithithaworn P, Tesna S (1984) The prevalence of Aedes mosquito in Khon Khaen University. Bull. Knon Khaen Univ. Hlth Sci., 7: 6-11 (In Thai, English summary)

    Google Scholar 

  • Pitcairn MJ, Wilson LT, Washino RK, Rejmankova E (1994) Spatial patterns of Anopheles freeborni and Culex tarsalis (Diptera: Culicidae) larvae in Califor-nia rice fields. J Med Entomol 31: 545-553

    CAS  PubMed  Google Scholar 

  • Pittendrigh CS (1948) The bromeliad-Anopheles-malaria complex in Trinidad. 1. The bromeliad flora. Evolution, 2: 58-89

    CAS  PubMed  Google Scholar 

  • Pittendrigh CS (1950a) The quantitative evaluation of Kerteszia breeding grounds. Am. J. trop. Med., 30: 457-468

    CAS  Google Scholar 

  • Pittendrigh CS (1950b) The ecoclimatic divergence of Anopheles bellator and A. homunculus. Evolution, 4: 43-63

    Google Scholar 

  • Pittendrigh CS (1950c) The ecotopic specialization of Anopheles homunculus; and its relation to competition with A. bellator. Evolution, 4: 64-78

    Google Scholar 

  • Pope KO, Sheffner EJ, Linthicum KJ, Bailey CL, Logan TM, Kasischke ES, Bir-ney K, Njogu AR, Roberts CR (1992) Identification of central Kenyan rift valley fever virus vector habitats with Landsat TM and evaluation of their flooding status with airborne imaging radar. Remote Sensing and the Envi-ronment, 40: 185-196

    Google Scholar 

  • Pritchard G, Scholefield PJ (1983) Survival of Aedes larvae in constant area ponds in southern Alberta (Diptera: Culicidae). Can. Ent., 115: 183-188

    Google Scholar 

  • Provost MW (1975) Needle rush as an indicator of breeding of salt-marsh mosqui-toes. Ann. Proc. Fla Anti-Mosq. Contr. Ass., 46: 23-28

    Google Scholar 

  • Rademacher RE (1979) Studies of overwintering larvae of Coquillettidia perturbans mosquitoes in Minnesota. Mosquito News, 39: 135-136

    Google Scholar 

  • Rajagopalan PK, Menon PKB, Mani TR, Brooks GD (1975) Measurement of den-sity of immatures of Culex pipiens fatigans in effluent drains. J. Commun. Dis., 7: 327-337

    Google Scholar 

  • Rajagopalan PK, Yasuno M, Menon PKB (1976) Density effect on survival of immature stages of Culex pipiens fatigans in breeding sites in Delhi villages. Indian J. Med. Res., 64: 688-708

    CAS  PubMed  Google Scholar 

  • Rajendran R, Reuben R, Purushothaman S, Veerapatran R (1995) Prospects and problems of intermittent irrigation for control of vector breeding in rice fields in southern India. Annals of Tropical Medicine and Parasitology, 89: 541-549

    CAS  PubMed  Google Scholar 

  • Rajnikant, Bhatt RM, Gupta DK, Sharma RC, Srivastava HC, Gautam AS (1993) Observations on mosquito breeding in wells and its control. Indian Journal of Malariology, 30: 215-220

    CAS  PubMed  Google Scholar 

  • Rao TR (1984) The Anophelines of India, (Revised edition), Malaria Research Centre, Indian Council of Medical Research, Delhi

    Google Scholar 

  • Rao TR, Trpis M, Gillett JD, Teesdale C, Tonn RJ (1973). Breeding places and seasonal incidence of Aedes aegypti, as assessed by the single-larva survey method. Bull. Wld Hlth Org., 48: 615-622

    CAS  Google Scholar 

  • Ree HI (1971) The use of betalights in trapping mosquito larvae. M.Sc. Project Rept. University of London, London School of Hygiene and Tropical Medicine

    Google Scholar 

  • Reed DE (1970) Operational use of an improved mosquito larvae concentrator. Mosquito News, 30: 274

    Google Scholar 

  • Reed DE, Husbands RC (1970) Integration of larval surveillance techniques in the operational program of the Fresno Westside mosquito abatement district. Proc. Calif. Mosq. Contr. Ass., 37: 98-101

    Google Scholar 

  • Reeves WC, Brookman B, Hammon WM (1948) Studies on the flight range of certain Culex mosquitoes, using a fluorescent-dye marker, with notes on Culiseta and Anopheles. Mosquito News, 8: 61-69

    Google Scholar 

  • Reid JA (1954) A preliminary Aedes aegypti survey. Med. J. Malaya, 9: 161-168

    CAS  PubMed  Google Scholar 

  • Reisen WK, Reeves WC (1990) Bionomics and ecology of Culex tarsalis and other potential mosquito vector species. In: Reeves WC (ed) Epidemiology and Control of Mosquito-borne Arboviruses in California, 1943-1987. California Mosquito and Vector Control Association, Sacramento, pp. 254-329

    Google Scholar 

  • Reisen WK, Siddiqui TF (1979) Horizontal and vertical estimates of immature survivorship for Culex tritaeniorhynchus (Diptera: Culicidae) in Pakistan. J Med Entomol 16: 207-218

    CAS  PubMed  Google Scholar 

  • Reisen WK, Meyer RP, Shields J, Arbolante C (1989) Population ecology of pre-imaginal Culex tarsalis (Diptera: Culicidae) in Kern county, California. J Med Entomol 26: 10-22

    CAS  PubMed  Google Scholar 

  • Rejmankova E, Roberts DR, Pawley A, Manguin S, Polanco J (1995) Predictions of adult Anopheles albimanus densities in villages based on distances to re-motely sensed larval habitats. Am J Trop Med Hyg, 53: 482-488

    CAS  PubMed  Google Scholar 

  • Rejmankova E, Pope KO, Roberts DR, Lege MG, Andre R, Greico J, Alonzo Y (1998) Characterization and detection of Anopheles vestitipennis and  Anopheles punctimacula (Diptera: Culicidae) larval habitats in Belize with field survey and SPOT satellite imagery. Journal of Vector Ecology, 23: 74-88

    CAS  PubMed  Google Scholar 

  • Renshaw M, Silver JB, Service MW, Birley MH (1995) Spatial dispersion patterns of larval Aedes cantans (Diptera: Culicidae) in temporary woodland pools. Bulletin of Entomological Research, 85: 125-133

    Google Scholar 

  • Reuben R, Panicker KN (1975) Aedes survey in five districts of Rajasthan, India. J. Commun. Dis., 7: 1-9

    Google Scholar 

  • Reuben R, Das PK, Samuel D, Brooks GD (1978) Estimation of daily emergence of Aedes aegypti (Diptera: Culicidae) in Sonepat, India. J Med Entomol 14: 705-714

    Google Scholar 

  • Rioux J-A, Croset H, Corre J-J, Simonneau P, Gras G (1968) Phyto-ecological ba-sis of mosquito control: cartography of larval biotopes. Mosquito News, 28: 572-582

    Google Scholar 

  • Robert V, Ouari B, Ouedraogo V, Carnevale P (1988) Étude écologique des Culi-cidae adultes et larvaires dans une rizière en Vallée du Kou, Burkina Faso. Acta trop., 45: 351-359

    CAS  PubMed  Google Scholar 

  • Roberts DR, Scanlon JE (1974) An area sampler for collecting mosquito larvae in temporary woodland and field pools. Mosquito News, 34: 467-468

    Google Scholar 

  • Roberts DR, Scanlon JE (1979) Field studies on the population biology of imma-ture stages of six woodland mosquito species in the Houston, Texas area, Mosquito News, 39: 26-34

    Google Scholar 

  • Roberts DR, Paris JF, Manguin S, Harbach RE, Woodruff R, Rejmankova E, Polanco J, Wullschleger B, Legters LJ (1996) Predictions of malaria vec-tor distribution in Belize based on multispectral satellite data. Am J Trop Med Hyg, 54: 304-308

    CAS  PubMed  Google Scholar 

  • Robson DS, Regier HA (1968) Estimations of population number and mortality rates. In: Ricker WE (ed) Methods for Assessment of Fish Production in Fresh Waters. IBP Handbook No. 3, Blackwell, Oxford, pp. 124-158

    Google Scholar 

  • Rogers DJ, Randolph SE (1991) Mortality rates and population density of tsetse flies correlated with satellite imagery. Nature, 351: 739-741

    CAS  PubMed  Google Scholar 

  • Rogers DJ, Williams BG (1994) Tsetse distribution in Africa: seeing the wood and the trees. In: Edwards, PJ, May RM, Webb NR (eds) Large-scale Ecology and Conservation Biology. Blackwell Science, Oxford, pp 247-272

    Google Scholar 

  • Rogers DJ, Randolph SE, Snow RW, Hay SI (2002) Satellite imagery in the study and forecast of malaria. Nature, 415: 710-715

    CAS  PubMed  Google Scholar 

  • Rojas BA (1964) La binomial negativa y la estación de intensidad de plagas en el suelo. Fitotecnia Latinamer, 1: 27-36

    Google Scholar 

  • Romero-Vivas CME, Wheeler JG, Falconar AKI (2002) An inexpensive interven-tion for the control of larval Aedes aegypti assessed by an improved method of surveillance and analysis. J Am Mosq Control Assoc 18: 40-46

    PubMed  Google Scholar 

  • Romero-Vivas CME, Falconar AKI (2005) Investigation of relationships between Aedes aegypti egg, larvae, pupae, and asult density indices where the main breeding sites were located indoors. J Am Mosq Control Assoc 21: 15-21

    PubMed  Google Scholar 

  • Rosenberg R (1982). Forest malaria in Bangladesh. III. Breeding habits of Anopheles dirus. Am. J. trop. Med. Hyg., 31: 192-201

    CAS  PubMed  Google Scholar 

  • Rozeboom LE, Hess AD (1944) The relation of the intersection line to the production of Anopheles quadrimaculatus. J. natn. Malar. Soc., 3: 169-179

    Google Scholar 

  • Russell BM, Kay BH (1999) Calibrated funnel trap for quantifying mosquito (Diptera: Culicidae) abundance in wells. J Med Entomol 36: 851-855

    CAS  PubMed  Google Scholar 

  • Russell BM, Muir LE, Weinstein P, Kay BH (1996) Surveillance of the mosquito Aedes aegypti and its biocontrol with the copepod Mesocyclops aspericornis in Australian wells and gold mines. Medical and Veterinary Entomology, 10: 155-160

    CAS  PubMed  Google Scholar 

  • Russell BM, McBride WJH, Mullner H, Kay BH (2002) Epidemiological sig-nificance of subterranean Aedes aegypti (Diptera: Culicidae) breeding sites to dengue virus infection in Charters Towers, 1993. J Med Entomol 39: 143-145

    CAS  PubMed  Google Scholar 

  • Russell PF, Baisas FE (1935) The technic of handling mosquitoes. Philipp. J. Sci., 56: 257-294

    Google Scholar 

  • Russell PF, Rao TR (1942a) On the ecology of larvae of Anopheles culicifacies Giles in borrow-pits. Bull Entomol Res 32: 341-361

    Google Scholar 

  • Russell PF, Rao TR (1942b). On relation of mechanical obstruction and shade to ovipositing Anopheles culicifacies. J. exp. Biol., 91: 303-329

    Google Scholar 

  • Russell PF, Santiago D (1932) Anopheles minimus larvae from wells in Laguna province, Philippine Islands. Philipp. J. Sci., 49: 219-223

    Google Scholar 

  • Russell PF, Rao TR, Putnam P (1945) An evaluation of various measures of Anopheles larva density. Am. J. Hyg., 42: 274-298

    Google Scholar 

  • Russell PF, West LS, Manwell RD, Macdonald G (1963) Practical Malariology. Oxford University Press, Oxford

    Google Scholar 

  • Sabesan S, Krishnamoorthy K, Jambulingam P, Rajendran G, Kumar NP, Rajagopalan PK (1986) Breeding habitats of Anopheles culicifacies on Rameswaram island. Indian J. med. Res., 84: 44-52

    CAS  PubMed  Google Scholar 

  • Sakakibara M (1960) On the seasonal distributions of the larvae of Anopheles (A) omorii and nine other mosquito species found in a tree-hole. Endem. Dis. Bull. Nagasaki. Univ., 2: 236-242

    Google Scholar 

  • Samarawickrema WA, Sone F, Kimura E, Self LS, Cummings RF, Paulson GS (1993) The relative importance and distribution of Aedes polynesiensis and Aedes aegypti larval habitats in Samoa. Medical and Veterinary Entomology, 7: 27-36

    CAS  PubMed  Google Scholar 

  • Sandoski CA, Kring TJ, Yearian WC, Meisch MV (1987) Sampling and distribu-tion of Anopheles quadrimaculatus immatures in rice fields. J Am Mosq Con-trol Assoc 3: 611-615

    CAS  Google Scholar 

  • Santos JLF, Oliva WM (1991) Sobre o precedimento de Zippin para estimar popu-laçöesde animais. Rev. Saúde públ., 25: 53-55

    CAS  Google Scholar 

  • Sawyer AJ (1989) Inconstancy of Taylor’s b: simulated sampling with different quadrat sizes and spatial distributions. Res. Popul. Ecol., 31: 11-24

    Google Scholar 

  • Schoen DJ, Fruchter D (1983) A calculator-assisted method of random sampling. Ecology, 64: 205-206

    Google Scholar 

  • Scholefield PJ, Pritchard G, Enfield MA (1981) The distribution of mosquito (Diptera, Culicidae) larvae in southern Alberta, 1976-1978. Quaest. ent. 17: 147-168

    Google Scholar 

  • Seber GAF (1973) The Estimation of Animal Abundance and Related Parameters. Griffen, London

    Google Scholar 

  • Seber GAF, Le Cren ED (1967) Estimating population parameters from catches large relative to the population. J. Anim. Ecol., 36: 631-643

    Google Scholar 

  • Seifert RP (1980) Mosquito fauna of Heliconia aurea. J. Anim. Ecol., 49: 687-697

    Google Scholar 

  • Seifert RP, Barrera R (1981) Cohort studies on mosquito (Diptera: Culicidae) lar-vae living in the water-filled floral bracts of Heliconia aurea (Zingiberales: Musaceae). Ecol. Ent., 6: 191-197

    Google Scholar 

  • Sen P (1948) Anopheles breeding in the rice fields of lower Bengal: Its relation with the cultural practices and with the growth of rice plants. Indian J. Malar., 2: 221-237

    Google Scholar 

  • Service MW (1968) The ecology of the immature stages of Aedes detritus (Dip-tera: Culicidae). J. appl. Ecol., 5: 613-630

    Google Scholar 

  • Service MW (1971) Studies on sampling larval populations of the Anopheles gambiae complex. Bull. Wld Hlth Org., 45: 169-180

    CAS  Google Scholar 

  • Service MW (1974) Survey of the relative prevalence of potential yellow fever vectors in north-west Nigeria. Bull. Wld Hlth Org., 50: 487-494

    CAS  Google Scholar 

  • Service MW (1984). Evaluation of sticky light traps for sampling mosquito larvae. Entomologia exp. appl., 35: 27-32

    Google Scholar 

  • Service MW (1985) Population dynamics and mortalities of mosquito preadults. In: Lounibos LP, Rey, JR, Frank, JH (eds) Ecology of Mosquitoes: Proceed-ings of a Workshop. Florida Medical Entomology Laboratory, Vero Beach, Florida, pp. 185-201

    Google Scholar 

  • Service MW (1993a) Culicidae. In: Lane RP, Crosskey RW (eds) Medical Insects and Arachnids. Chapman and Hall, London

    Google Scholar 

  • Service, M. W. (1993b). Mosquito Ecology. Field Sampling Methods. 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Service MW, Highton RB (1980) A chemical light trap for mosquitoes and other biting insects. J Med Entomol 17: 183-185

    Google Scholar 

  • Service MW, Sulaiman S, Esena R (1983) A chemical aquatic light trap for mos-quito larvae (Diptera: Culicidae). J Med Entomol 20: 659-663

    Google Scholar 

  • Shaman J, Stieglitz M, Stark C, le Blancq S, Cane M (2002) Using a dynamic hy-drology model to predict mosquito abundances in flood and swamp water. Emerging Infectious Diseases, 8: 6-13

    PubMed  Google Scholar 

  • Sharma RS, Kaul SM, Sokhay J (2005) Seasonal fluctuations of dengue fever vec-tor, Aedes aegypti (Diptera: Culicidae) in Delhi, India. Southeast Asian Jour-nal of Tropical Medicine and Public Health, 36: 186-190

    CAS  Google Scholar 

  • Sharma VP, Dhiman RC, Ansari MA, Nagpal BN, Srivastava A, Manavalan P, Adiga S, Radhakrishnan K, Chandrasekhar MG (1996) Study on the feasibil-ity of delineating mosquitogenic conditions in and around Delhi using Indian Remote Sensing Satellite data. Indian Journal of Malariology, 33: 107-125

    CAS  PubMed  Google Scholar 

  • Shemanchuk JA (1959) Mosquitoes (Diptera: Culicidae) in irrigated areas of southern Alberta and their seasonal changes in abundance and distribution. Can. J. Zool., 37: 899-912

    Google Scholar 

  • Sheppard PM, Macdonald WW, Tonn RJ (1969) A new method of measuring the relative prevalence of Aedes aegypti. Bull. Wld Hlth Org., 40: 467-468

    CAS  Google Scholar 

  • Shidrawi GR, Clarke JL, Boulzaguet JR, Ashkar TS (1973). Culicine Mosquitoes with Particular Reference to Aedes aegypti and Their Prevalence in a Rural Area of the African Sudan Savannah, Garki District, Kano State, Nigeria.’ WHO/VBC/73.420, 10 pp. (mimeographed)

    Google Scholar 

  • Shogaki Y, Makiya K (1970) An improved device for quantitative sampling of mosquito larvae. Jap. J. sanit. Zool., 21: 172-178 (In Japanese, English sum-mary)

    Google Scholar 

  • Simsek FM (2004). Seasonal Larval and Adult Population Dynamics and Breeding Habitat Diversity of Culex theileri Theobald, 1903 (Diptera: Culicidae) in the Golbasi District, Ankara, Turkey. Turkish Journal of Zoology, 28: 337-344

    Google Scholar 

  • Sithiprasasna R, Linthicum KJ, Liu G-J, Jones JW, Singhasivanon P (2003a). Use of GIS-based spatial modeling approach to characterize the spatial patterns of malaria mosquito vector breeding habitats in northwestern Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 34: 517-528

    PubMed  Google Scholar 

  • Sithiprasasna R, Linthicum KJ, Liu G-J, Jones JW, Singhasivanon P (2003b) Some entomological observations on temporal and spatial distribution of ma-laria vectors in three vilages in northwestern Thailand using a geographic in-formation system. Southeast Asian Journal of Tropical Medicine and Public Health, 34, 505-516.

    PubMed  Google Scholar 

  • Sithiprasasna R, Patpoparn S, Attatippaholkun W, Suvannadabba S, Srisuphanunt, M (2004). The geographic information system as an epidemiological tool in the surveillance of dengue virus-infected Aedes mosquitos. Southeast Asian Journal of Tropical Medicine and Public Health, 35: 919-926

    Google Scholar 

  • Siverly RE (1966) Occurrence of Culiseta melanura (Coquillett) in Illinois. Mos-quito News, 26: 95-96

    Google Scholar 

  • Siverly RE, DeFoliart GR (1968) Mosquito studies in northern Wisconsin. 1. Lar-val studies. Mosquito News, 28: 149-154

    Google Scholar 

  • Smirnov VS (1967) The estimation of animal numbers based on the analysis of popu-lation structure, Vol. 1. In: Petrusewicz K (ed) Secondary Productivity of Terres-trial Ecosystems. Inst. Ecology, Polish Acad. Sci., Warsaw., pp. 199-223.

    Google Scholar 

  • Snow WF (1983) Mosquito production and species succession from an area of irrigated rice fields in The Gambia, West Africa. J. trop. Med. Hyg., 86: 237-245

    CAS  PubMed  Google Scholar 

  • Soper FL (1967) Dynamics of Aedes aegypti distribution and density. Bull. Wld Hlth Org., 36: 536-538

    CAS  Google Scholar 

  • Southwood TRE (1978) Ecological Methods with Particular Reference to the Study of Insect Populations. Chapman and Hall, London

    Google Scholar 

  • Stewart RJ, Schaefer CH (1983) The relationship between dipper counts and the absolute density of Culex tarsalis larvae and pupae in rice fields. Mosquito News, 43: 129-135

    Google Scholar 

  • Stewart RJ, Miura T, Parman RB (1983a) Comparison of sample patterns for Culex tarsalis in rice fields. Proc. Calif. Mosq. & Vect. Contr. Ass., 51: 54-58

    Google Scholar 

  • Stewart RJ, Schaefer CH, Miura T (1983b) Sampling Culex tarsalis (Diptera: Culicidae) immatures in rice fields treated with combinations of mosquito-fish and Bacillus thuringiensis H-14 toxin, J. econ. Ent., 76: 91-95

    CAS  Google Scholar 

  • Stockwell DRB, Peters D (1999) The GARP modelling system: problems and so-lutions to automated spatial prediction. International Journal of Geographic Information Science, 13: 143-158

    Google Scholar 

  • Stokes GM, Payne D (1976) Larval/pupal concentrator. Mosquito News, 36: 200-202

    Google Scholar 

  • Strickman D, Kittayapong P (1993) Laboratory demonstration of oviposition by Aedes aegypti (Diptera: Culicidae) in covered water jars. J Med Entomol 30: 947-949

    CAS  PubMed  Google Scholar 

  • Strickman D, Kittayapong P (2002) Dengue and its vectors in Thailand: introduc-tion to the study and seasonal distribution of Aedes larvae. Am J Trop Med Hyg, 67: 247-259

    PubMed  Google Scholar 

  • Strickman D, Kittayapong P (2003) Dengue and its vectors in Thailand: calculated transmission risk from total pupal counts of Aedes aegypti and association of wing-length measurements with aspects of the larval habitat. Am J Trop Med Hyg, 68: 209-217

    PubMed  Google Scholar 

  • Subra R (1983) The regulations of preimaginal populations of Aedes aegypti L. (Diptera: Culicidae) on the Kenya coast. 1. Preimaginal population dynamics and the role of human behaviour. Ann. trop. Med. Parasit., 77: 195-201

    CAS  PubMed  Google Scholar 

  • Sulaiman S (1982) The ecology of Aedes cantans (Meigen) and biology of Culex pipiens in hibernation sites in northern England Ph.D. thesis, University of Liverpool

    Google Scholar 

  • Sulaiman S, Pawanchee ZA, Arifin Z, Wahab A (1996) Relationship between Breteau and House indices and cases of dengue/dengue hemorrhagic fever in Kuala Lumpur, Malaysia. J Am Mosq Control Assoc 12: 494-496

    CAS  PubMed  Google Scholar 

  • Sunahara T, Mogi M (1998) Distribution and turnover of a mosquito (Tripteroides bambusa) metapopulation among bamboo groves. Ecological Research, 13: 291-299

    Google Scholar 

  • Sunish IP, Reuben R (2001) Factors influencing the abundance of Japanese en-cephalitis vectors in ricefields in India - I. Abiotic. Medical and Veterinary Entomology, 15: 381-392

    CAS  PubMed  Google Scholar 

  • Sunish IP, Reuben R (2002). Factors influencing the abundance of Japanese en-cephalitis vectors in ricefields in India - II. Biotic. Medical and Veterinary En-tomology, 16: 1-9

    CAS  Google Scholar 

  • Surtees G (1959) Influence of larval population density on fluctuation in mosquito numbers. Nature, Lond., 183: 269-270

    CAS  Google Scholar 

  • Surtees G (1970) Large-scale irrigation and arbovirus epidemiology, Kano Plain, Kenya, I. Description of the area and preliminary studies on mosquitoes. J Med Entomol 7: 509-517

    CAS  PubMed  Google Scholar 

  • Surtees G, Simpson DIH, Bowen ETW, Grainger WE (1970) Rice field develop-ment and arbovirus epidemiology, Kano Plain, Kenya. Trans. R. Soc. trop. Med. Hyg., 64: 511-518

    CAS  PubMed  Google Scholar 

  • Suwonkerd W, Tsuda Y, Takagi M, Wada Y (1996) Seasonal occurrence of Aedes aegypti and Ae. albopictus in used tires in 1992-1994, Chiangmai, Thailand. Tropical Medicine (Nagasaki), 38: 101-105

    Google Scholar 

  • Takagi M, Narayan D (1988) Relative importance of crab holes, tree holes, and coconut husks as breeding sources of Aedes polynesiensis in a riverside delta in Fiji. Jap. J. sanit. Zool., 39: 151-153

    Google Scholar 

  • Takagi M, Sugiyama A, Maruyama K (1995) Effect of rice culturing practices on seasonal occurrence of Culex tritaeniorhynchus (Diptera: Culicidae) immatures in three different types of rice-growing areas in central Japan. J Med Ento-mol 32: 112-118

    CAS  Google Scholar 

  • Takagi M, Sugiyama A, Maruyama K (1996) Effect of rice plant covering on the density of mosquito larvae and other insects in rice fields. Applied Entomol-ogy and Zoology, 31: 75-80

    Google Scholar 

  • Takagi M, Suwonkerd W, Tsuda Y, Sugiyama A, Wada Y (1997) Effects of rice culture practices on the abundance of Culex mosquitoes (Diptera: Culicidae) in northern Thailand. J Med Entomol 34: 272-276

    CAS  PubMed  Google Scholar 

  • Takahashi RM, Miura T, Wilder WH (1982) A comparison between the area sam-pler and the two other sampling devices for aquatic fauna in rice fields. Mos-quito News, 42: 211-216

    Google Scholar 

  • Taylor LR (1961) Aggregation, variance and the mean. Nature, Lond., 189: 732-735

    Google Scholar 

  • Taylor LR (1965) A Natural Law for the Spatial Disposition of Insects. Proc. int. Congr. Ent. 12th, pp. 396-397

    Google Scholar 

  • Taylor LR (1984) Assessing and interpreting the spatial distributions of insect populations. A. Rev. Ent., 29: 321-357

    Google Scholar 

  • Taylor LR (1986) Synoptic dynamics, migration and the Rothamsted insect sur-vey. J. Anim. Ecol., 55: 1-38

    Google Scholar 

  • Taylor LR, Woiwod IP, Perry JN (1978) The density-dependence of spatial behav-iour and the rarity of randomness. J. Anim. Ecol., 47: 383-406

    Google Scholar 

  • Taylor LR, Woiwod IP, Perry JN (1979) The negative binomial, as an ecological model and the density dependence of k. J. Anim. Ecol., 48: 289-304

    Google Scholar 

  • Taylor LR, Perry JN, Woiwod IP, Taylor AR (1988) Specificity of the spatial power-law exponent in ecology and agriculture. Nature, Lond., 332: 721-722

    Google Scholar 

  • Taylor NJ (1979) A rapid, efficient area sampler for estimating absolute abun-dance of floodwater mosquito larvae. Env. Ent., 8: 1004-1006

    Google Scholar 

  • Taylor RAJ (1981a) The behavioural basis of redistribution. I. The Δ-model con-cept. J. Anim. Ecol., 50: 573-586

    Google Scholar 

  • Taylor RAJ (1981b). The behavioural basis of redistribution. II. Simulations of the Δ-model. J. Anim. Ecol., 50: 587-604

    Google Scholar 

  • Taylor RAJ, Taylor LR (1979) A behavioural model for the evolution of spatial dynamics. In: Anderson RM, Turner BD, Taylor LR (eds) Population Dynam-ics. The 20th Symposium of the British Ecological Society. Blackwell Science Publishers, London, pp. 1-27

    Google Scholar 

  • Teixeira M da G, Barreto ML, Costa M da CN, Ferreira LDA, Vasconcelos PFC, Cairncross S (2002) Dynamics of dengue virus circulation: a silent epidemic in a complex urban area. Tropical Medicine and International Health, 7: 757-762

    Google Scholar 

  • Thavara U, Tawatsin A, Chansang C, Kong-ngamsuk W, Paosriwong S, Boon-Long J, Rongsriyam Y, Komalamisra N (2001) Larval occurrence, oviposi-tion behavior and biting activity of potential mosquito vectors of dengue on Samui Island, Thailand. Journal of Vector Ecology, 26: 172-180

    CAS  PubMed  Google Scholar 

  • Thenmozhi V, Gajanana A (1990) Comparison of quadrat and dipper sampling for density measurements in rice fields. In: Annual Report (1989-90). Centre for Research in Medical Entomology, Indian Council for Medical Research, Madurai, pp. 24-28

    Google Scholar 

  • Thomas IM (1950) The reactions of mosquito larvae to regular repetitions of shadows as stimuli. Aust. J. scient. Res. (B), 3: 113-123

    Google Scholar 

  • Thomson MC, Connor SJ, Milligan PJM, Flasse SP (1996) The ecology of malaria - as seen from earth-observation satellites. Annals of Tropical Medicine and Parasitology, 90: 243-264

    CAS  PubMed  Google Scholar 

  • Thomson MC, Connor SJ, Milligan PJM, Flasse SP (1997). Mapping malaria risk in Africa - what can satellite data contribute? Parasitology Today, 8: 313-318

    Google Scholar 

  • Thomson MC, Connor SJ (2000) Environmental information systems for the con-trol of arthropod vectors of disease. Medical and Veterinary Entomology, 14: 227-244

    CAS  PubMed  Google Scholar 

  • Thorarinsson K (1986) Population density and movement: a critique of models. Oikos, 46: 70-81

    Google Scholar 

  • Thu MM, Lin WT, Sebastian A, Kanda T, May K (1985) Preliminary biological study on two taxa of the Anopheles balabacensis complex in Burma. Jap. J. Genet., 60: 373-380

    Google Scholar 

  • Tidwell MA, Williams DC, Tidwell TC, Peña CJ, Gwinn TA, Focks DA, Zaglul A, Mercedes M (1990) Baseline data on Aedes aegypti populations in Santo Domingo, Dominican Republic. J Am Mosq Control Assoc 6: 514-522

    CAS  PubMed  Google Scholar 

  • Tinker ME (1967) Measurements of Aedes aegypti populations. J. econ. Ent., 60: 634-637

    CAS  Google Scholar 

  • Tinker ME (1978) Relationship of the house index and the Breteau index for Aedes aegypti. PAHO/WHO Newsletter on Dengue, Yellow Fever and Aedes aegypti in the Americas 1978. 7: 11-13

    Google Scholar 

  • Tinker ME, Hayes GR (1959) The 1958 Aedes aegypti distribution in the United States. Mosquito News, 19: 73-78

    Google Scholar 

  • Tonn RJ, Bang YH (1971) One-larva-per-container mosquito surveys conducted in Bangkok-Thonburi, Thailand, in 1969. Bull. Wld Hlth Org., 45: 270-274

    CAS  Google Scholar 

  • Tonn RJ, Sheppard PM, Macdonald WW, Bang YH (1969) Replicate surveys of larval habitats of Aedes aegypti in relation to dengue haemorrhagic fever in Bangkok, Thailand. Bull. Wld Hlth Org., 40: 819-829

    CAS  Google Scholar 

  • Trapido H (1951) Factors influencing the search for anopheline larvae in Sardinia. J. natn. Malar. Soc., 10: 318-326

    CAS  Google Scholar 

  • Trapido H, Aitken T (1953) Study of a residual population of Anopheles labran-chiae Falleroni in the Geremeas valley, Sardinia. Am. J. trop. Med. Hyg., 2: 658-676

    CAS  Google Scholar 

  • Trpis M (1972a) Breeding of Aedes aegypti and A. simpsoni under the escarpment of the Tanzanian plateau. Bull. Wld Hlth Org., 47: 77-82

    CAS  Google Scholar 

  • Trpis M (1972b). Seasonal changes in the larval populations of Aedes aegypti in two biotopes in Dar es Salaam, Tanzania. Bull. Wld Hlth Org., 47: 245-255

    CAS  Google Scholar 

  • Tsuda Y, Kobayashi J, Nambanya S, Miyagi I, Toma T, Phompida S, Manivang K (2002) An ecological survey of dengue vector mosquitos in central Lao PDR. Southeast Asian Journal of Tropical Medicine and Public Health, 33: 63-67

    PubMed  Google Scholar 

  • Tun-Lin W, Moe M, Aung H, Paing M. (1986) Larval density estimation of well-breeding anophelines by mark-release-recapture techniques in Burma. Mosq.-Borne Dis. Bull., 3: 1-4

    Google Scholar 

  • Tun-Lin W, Myo-Paing, Zaw-Myint (1988) A modification of the W. H. O. dipping procedure for well-breeding anophelines in Burma. Trop. Bio-med., 5: 51-55

    Google Scholar 

  • Tun-Lin W, Kay BH, Burkot TR (1994) Quantitative sampling of immature Aedes aegypti in metal drums using sweep net and dipping methods. J Am Mosq Control Assoc 10: 390-396

    CAS  PubMed  Google Scholar 

  • Tun-Lin W, Kay BH, Barnes A (1995a). Understanding productivity, a key to Aedes aegypti surveillance. Am J Trop Med Hyg, 53: 595-601

    CAS  PubMed  Google Scholar 

  • Tun-Lin W, Kay BH, Barnes A (1995b) The premise condition index: a tool for streamlining surveys of Aedes aegypti. Am J Trop Med Hyg, 53: 591-594

    CAS  PubMed  Google Scholar 

  • Tun-Lin W, Maung Maung Mya, Sein Maung Than, Tin Maung Maung (1995c). Rapid and efficient removal of immature Aedes aegypti in metal drums by sweep net and modified sweeping method. Southeast Asian Journal of Tropi-cal Medicine and Public Health, 26: 754-759

    CAS  Google Scholar 

  • Tun-Lin W, Kay BH, Barnes A, Forsyth S (1996) Critical examination of Aedes aegypti indices: correlations with abundance. Am J Trop Med Hyg, 54: 543-547

    CAS  PubMed  Google Scholar 

  • Tuno N, Miki K, Minakawa N, Githeko A, Yan G, Takagi M (2004) Diving abil-ity of Anopheles gambiae (Diptera: Culicidae) larvae. J Med Entomol 41: 810-812

    PubMed  Google Scholar 

  • Turchin P (1989) Population consequences of aggregative movement. J. Anim. Ecol., 58: 75-100

    Google Scholar 

  • Undeen AH, Becnel JJ (1994) A device for monitoring populations of larval mos-quitoes in container habitats. J Am Mosq Control Assoc 10: 101-103

    CAS  PubMed  Google Scholar 

  • Vail PV, Howland AF, Henneberry TJ (1966) Fluorescent dyes for mating and re-covery studies with cabbage looper moths. J. econ. Ent., 59: 1093-1097

    Google Scholar 

  • Van den Assem J, Metselaar D (1958) Host-plants and breeding places of Man-sonia (Mansonioides) uniformis in Netherlands New Guinea. Trop. geogr. Med., 10: 51-55

    CAS  PubMed  Google Scholar 

  • Vezzani D, Velázquez SM, Soto S, Schweigmann NJ (2001) Environmental char-acteristics of the cemeteries of Buenos Aires city (Argentina) and infestation levels of Aedes aegypti (Diptera: Culicidae). Memórias do Instituto Oswaldo Cruz, 96: 467-471

    CAS  PubMed  Google Scholar 

  • Victor TJ, Reuben R (1999) Population dynamics of mosquito immatures and the succession in abundance of aquatic insects in rice fields in Madurai, South India. Indian Journal of Malariology, 36: 19-32

    CAS  PubMed  Google Scholar 

  • Victor TJ, Reuben R (2000a) Effect of plant spacing on the population of mosquito immatures in rice fields in Madurai, South India. Indian Journal of Malariology, 37: 18-26

    CAS  PubMed  Google Scholar 

  • Victor TJ, Reuben R (2000b) Effects of organic and inorganic fertilisers on mos-quito populations in rice fields of southern India. Medical and Veterinary En-tomology, 14: 361-368

    CAS  Google Scholar 

  • Wada Y (1962a). Studies on the population estimation of insects of medical im-portance. 1. A method of estimating the population size of mosquito larvae in a fertilizer pit. Endem. Dis. Bull. Nagasaki Univ., 4: 22-30

    Google Scholar 

  • Wada Y (1962b) Studies on the population estimation for insects of medical im-portance. II. A method for estimating the population size of larvae of Aedes togoi in the tide-water rock-pool. Endem. Dis. Bull. Nagasaki Univ., 4: 141-156

    Google Scholar 

  • Wada Y (1965) Population studies on Edmonton mosquitoes. Quaest. ent., 1: 187-222

    Google Scholar 

  • Wada Y, Mogi M (1974) Efficiency of the dipper in collecting immature stages of Culex tritaeniorhynchus summorosus. Trop. Med., 16: 35-40

    Google Scholar 

  • Wada Y, Mogi M, Nishigaki J (1971a) Studies on the population estimation for insects of medical importance. IV. A method for the estimation of the relative density of Culex tritaeniorhynchus summorosus larvae in whole paddy-fields of an area. Trop. Med., 13: 86-93

    Google Scholar 

  • Wada Y, Mogi M, Nishigaki J (1971b) Studies on the population estimation for insects of medical importance. III. Sequential sampling technique for Culex tritaeniorhynchus summorosus larvae in the paddy-field. Trop. Med., 13: 16-25

    Google Scholar 

  • Wada Y, Ito S, Oda T (1993) Seasonal abundance of immature stages of Aedes togoi at Fukue island, Nagasaki (Diptera: Culicidae) southwestern Japan. Tropical Medicine (Nagasaki), 35: 1-10

    Google Scholar 

  • Wald A (1947) Sequential Analysis. John Wiley & Sons, New York

    Google Scholar 

  • Walker ED, Crans WJ (1986) A simple method for sampling Coquillettidia per-turbans larvae. J Am Mosq Control Assoc 2: 239-240

    CAS  PubMed  Google Scholar 

  • Walker ED, Merritt RW, Wotton RS (1988) Analysis of the distribution and abun-dance of Anopheles quadrimaculatus (Diptera: Culicidae) larvae in a marsh. Env. Ent., 17: 992-999

    Google Scholar 

  • Walton WE, Schreiber ET, Mulla MS (1990) Distribution of Culex tarsalis larvae in a freshwater marsh in Orange County, California. J Am Mosq Control Assoc 6: 539-543

    CAS  PubMed  Google Scholar 

  • Walton WE, Workman PD (1998) Effect of marsh design on the abundance of mosquitoes in experimental constructed wetlands in southern California. J Am Mosq Control Assoc 14: 95-107

    CAS  PubMed  Google Scholar 

  • Warren ME, Eddleman CD (1965) A self-straining larval concentrator. Mosquito News, 25: 486-487

    Google Scholar 

  • Washino RK, Hokama Y (1968) Quantitative sampling of aquatic insects in a shallow-water habitat. Ann. ent. Soc. Am., 61: 785-786

    Google Scholar 

  • Washino RK, Wood BL (1994) Application of remote sensing to arthropod vector surveillance and control. Am J Trop Med Hyg, 50: 134-144

    CAS  PubMed  Google Scholar 

  • Waters BT, Slaff M (1987) A small habitat, larval mosquito sampler. J Am Mosq Control Assoc 3: 514

    CAS  PubMed  Google Scholar 

  • Waters WE (1955) Sequential sampling in forest insect surveys. Forest Sci., 1: 68-79

    Google Scholar 

  • Weathersbee AA, Hasell PG (1938) Mosquito studies. On the recovery of stain in adults developing from anopheline larvae stained in vitro. Am. J. trop. Med., 18: 531-43

    Google Scholar 

  • Welch HE, James HG (1960) The Belleville trap for quantitative samples of mos-quito larvae. Mosquito News, 20: 23-26

    Google Scholar 

  • Welch JB, Olson JK, Hart WG, Ingle SG, Davis MR (1989a). Use of aerial color infrared photography as a survey technique for Psorophora colum-biae oviposition habitats in Texas ricefields. J Am Mosq Control Assoc 5: 147-160

    CAS  PubMed  Google Scholar 

  • Welch JB, Olson JK, Yates MM, Benton AR, Baker RD (1989b). Conceptual model for the use of aerial color infrared photography by mosquito control districts as a survey technique for Psorophora columbiae oviposition habitats in Texas ricefields. J Am Mosq Control Assoc 5: 369-373

    CAS  PubMed  Google Scholar 

  • Wellings PW (1987) Spatial distribution and interspecific competition. Ecol. Ent., 12: 359-362

    Google Scholar 

  • Weseloh RM (1989) Evaluation of insect spatial distributions by spectral analysis, with particular reference to the Gypsy moth (Lepidoptera: Lymantriidae) and Calosoma sycophanta (Coleoptera: Carabidae). Env. Ent., 18: 201-207

    Google Scholar 

  • Wharton RH (1962) The Biology of Mansonia Mosquitoes in Relation to the Transmission of Filariasis in Malaya. Bull. Inst. med. Res. Fed. Malaya (N.S.) No. 11

    Google Scholar 

  • White GB (1989) Malaria. Geographical Distribution of Arthropod-Borne Dis-eases and their Principal Vectors. World Health Organization, Geneva

    Google Scholar 

  • Wilding JL (1940) ‘A New Square-Foot Aquatic Sampler.’ Spec. Publs limnol. Soc. Am., 4

    Google Scholar 

  • Wood BL, Beck LR, Washino RK, Hibbard KA, Salute JS (1992) Estimating high mosquito-producing rice fields using spectral and spatial data. International Journal of Remote Sensing, 13: 2813-2826

    Google Scholar 

  • Woodrow RJ, Howard JJ (1994) Use of a modified chemical transfer pump for sampling Culiseta melanura larvae. J Am Mosq Control Assoc 10: 427-429

    CAS  PubMed  Google Scholar 

  • Wooster MT, Rivera D (1985) Breeding point and larval association of anopheline mosquitoes of northwest Mindoro, Philippines. Southeast Asian J. trop. Med. publ. Hlth., 16: 59-65

    CAS  Google Scholar 

  • Workman PD, Walton WE (2003) Larval behavior of four Culex (Diptera: Culici-dae) associated with treatment wetlands in the southwestern United States. Journal of Vector Ecology, 28: 213-228

    PubMed  Google Scholar 

  • World Health Organization (1975) Manual on practical entomology in malaria. Part II Methods and techniques. WHO Offset Publication No. 13, World Health Organization, Geneva

    Google Scholar 

  • Yamamura K (1990). Sampling scale dependence of Taylor’s power law. Oikos, 59: 121-125

    Google Scholar 

  • Yasuno M, Rajagopalan PK, Kazmi SJ, LaBrecque GC (1977). Seasonal changes in larval habitats and population density of Culex fatigans in Delhi villages. Indian J. Med. Res., 65 (Suppl.): 52-64

    PubMed  Google Scholar 

  • Zhen Tian-Min, Kay BH (1993) Comparison of sampling efficacy of sweeping and dipping for Aedes aegypti larvae in tires. J Am Mosq Control Assoc 9: 316-320

    Google Scholar 

  • Zippin C (1956) An evaluation of the removal method of estimating animal popu-lations. Biometrics, 12: 163-189

    Google Scholar 

  • Zippin C (1958) The removal method of population estimation. J. Wildl. Mgmt, 22: 82-90

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

(2008). Sampling the Larval Population. In: Mosquito Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6666-5_3

Download citation

Publish with us

Policies and ethics