Skip to main content
  • 943 Accesses

Abstract

The metabolic syndrome comprises a wide range of physiopathological abnormalities, all involved in systemic changes, occurring in different territories of the body. Glucose transporter changes throughout the body are observed in diverse degrees in the metabolic syndrome. This chapter aims to describe the alterations of glucose transport associated with the metabolic syndrome occurring at the vascular level. We will highlight the mechanisms regulating glucose transport in endothelial and vascular smooth muscle cells derived from peripheral vascular beds and from the blood-brain and blood-retinal barriers. Knowledge on this subject will contribute for understanding the physiopathology of the metabolic syndrome, as well as possible treatments for this condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen LA, Gerritsen ME. Regulation of hexose transport in cultured bovine retinal microvessel endothelium by insulin. Exp Eye Res. 1986; 43: 679–86.

    Article  PubMed  CAS  Google Scholar 

  • Allen TJ, Hardin CD. Influence of glycogen storage on vascular smooth muscle metabolism. Am J Physiol Heart Circ Physiol. 2000; 278: H1993–H2002.

    PubMed  CAS  Google Scholar 

  • Alpert E, Gruzman A, Totary H, Kaiser N, Reich R, Sasson S. A natural protective mechanism against hyperglycaemia in vascular endothelial and smooth-muscle cells: role of glucose and 12-hydroxyeicosatetraenoic acid. Biochem J. 2002; 362: 413–22.

    Article  PubMed  CAS  Google Scholar 

  • Alpert E, Altman H, Totary H, Gruzman A, Barnea D, Barash V, Sasson S. 4-Hydroxy tempol-induced impairment of mitochondrial function and augmentation of glucose transport in vascular endothelial and smooth muscle cells. Biochem Pharmacol. 2004; 67: 1985–95.

    Article  PubMed  CAS  Google Scholar 

  • Alpert E, Gruzman A, Riahi Y, Blejter R, Aharoni P, Weisinger G, Eckel J, Kaiser N, Sasson S. Delayed autoregulation of glucose transport in vascular endothelial cells. Diabetologia. 2005; 48: 752–5.

    Article  PubMed  CAS  Google Scholar 

  • Altman H, Alpert E, Sasson S. Do glucose-derived reactive oxygen species contribute to the autoregulation of glucose transport in vascular endothelial and smooth muscle cell? In: Simionecu M, Sima A, Popov D (eds) Cellular dysfunction in atherosclerosis and diabetes: reports from bench to bedside. Romanian Academy Publishing House, Bucharest. 2004; 274–82

    Google Scholar 

  • Artwohl M, Brunmair B, Fürnsinn C, Hölzenbein T, Rainer G, Freudenthaler A, Porod EM, Huttary N, Baumgartner-Parzer SM. Insulin does not regulate glucose transport and metabolism in human endothelium. Eur J Clin Invest. 2007; 37, 643–50.

    Article  PubMed  CAS  Google Scholar 

  • Atkins KB, Johns D, Watts S, Clinton Webb R, Brosius FC3. Decreased vascular glucose transporter expression and glucose uptake in DOCA-salt hypertension. J Hyperten. 2001; 19: 1581–7.

    Article  CAS  Google Scholar 

  • Atkins KB, Northcott CA, Watts SW, Brosius FC. Effects of PPAR-gamma ligands on vascular smooth muscle marker expression in hypertensive and normal arteries. Am J Physiol Heart Circ Physiol. 2005; 288: H235–43.

    Article  PubMed  CAS  Google Scholar 

  • Atkins KB, Prezkop A, Park JL, Saha J, Duquaine D, Charron MJ, Olson AL, Brosius FC 3rd. Preserved expression of GLUT4 prevents enhanced agonist-induced vascular reactivity and MYPT1 phosphorylation in hypertensive mouse aorta. Am J Physiol Heart Circ Physiol. 2007; 293: H402–8.

    Article  PubMed  CAS  Google Scholar 

  • Banz WJ, Abel MA, Zemel MB. Insulin regulation of vascular smooth muscle glucose transport in insulin-sensitive and resistant rats. Horm Metab Res. 1996; 28: 271–5.

    Article  PubMed  CAS  Google Scholar 

  • Bar RS, Siddle K, Dolash S, Boes M, Dake B. Actions of insulin and insulinlike growth factors I and II in cultured microvessel endothelial cells from bovine adipose tissue. Metabolism. 1988; 37: 714–20.

    Article  PubMed  CAS  Google Scholar 

  • Barron JT, Koop SJ, Tow JP, Parrillo JE. Differential effects of fatty acids on glycolysis and glycogen metabolism in vascular smooth muscle. Biochim Biophys Acta. 1991; 1093: 125–34.

    Article  PubMed  CAS  Google Scholar 

  • Barron JT, Koop SJ, Tow JP, Parrillo JE. Fatty acid, tricarboxylic and cyclic metabolites and energy metabolism in vascular smooth muscle. Am J Physiol Heart Circ Physiol. 1994; 267: H764–9.

    CAS  Google Scholar 

  • Barron JT, Barany M, Gu L, Parrillo JE. Metabolic fate of glucose in vascular smooth muscle during contraction induced by noradrenaline. J Mol Cell Cardiol. 1998; 30: 709–19.

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS. Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol. 1996; 9: 836–44.

    Article  PubMed  CAS  Google Scholar 

  • Betz AL, Gilboe DD, Yudilevich DL, Drewes LR. Kinetics of unidirectional glucose transport into the isolated dog brain. Am J Physiol. 1973; 225: 586–92.

    PubMed  CAS  Google Scholar 

  • Betz AL, Bowman PD, Goldstein GW. Hexose transport in microvascular endothelial cells cultured from bovine retina. Exp Eye Res. 1983; 36: 269–77.

    Article  PubMed  CAS  Google Scholar 

  • Blomqvist G, Gjedde A, Gutniak M, Grill V, Widen L, Stoneelander S, Hellstrand E. Facilitated transport of glucose from blood to brain in man and the effect of moderate hypoglycemia on cerebral glucose utilization. Eur J Nuclear Med. 1991; 18: 834–7.

    CAS  Google Scholar 

  • Brosius FC, Briggs JP, Marcus RG, Barac-Nieto M, Charron MJ. Insulin-responsive glucose transporter expression in renal microvessels and glomeruli. Kidney Int. 1992; 42:1086–92.

    Article  PubMed  CAS  Google Scholar 

  • Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nature Rev Mol Cell Biol. 2002; 3: 267–77.

    Article  CAS  Google Scholar 

  • Busik JV, Olson LK, Grant MB, Henry DN. Glucose-induced activation of glucose uptake in cells from the inner and outer blood-retinal barrier. Invest Ophthalmol Vis Sci. 2002; 43: 2356–63.

    PubMed  Google Scholar 

  • Ceriello A. New insights on oxidative stress and diabetic complications may lead to a ‘causal’ anti-oxidant therapy. Diabetes Care. 2003; 26: 1589–96.

    Article  PubMed  CAS  Google Scholar 

  • Cohen RA. Dysfunction of vascular endothelium in diabetes mellitus. Circulation. 1993; 87: V67–76.

    Google Scholar 

  • Cohen G, Livovsky DM, Kapitulnik J, Sasson S. Bilirubin increases the expression of glucose transporter-1 and the rate of glucose uptake in vascular endothelial cells. Rev Diabet Stud. 2006; 3: 127–33.

    Article  PubMed  Google Scholar 

  • Cohen G, Riahi Y, Alpert E, Gruzman A, Sasson S. The roles of hyperglycaemia and oxidative stress in the rise and collapse of the natural protective mechanism against vascular endothelial cell dysfunction in diabetes. Arch Physiol Biochem. 2007; 113: 259–67.

    Article  PubMed  CAS  Google Scholar 

  • Cooper DR, Khalakdina A, Watson JE. Chronic effects of glucose on insulin signaling in A-10 vascular smooth muscle cells. Arch Biochem Biophys. 1993; 302: 490–498.

    Article  PubMed  CAS  Google Scholar 

  • Corkey RF, Corkey BE, Gimbrone MA. Hexose transport in normal and SV40-transformed human endothelial cells in culture. J Cell Physiol. 1981; 106: 425–34.

    Article  PubMed  CAS  Google Scholar 

  • Cornford EM, Hyman S, Cornford ME, Clare-Salzler M. Down-regulation of blood-brain glucose transport in the hyperglycemic nonobese diabetic mouse. Neurochem Res. 1995; 20:869–73.

    Article  PubMed  CAS  Google Scholar 

  • Cowell RM, Russell JW. Nitrosative injury and anti-oxidant therapy in the management of diabetic neuropathy. J Investig Med. 2004; 52: 33–44.

    Article  PubMed  CAS  Google Scholar 

  • Culic O, Decking UKM, Bergschneider E, Schrader J. Purinogen is not an endogenous substrate used in endothelial cells during substrate depletion. Biochem J. 1999a; 338: 523–7.

    Google Scholar 

  • Culic O, Decking UKM, Schrader J. Metabolic adaptation of endothelial cells to substrate deprivation. Am J Physiol Cell Physiol. 1999b; 276: C1061–68.

    Google Scholar 

  • Culic O, Gruwel MLH, Schrader J. Energy turnover of vascular endothelial cells. Am J Physiol Cell Physiol. 1997; 273: C205–13.

    CAS  Google Scholar 

  • Dagher Z, Ruderman N, Tornheim K, Ido Y. Acute regulation of fatty acid oxidation and AMP-mediated protein kinase in human umbilical vein endothelial cells. Circ Res. 2001; 88: 1276–82.

    Article  PubMed  CAS  Google Scholar 

  • Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005; 111: 1448–54.

    Article  PubMed  Google Scholar 

  • Debosch BJ, Deo K, Kumagai AK. Insulin-like growth factor-1 effects on bovine retinal endothelial cell glucose transport: role MAP kinase. J Neurochem. 2002; 81: 728–34.

    Article  PubMed  CAS  Google Scholar 

  • Dobrina A, Rossi F. Metabolic properties of freshly isolated bovine endothelial-cells. Biochim Biophys Acta. 1983; 762: 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002; 82: 47–95.

    PubMed  CAS  Google Scholar 

  • Ennis SR, Johnson JE, Pautler EL. In situ kinetics of glucose transport across the blood-retinal barrier in normal rats and rats with streptozocin-induced diabetes. Invest Ophthalmol Vis Sci. 1982; 23: 447–56.

    PubMed  CAS  Google Scholar 

  • Etgen GJ, Fryburg DA, Gibbs EM.Nitric oxide stimulates skeletal muscle glucose transport through a calcium/contraction and phosphatidylinositol-3-kinase-independent pathway. Diabetes. 1997; 46: 1915–19.

    Article  PubMed  CAS  Google Scholar 

  • Farrell CL, Pardridge WM. Blood-brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: an electron microscopic immunogold study. Proc Natl Acad Sci USA. 1991; 88: 5779–83.

    Article  PubMed  CAS  Google Scholar 

  • Fernandes R, Suzuki K, Kumagai AK. Inner blood-retinal barrier GLUT1 in long-term diabetic rats: an immunogold electron microscopic study. Invest Ophthalmol Vis Sci. 2003; 44: 3150–4.

    Article  PubMed  Google Scholar 

  • Fischer Y, Thomas J, Rosen P, Kammermeier H. Action of metformin on glucose transport and glucose transporter GLUT1 and GLUT4 in heart muscle cells from healthy and diabetic rats. Endocrinology 1995; 136: 412–20.

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara R, Nakai T. Effects of glucose, insulin, and insulin-like growth factor-1 on glucose transport activity in cultured rat vascular smooth muscle cells. Atherosclerosis. 1996; 127: 49–57.

    Article  PubMed  CAS  Google Scholar 

  • Galle J, Hansen-Hagge T, Wanner C, Seibold S. Impact of oxidized low density lipoprotein on vascular cells. Atherosclerosis. 2006; 185: 219–26.

    Article  PubMed  CAS  Google Scholar 

  • Gaposchkin CG, Garcia-Diaz JF. Modulation of cultured brain, adrenal and aortic endothelial cell glucose transport. Biochim Biophys Acta. 1996; 1285: 255–66.

    Article  PubMed  CAS  Google Scholar 

  • Gaudreault N, Scriven DR, Moore ED. Characterization of glucose transporters in the intact coronary artery endothelium in rats: GLUT-2 upregulated by long-term hyperglycaemia. Diabetologia 2004; 47: 2081–92.

    Article  PubMed  CAS  Google Scholar 

  • Gaudreault N, Scriven DRL, Moore EDW. Assymmetric subcellular distribution of glucose transporters in the endothelium of small contractile arteries. Endothelium. 2006; 13: 317–24.

    Article  PubMed  CAS  Google Scholar 

  • Gaudreault N, Scriven DRL, Laher I, Moore EDW. Subcellular characterization of glucose uptake in coronary endothelial cells. Microvasc Res. 2008; 75: 73–82.

    Article  PubMed  CAS  Google Scholar 

  • Gerhart DZ, LeVasseur RJ, Broderius MA, Drewes LR. Glucose transporter localization in brain using light and electron immunocytochemistry. J Neurosci Res. 1989; 22: 464–72.

    Article  PubMed  CAS  Google Scholar 

  • Gerritsen ME, Burke TM. Insulin binding and effects of insulin on glucose uptake and metabolism in cultured rabbit coronary microvessel endothelium. Proc Soc Exp Biol Med. 1985; 180: 17–23.

    PubMed  CAS  Google Scholar 

  • Gerritsen ME, Burke TM, Allen LA. Glucose starvation is required for insulin stimulation of glucose uptake and metabolism in cultured microvascular endothelial cells. Microvasc Res. 1988; 35: 153–66.

    Article  PubMed  CAS  Google Scholar 

  • Giardino I, Edelstein D, Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest. 1994; 94: 110–7.

    Article  PubMed  CAS  Google Scholar 

  • Gjedde A, Crone C. Blood-brain glucose transfer: repression in chronic hyperglycemia. Science. 1981; 214: 456–67.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Flecha B. Oxidant mechanisms in response to ambient air particles. Mol Aspects Med. 2004; 25: 169–82.

    Article  PubMed  CAS  Google Scholar 

  • Gorovits N, Charron MJ. What we know about facilitative glucose transporters. Lessons from cultured cells, animal models, and human studies. Biochem Mol Biol Educ. 2003; 31: 163–72.

    Article  CAS  Google Scholar 

  • Gosmanov AR, Stentz FB, Kitabchi AE. De novo emergence of insulin-stimulated glucose uptake in human aortic endothelial cells incubated with high glucose. Am J Physiol Endocrinol Metab. 2006; 290: E516–22.

    Article  PubMed  CAS  Google Scholar 

  • Gregg EW, Yaffe K, Cauley JA, Rolka DB, Blackwell TL, Narayan KM, Cummings SR. Is diabetes associated with cognitive impairment and cognitive decline among older women? Arch Intern Med. 2000; 160: 174–80.

    Article  PubMed  CAS  Google Scholar 

  • Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, Mitch W, Smith Jr SC, Sowers JR. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation. 1999; 100: 1134–46.

    PubMed  CAS  Google Scholar 

  • Hadi HA, Suwaidi JA. Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag. 2007; 3: 853–76.

    PubMed  CAS  Google Scholar 

  • Halliwell B. Free-radicals and vascular-disease: how much do we know? Br Med J. 1993; 307: 885–6.

    CAS  Google Scholar 

  • Hardin CD, Paul RJ. Metabolism and energetics of vascular smooth muscle. In: Sperelakis N (ed.) Physiology and Pathophysiology of the Heart. Kluwer Academic, Dordrecht. 1995, 1069–86.

    Google Scholar 

  • Hardin CD, Roberts TM. Differential regulation of glucose and glycogen metabolism in vascular smooth muscle by exogenous substrates. J Mol Cell Cardiol. 1997; 29: 1207–16.

    Article  PubMed  CAS  Google Scholar 

  • Harik SI, La Manna JC. Vascular perfusion and blood-brain glucose transport in acute and chronic hyperglycemia. J Neurochem. 1988; 51: 1924–9.

    Article  PubMed  CAS  Google Scholar 

  • Hauguel-de-Mouzon S, Challier JC, Kacemi A, Cauzac M, Malek A, Girad J. The GLUT3 glucose transporter isoform is differentially expressed within human placental cell types. J Clin Endocrinol Metab. 1997; 82: 2689–94.

    Article  PubMed  CAS  Google Scholar 

  • Hertz MM, Paulson OB, Barry DI, Christiansen JS, Svendsen PA. Insulin increases glucose transfer across the blood-brain-barrier in man. J Clin Invest. 1981; 67: 597–604.

    Article  PubMed  CAS  Google Scholar 

  • Hingorani V, Brecher P. Glucose and fatty acid metabolism in normal and diabetic rabbit cerebral microvessels. Am J Physiol Endocrinol Metab. 1987; 252: E648–53.

    CAS  Google Scholar 

  • Howard RL. Down-regulation of glucose transport by elevated extracellular glucose concentrations in cultured rat aortic smooth muscle cells does not normalize intracellular glucose concentrations. J Lab Clin Med. 1996; 127: 504–15.

    Article  PubMed  CAS  Google Scholar 

  • Jacob RJ, Fan X, Evans ML, Dziura J, Sherwin RS. Brain glucose levels are elevated in chronically hyperglycemic diabetic rats: no evidence for protective adaptation by the blood brain barrier. Metabolism. 2002; 51: 1522–4.

    Article  PubMed  CAS  Google Scholar 

  • James DE, Strube M, Mueckler M. Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature. 1989; 338: 83–7.

    Article  PubMed  CAS  Google Scholar 

  • Kahn AM, Lichtenberg RA, Allen JC, Seidel CL, Song T. Insulin stimulated glucose transport inhibits Ca2+ influx and contraction in vascular smooth muscle. Circulation. 1995; 92: 1597–1603.

    PubMed  CAS  Google Scholar 

  • Kaiser N, Sasson S, Feener EP, Boukobzavardi N, Higashi S, Moller DE, Davidheiser S, Przybylski RJ, King GL. Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes. 1993; 42: 80–9.

    Article  PubMed  CAS  Google Scholar 

  • Kandror KV, Pilch PF. Compartmentalization of protein traffic in insulin-sensitive cells. Am J Physiol. 1996; 271: E1–14

    PubMed  CAS  Google Scholar 

  • Kapitulnik J. Bilirubin: an endogenous product of heme degradation with both cytotoxic and cytoprotective properties. Mol Pharmacol. 2004; 66: 7737–79.

    Article  CAS  Google Scholar 

  • Kihara S, Ouchi N, Funahashi T, Shinohara E, Tamura R, Yamashita S, Matuzawa Y. Troglitazone enhances glucose uptake and inhibits mitogen-activated protein kinase in human aortic smooth muscle cells. Atherosclerosis. 1998; 136: 163–8.

    Article  PubMed  CAS  Google Scholar 

  • Klepper J, Wang D, Fischbarg J, Vera JC, Jartour IT, O’Driscoll KR, Devivo DC. Defective glucose transport across blood brain tissue barriers: a newly recognized neurological syndrome. Neurochem Res. 1999; 24: 587–94.

    Article  PubMed  CAS  Google Scholar 

  • Knott RM, Robertson M, Muckersie E, Forrester JV. Regulation of glucose transporters (GLUT-1 and GLUT-3) in human retinal endothelial cells. Biochem J. 1996; 318: 313–7.

    PubMed  CAS  Google Scholar 

  • Kreutzfeldt A, Spahr R, Mertens S, Siegmund B, Piper HM. Metabolism of exogenous substrates by coronary endothelial cells in culture. J Mol Cell Cardiol. 1990; 22: 1393–1404.

    Article  Google Scholar 

  • Kumagai AK. Glucose transport in brain and retina: implications in the management and complications of diabetes. Diabetes Metab Res Rev. 1999; 15: 261–73.

    Article  PubMed  CAS  Google Scholar 

  • Kumagai AK, Glasgow BJ, Pardridge WM.Glut1 glucose transporter expression in the diabetic and nondiabetic human eye. Invest Ophthamol Vis Sci. 1994; 35: 2887–94.

    CAS  Google Scholar 

  • Kumagai AK, Kang YS, Boado RJ, Pardridge WM. Upregulation of blood-brain barrier GLUT1 glucose transporter protein and mRNA in experimental chronic hypoglycemia. Diabetes. 1995; 44: 1399–1404.

    Article  PubMed  CAS  Google Scholar 

  • Lee IK, Kim HS, Bae JH. Endothelial dysfunction: its relationship with acute hyperglycaemia and hyperlipidemia. Int J Clin Pract. 2002; Suppl.129: 59–64.

    Google Scholar 

  • Loike JD, Cao L, Brett J, Ogawa S, Silverstein SC, Stern D. Hypoxia induces glucose transporter expression in endothelial cells. Am J Physiol Cell Physiol. 1992; 263: C326–33.

    CAS  Google Scholar 

  • Lorenzi M, Cagliero E, Toledo S. Glucose toxicity for human endothelial cells in culture. Delayed replication, disturbed cell cycle, and accelerated death. Diabetes. 1985; 34: 621–7.

    Article  PubMed  CAS  Google Scholar 

  • Machado UF, Schaan BD, Seraphim PM. Transportadores de glicose na síndrome metabólica. Arq Bras Endocrinol Metab. 2006; 50: 177–89.

    Article  Google Scholar 

  • MacKenzie CJ, Wakefield JM, Cairns F, Dominiczak AF, Gould GW. Regulation of glucose transport in aortic smooth muscle cells by cAMP and cGMP. Biochem J. 2001; 353: 513–9.

    Article  PubMed  CAS  Google Scholar 

  • Mandarino LJ, Finlayson J, Hassell JR. High glucose downregulates glucose transport activity in retinal capillary pericytes but not endothelial cells. Invest Ophthamol Vis Sci. 1994; 35: 964–72.

    CAS  Google Scholar 

  • Mann GE, Yudilevich DL, Sobrevia L. Regulation of amino acid and glucose transporters in endothelial and smoothe muscle cells. Physiol Rev. 2003; 83: 183–252.

    PubMed  CAS  Google Scholar 

  • Mantych GJ, James DE, Devaskar SU. Jejunal kidney glucose transporter isoform (GLUT-5) is expressed in the human bloodbrain- barrier. Endocrinology. 1993a; 132: 35–40.

    Google Scholar 

  • Mantych GJ, Hageman GS, Devastu SU. Characterization of glucose transporter isoforms in the adult and developing human eye. Endocrinology. 1993b; 133: 600–7.

    Google Scholar 

  • Marcus RG, England R, Nguyen K, Charron MJ, Briggs JP, Brosius FC3. Altered renal expression of the insulin-responsive glucose transporter GLUT4 in experimental diabetes mellitus. Am J Physiol. 1994; 267: 816–24.

    Google Scholar 

  • Matthaei S, Hamann A, Klein HH, Benecke H, Krey-Mann G, Flier JS, Greten H. Association of metformin’s effect to increase insulin-stimulated glucose transport with potentiation of insulininduced translocation of glucose transporters from intracellular pool to plasma membrane in rat adipocytes. Diabetes. 1991; 40: 850–7.

    Article  PubMed  CAS  Google Scholar 

  • McCall AL, Millington WR, Wurtman RJ. Metabolic fuel and amino acid transport into the brain in experimental diabetes mellitus. Proc Natl Acad Sci USA. 1982; 79: 5406–10.

    Article  PubMed  CAS  Google Scholar 

  • McCall AL, Gould JB, Ruderman NB. Diabetes-induced alterations of glucose metabolism in rat cerebral microvessels. Am J Physiol. 1984; 247: E462–7.

    PubMed  CAS  Google Scholar 

  • McCall AL, Fixman LB, Fleming N, Tornheim K, Chick W, Ruderman NB. Chronic hypoglycemia increases brain glucose transport. Am. J. Physiol. 1986; 251: E442–7.

    PubMed  CAS  Google Scholar 

  • McCall AL, Van Bueren AM, Huang L, Stenbit A, Celnik E, Charron MJ. Forebrain endothelium expresses GLUT4, the insulin responsive glucose transporter. Brain Res. 1997; 744: 318–26.

    Article  PubMed  CAS  Google Scholar 

  • Mertens S, Noll T, Spahr R, Kruetzfeldt A, Piper HM. Energetic response of coronary endothelial cells to hypoxia. Am J Physiol Heart Circ Physiol. 1990; 258: H689–94.

    CAS  Google Scholar 

  • Mooradian AD, Morin AM, Cipp LJ, Haspel HC. Glucose transport is reduced in the blood-brain barrier of aged rats. Brain Res. 1991; 551: 145–59.

    Article  PubMed  CAS  Google Scholar 

  • Namba H, Lucignani G, Nehlig A, Patlak C, Pettigrew K, Kennedy C, Sokoloff L. Effects of insulin on hexose transport across blood-brain-barrier in normoglycemia. Am J Physiol Endocrinol Metab. 1987; 252: E299–303.

    CAS  Google Scholar 

  • Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000; 404: 787–90.

    Article  PubMed  CAS  Google Scholar 

  • Nitenberg A, Cosson E, Pham I. Postprandial endothelial dysfunction: role of glucose, lipids and insulin. Diabetes Metab. 2006; 32 (Spec No. 2): S28–33.

    Google Scholar 

  • O’Brien RM, Granner DK. Regulation of gene expression by insulin. Physiol Rev. 1996; 76: 1109–61.

    PubMed  CAS  Google Scholar 

  • Pan M, Wasa M, Souba WW. Tumor necrosis factor stimulates system x - AG transport activity in human endothelium. J Surg Res. 1995; 58: 659–64.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge WM, Boado RJ, Farrell CR. Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization. J Biol Chem. 1990a; 256: 18035–40.

    Google Scholar 

  • Pardridge WM, Triguero D, Farrell CR. Downregulation of blood-brain barrier glucose transporter in experimental diabetes. Diabetes. 1990b; 39: 1040–4.

    Google Scholar 

  • Park JL, Loberg RD, Duquaine D, Zhang H, Deo BK, Ardanaz N, et al. GLUT4 facilitative glucose transporter specifically and differentially contributes to agonist induced vascular reactivity in mouse aorta. Arterioscler Thromb Vasc Biol. 2005; 25: 1596–602.

    Article  PubMed  CAS  Google Scholar 

  • Parke DV, Sapota A. Chemical toxicity and reactive oxygen species. Int J Occup Med Environ Health. 1996; 9: 331–40.

    PubMed  CAS  Google Scholar 

  • Parra M, Yudilevich DL, Mann GE, Pedley KC, Nicolaides K, Pearson JD, Sobrevia L. Modulation of glucose transport in human fetal vein endothelial cells. J Physiol. 1998; 506: 34–5.

    Google Scholar 

  • Paulson OB, Hasselbalch SG. Blood-brain barrier transport of glucose: adaptation to changes in blood glucose levels. Nutr Metab Cardiovasc Dis. 1997; 7: 217–24.

    CAS  Google Scholar 

  • Pekala P, Marlow M, Heuvelman D, Connoly D. Regulation of hexose transport in aortic endothelial cells by vascular permeability factor and tumor necrosis factor-α, but not by insulin. J Biol Chem. 1990; 265: 18051–4.

    PubMed  CAS  Google Scholar 

  • Pelligrino DA, LaManna JC, Duckrow RB, Bryan RM, Harik SI. Hyperglycemia and blood-brain barrier glucose transport. J Cereb Blood Flow Metab. 1992; 12: 887–99.

    PubMed  CAS  Google Scholar 

  • Pessler D, Rudich A, Bashan N. Oxidative stress impairs nuclear proteins binding to the insulin responsive element in the GLUT4 promoter. Diabetologia. 2001; 44: 2156–64.

    Article  PubMed  CAS  Google Scholar 

  • Pouliot JF, Beliveau R. Palmitoylation of the glucose transporter in blood-brain barrier capillaries. Biochim Biophys Acta. 1995; 1234: 191–6.

    Article  PubMed  Google Scholar 

  • Quinn LA, McCumbee WD. Regulation of glucose transport by angiotensin II and glucose in cultured vascular smooth muscle cells. J Cell Physiol. 1998; 177: 94–102.

    Article  PubMed  CAS  Google Scholar 

  • Rebolledo OR, Actis Dato SM. Postprandial hyperglycemia and hyperlipidemia-generated glycoxidative stress: its contribution to the pathogenesis of diabetes complications. Eur Rev Med Pharmacol Sci. 2005; 9: 191–208.

    PubMed  CAS  Google Scholar 

  • Regina A, Roux F, Revest PA. Glucose transport in immortalized rat brain capillary endothelial cells in vitro: transport activity and GLUT1 expression. Biochim Biophys Acta. 1997; 1335: 135–43.

    PubMed  CAS  Google Scholar 

  • Sasson S, Gorowits N, Joost HG, King GL, Cerasi E, Kaiser N. Regulation by metformin of the hexose transport system in vascular endothelial and smooth muscle cells. Br J Pharmacol. 1996; 117: 1318–24.

    PubMed  CAS  Google Scholar 

  • Schalkwijk CG, Stehouwer CD. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci (Lond). 2005; 109: 143–59.

    Article  CAS  Google Scholar 

  • Shepherd PR, Kahn BB. Glucose transporters and insulin action–implications for insulin resistance and diabetes mellitus. N Engl J Med. 1999; 341: 248–57.

    Article  PubMed  CAS  Google Scholar 

  • Slot JW, Moxley R, Geuze HJ, James DE. No evidence for expression of the insulin-regulatable glucose transporter in endothelial cells. Nature. 1990; 346: 369–71.

    Article  PubMed  CAS  Google Scholar 

  • Sobrevia L, Mann GE. Dysfunction of the endothelial nitric oxide signalling pathway in diabetes and hyperglycaemia. Exp Physiol. 1997; 82: 423–52.

    PubMed  CAS  Google Scholar 

  • Sone H, Deo BK, Kumagai AK. Enhancement of glucose transport by vascular endothelial growth factor in retinal endothelial cells. Invest Ophthalmol Vis Sci. 2000; 41: 1876–84.

    PubMed  CAS  Google Scholar 

  • Standley PR, Rose KA. Insulin and insulin-like growth factor-1 modulation of glucose transport in arterial smooth muscle cells: implication of GLUT-4 in the vasculature. Am J Hypertens. 1994; 7: 357–62.

    PubMed  CAS  Google Scholar 

  • Stenina OI. Regulation of vascular genes by glucose. Curr Pharm Des. 2005; 11: 2367–81.

    Article  PubMed  CAS  Google Scholar 

  • Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. Br Med J. 2000; 321:405–12.

    Article  CAS  Google Scholar 

  • Tada H, Thompson CI, Recchia FA, Loke KE, Ochoa M, Smith CJ, Shelsely EG, Kaley G, Hintze TH. Myocardial glucose uptake is regulated via endothelial nitric oxide synthase in Langendorff mouse heart. Circ Res. 2000; 86: 270–4.

    PubMed  CAS  Google Scholar 

  • Takagi H, King GL, Aiello LP. Hypoxia upregulates glucose transport activity through an adenosine-mediated increase in GLUT1 expression in retinal capillary endothelial cells. Diabetes. 1998; 47: 1480–8.

    Article  PubMed  CAS  Google Scholar 

  • Takakura Y, Kuentzel SL, Raub TJ, Davies A, Baldwin SA, Borchardt RT. Hexose uptake in primary cultures of bovine brain microvessel endothelial cells. I. Basic characteristics and effects of D-glucose and insulin. Biochim Biophys Acta. 1991; 1070: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Takata K, Hirano H, Kasahara M. Transport of glucose across the blood-tissue barriers. Int Rev Cytol. 1997; 172: 1–53.

    Article  PubMed  CAS  Google Scholar 

  • Tao F, Gonzalez-Flecha B, Kobzik L. Reactive oxygen species in pulmonary inflammation by ambient particulates. Free Radic Biol Med. 2003; 35: 327–40.

    Article  PubMed  CAS  Google Scholar 

  • Taylor R, Agius L. The biochemistry of diabetes. Biochem J. 1988; 250: 625–50.

    PubMed  CAS  Google Scholar 

  • Thomas J, Linssen M, Van Der Vusse GJ, Hirsch B, Rosen P, Kammermeier H, Fischer Y. Acute stimulation of glucose transport by histamine in cardiac microvascular endothelial cells. Biochim Biophys Acta. 1995; 1268: 88–96.

    Article  PubMed  Google Scholar 

  • Thornalley PJ, McLellan AC, Lo TW, Benn J, Sonksen PH. Negative association between erythrocyte reduced glutathione concentration and diabetic complications. Clin Sci (Lond). 1996; 91: 575–82.

    CAS  Google Scholar 

  • Totary-Jain H, Naveh-Many T, Riahi Y, Kaiser N, Eckel J, Sasson S. Calreticulin destabilizes glucose transporter-1 mRNA in vascular endothelial and smooth muscle cells under high-glucose conditions. Circ Res. 2005; 97: 1001–8.

    Article  PubMed  CAS  Google Scholar 

  • Tsuneki H, Sekizaki N, Suzuki T, Kobayashi S, Wada T, Okamoto T, Kimura I, Sasaoka T. Coenzyme Q10 prevents high glucose-induced oxidative stress in human umbilical vein endothelial cells. Eur J Pharmacol. 2007; 566: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Vilaro S, Palacín M, Pilch PF, Testar X, Zorzano A. Expression of an insulin-regulatable glucose carrier in muscle and fat endothelial cells. Nature. 1989; 342: 798–800.

    Article  PubMed  CAS  Google Scholar 

  • Viñals F, Gross A, Testar X, Palacín M, Rosen P, Zorzano A. High glucose concentrations inhibit glucose phosphorylation, but not glucose transport, in human endothelial cells. Biochim Biophys Acta. 1999; 1450: 119–29.

    Article  PubMed  Google Scholar 

  • Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev. 2004; 25: 612–28.

    Article  PubMed  CAS  Google Scholar 

  • Wei M, Gaskill SP, Haffner SM, Stern MP. Effects of diabetes and level of glycemia on all-cause and cardiovascular mortality. The San Antonio Heart Study. Diabetes Care. 1998; 21: 1167–72.

    CAS  Google Scholar 

  • Wiernsperger N, Nivoit P, De Aguiar LG, Bouskela E. Microcirculation and the metabolic syndrome. Microcirculation. 2007; 14: 403–38.

    Article  PubMed  CAS  Google Scholar 

  • Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT1): expanded families of sugar transport proteins. Br J Nutr. 2003; 89: 3–9.

    Article  PubMed  CAS  Google Scholar 

  • Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease. J Intern Med. 2007; 261: 32–43.

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi SI, Nakamura K, Matsui T, Ueda SI, Imaizumi T. Role of postprandial hyperglycaemia in cardiovascular disease in diabetes. Int J Clin Pract. 2007; 61: 83–7.

    Article  PubMed  Google Scholar 

  • Yu Y, Lyons TJ. A lethal tetrad in diabetes: hyperglycemia, dyslipidemia, oxidative stress, and endothelial dysfunction. Am J Med Sci. 2005; 330: 227–32.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Martel, F., Keating, E. (2009). Vascular Glucose Transport and the Metabolic Syndrome. In: Soares, R., Costa, C. (eds) Oxidative Stress, Inflammation and Angiogenesis in the Metabolic Syndrome. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9701-0_7

Download citation

Publish with us

Policies and ethics