Skip to main content

The Role of ATP in the Regulation of NCAM Function

  • Chapter
  • First Online:
Structure and Function of the Neural Cell Adhesion Molecule NCAM

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 663))

Abstract

Extracellular ATP is an abundant signaling molecule that has a number of functions in the nervous system. It is released by both neurons and glial cells, activates purinergic receptors, and acts as a trophic factor as well as a neurotransmitter. In this review, we summarize the evidence for a direct ATP-NCAM interaction and discuss its functional implications. The ectodomain of NCAM contains the ATP binding Walker motif A and has intrinsic ATPase activity, which could modulate NCAM-dependent signaling processes. NCAM interacts directly with and signals through FGFR. The NCAM binding site to ATP overlaps with the site of NCAM-FGFR interaction, and ATP is capable of disrupting NCAM-FGFR binding. This implies that NCAM signaling through FGFR can be regulated by ATP, which is supported by the observation that ATP can abrogate NCAM-induced neurite outgrowth. Finally, ATP can induce NCAM ectodomain shedding, possibly affecting the structural plasticity associated with learning and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonfanti L (2006) PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 80(3):129-164

    Article  PubMed  CAS  Google Scholar 

  2. Walmod PS, Kolkova K, Berezin V et al (2004) Zippers make signals: NCAM-mediated molecular interactions and signal transduction. Neurochem Res 29(11):2015-2035

    Article  PubMed  CAS  Google Scholar 

  3. Williams EJ, Furness J, Walsh FS et al (1994) Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13(3):583-594

    Article  PubMed  CAS  Google Scholar 

  4. Saffell JL, Williams EJ, Mason IJ et al (1997) Expression of a dominant negative FGF receptor inhibits axonal growth and FGF receptor phosphorylation stimulated by CAMs. Neuron 18(2):231-242

    Article  PubMed  CAS  Google Scholar 

  5. Kiselyov VV, Skladchikova G, Hinsby AM et al (2003) Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 11(6):691-701

    Article  PubMed  CAS  Google Scholar 

  6. Walker JE, Saraste M, Runswick MJ et al (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1(8):945-951

    PubMed  CAS  Google Scholar 

  7. Burnstock G (1995) Noradrenaline and ATP: cotransmitters and neuromodulators. J Physiol Pharmacol 46(4):365-384

    PubMed  CAS  Google Scholar 

  8. Jo YH, Schlichter R (1999) Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat Neurosci 2(3):241-245

    Article  PubMed  CAS  Google Scholar 

  9. Mori M, Heuss C, Gahwiler BH et al (2001) Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures. J Physiol 535(Pt 1):115-123

    Article  PubMed  CAS  Google Scholar 

  10. Volknandt W, Zimmermann H (1986) Acetylcholine, ATP, and proteoglycan are common to synaptic vesicles isolated from the electric organs of electric eel and electric catfish as well as from rat diaphragm. J Neurochem 47(5):1449-1462

    Article  PubMed  CAS  Google Scholar 

  11. Pankratov Y, Lalo U, Verkhratsky A et al (2006) Vesicular release of ATP at central synapses. Pflugers Arch 452(5):589-597

    Article  PubMed  CAS  Google Scholar 

  12. Stout CE, Costantin JL, Naus CC et al (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277(12):10482-10488

    Article  PubMed  CAS  Google Scholar 

  13. Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26(5):1378-1385

    Article  PubMed  CAS  Google Scholar 

  14. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362(4-5):299-309

    Article  PubMed  CAS  Google Scholar 

  15. Bonan CD, Dias MM, Battastini AM et al (1998) Inhibitory avoidance learning inhibits ectonucleotidases activities in hippocampal synaptosomes of adult rats. Neurochem Res 23(7):977-982

    Article  PubMed  CAS  Google Scholar 

  16. Bonan CD, Roesler R, Pereira GS et al (2000) Learning-specific decrease in synaptosomal ATP diphosphohydrolase activity from hippocampus and entorhinal cortex of adult rats. Brain Res 854(1-2):253-256

    Article  PubMed  CAS  Google Scholar 

  17. Pedrazza EL, Riboldi GP, Pereira GS et al (2007) Habituation to an open field alters ecto-nucleotidase activities in rat hippocampal synaptosomes. Neurosci Lett 413(1):21-24

    Article  PubMed  CAS  Google Scholar 

  18. Zimmermann H (2006) Nucleotide signaling in nervous system development. Pflugers Arch 452(5):573-588

    Article  PubMed  CAS  Google Scholar 

  19. Lin JH, Takano T, Arcuino G et al (2007) Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev Biol 302(1):356-366

    Article  PubMed  CAS  Google Scholar 

  20. Ryu JK, Choi HB, Hatori K et al (2003) Adenosine triphosphate induces proliferation of human neural stem cells: role of calcium and p70 ribosomal protein S6 kinase. J Neurosci Res 72(3):352-362

    Article  PubMed  CAS  Google Scholar 

  21. D’Ambrosi N, Murra B, Cavaliere F et al (2001) Interaction between ATP and nerve growth factor signalling in the survival and neuritic outgrowth from PC12 cells. Neuroscience 108(3):527-534

    Article  PubMed  Google Scholar 

  22. Lakshmi S, Joshi PG (2006) Activation of Src/kinase/phospholipase C/mitogen-activated protein kinase and induction of neurite expression by ATP, independent of nerve growth factor. Neuroscience 141(1):179-189

    Article  PubMed  CAS  Google Scholar 

  23. Skladchikova G, Ronn LC, Berezin V et al (1999) Extracellular adenosine triphosphate affects neural cell adhesion molecule (NCAM)-mediated cell adhesion and neurite outgrowth. J Neurosci Res 57(2):207-218

    Article  PubMed  CAS  Google Scholar 

  24. Cheung KK, Chan WY, Burnstock G (2005) Expression of P2X purinoceptors during rat brain development and their inhibitory role on motor axon outgrowth in neural tube explant cultures. Neuroscience 133(4):937-945

    Article  PubMed  CAS  Google Scholar 

  25. Fujii S, Kato H, Kuroda Y (1999) Extracellular adenosine 5′-triphosphate plus activation of glutamatergic receptors induces long-term potentiation in CA1 neurons of guinea pig hippocampal slices. Neurosci Lett 276(1):21-24

    Article  PubMed  CAS  Google Scholar 

  26. Wieraszko A, Seyfried TN (1989) ATP-induced synaptic potentiation in hippocampal slices. Brain Res 491(2):356-359

    Article  PubMed  CAS  Google Scholar 

  27. Yamazaki Y, Kaneko K, Fujii S et al (2003) Long-term potentiation and long-term depression induced by local application of ATP to hippocampal CA1 neurons of the guinea pig. Hippocampus 13(1):81-92

    Article  PubMed  CAS  Google Scholar 

  28. Fujii S, Kato H, Kuroda Y (2002) Cooperativity between extracellular adenosine 5′-triphosphate and activation of N-methyl-D-aspartate receptors in long-term potentiation induction in hippocampal CA1 neurons. Neuroscience 113(3):617-628

    Article  PubMed  CAS  Google Scholar 

  29. Kuroda Y, Ichikawa M, Muramoto K et al (1992) Block of synapse formation between cerebral cortical neurons by a protein kinase inhibitor. Neurosci Lett 135(2):255-258

    Article  PubMed  CAS  Google Scholar 

  30. Nagashima K, Nakanishi S, Matsuda Y (1991) Inhibition of nerve growth factor-induced neurite outgrowth of PC12 cells by a protein kinase inhibitor which does not permeate the cell membrane. FEBS Lett 293(1-2):119-123

    Article  PubMed  CAS  Google Scholar 

  31. Ehrlich YH, Davis TB, Bock E et al (1986) Ecto-protein kinase activity on the external surface of neural cells. Nature 320(6057):67-70

    Article  PubMed  CAS  Google Scholar 

  32. Dzhandzhugazyan K, Bock E (1993) Demonstration of (Ca(2+)-Mg2+)-ATPase activity of the neural cell adhesion molecule. FEBS Lett 336(2):279-283

    Article  PubMed  CAS  Google Scholar 

  33. Stout JG, Brittsan A, Kirley TL (1994) Brain ECTO-Mg-ATPase is not the neural cell adhesion molecule. Biochem Mol Biol Int 33(6):1091-1098

    PubMed  CAS  Google Scholar 

  34. Dzhandzhugazyan K, Bock E (1997) Demonstration of an extracellular ATP-binding site in NCAM: functional implications of nucleotide binding. Biochemistry 36(49):15381-15395

    Article  PubMed  CAS  Google Scholar 

  35. Bock E, Edvardsen K, Gibson A et al (1987) Characterization of soluble forms of NCAM. FEBS Lett 225(1-2):33-36

    Article  PubMed  CAS  Google Scholar 

  36. Dalseg AM, Linnemann D, Bock E (1989) Soluble neural cell adhesion molecule in brain, cerebrospinal fluid and plasma in the developing rat. Int J Dev Neurosci 7(2):209-217

    Article  PubMed  CAS  Google Scholar 

  37. He HT, Finne J, Goridis C (1987) Biosynthesis, membrane association, and release of N-CAM-120, a phosphatidylinositol-linked form of the neural cell adhesion molecule. J Cell Biol 105(6 Pt 1):2489-2500

    Article  PubMed  CAS  Google Scholar 

  38. Rabinowitz JE, Rutishauser U, Magnuson T (1996) Targeted mutation of Ncam to produce a secreted molecule results in a dominant embryonic lethality. Proc Natl Acad Sci USA 93(13):6421-6424

    Article  PubMed  CAS  Google Scholar 

  39. Kadmon G, Kowitz A, Altevogt P et al (1990) The neural cell adhesion molecule N-CAM enhances L1-dependent cell-cell interactions. J Cell Biol 110(1):193-208

    Article  PubMed  CAS  Google Scholar 

  40. Paratcha G, Ledda F, Ibanez CF (2003) The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113(7):867-879

    Article  PubMed  CAS  Google Scholar 

  41. Kallapur SG, Akeson RA (1992) The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans. J Neurosci Res 33(4):538-548

    Article  PubMed  CAS  Google Scholar 

  42. Reyes AA, Akeson R, Brezina L et al (1990) Structural requirements for neural cell adhesion molecule-heparin interaction. Cell Regul 1(8):567-576

    PubMed  CAS  Google Scholar 

  43. Poltorak M, Frye MA, Wright R et al (1996) Increased neural cell adhesion molecule in the CSF of patients with mood disorder. J Neurochem 66(4):1532-1538

    Article  PubMed  CAS  Google Scholar 

  44. Vawter MP (2000) Dysregulation of the neural cell adhesion molecule and neuropsychiatric disorders. Eur J Pharmacol 405(1-3):385-395

    Article  PubMed  CAS  Google Scholar 

  45. Poltorak M, Wright R, Hemperly JJ et al (1997) Monozygotic twins discordant for schizophrenia are discordant for N-CAM and L1 in CSF. Brain Res 751(1):152-154

    Article  PubMed  CAS  Google Scholar 

  46. van Kammen DP, Poltorak M, Kelley ME et al (1998) Further studies of elevated cerebrospinal fluid neuronal cell adhesion molecule in schizophrenia. Biol Psychiatry 43(9):680-686

    Article  PubMed  Google Scholar 

  47. Vawter MP, Cannon-Spoor HE, Hemperly JJ et al (1998) Abnormal expression of cell recognition molecules in schizophrenia. Exp Neurol 149(2):424-432

    Article  PubMed  CAS  Google Scholar 

  48. Vawter MP, Usen N, Thatcher L et al (2001) Characterization of human cleaved N-CAM and association with schizophrenia. Exp Neurol 172(1):29-46

    Article  PubMed  CAS  Google Scholar 

  49. Shenton ME, Dickey CC, Frumin M et al (2001) A review of MRI findings in schizophrenia. Schizophr Res 49(1-2):1-52

    Article  PubMed  CAS  Google Scholar 

  50. Pillai-Nair N, Panicker AK, Rodriguiz RM et al (2005) Neural cell adhesion molecule-secreting transgenic mice display abnormalities in GABAergic interneurons and alterations in behavior. J Neurosci 25(18):4659-4671

    Article  PubMed  CAS  Google Scholar 

  51. Lang UE, Puls I, Muller DJ et al (2007) Molecular mechanisms of schizophrenia. Cell Physiol Biochem 20(6):687-702

    Article  PubMed  CAS  Google Scholar 

  52. Wassef A, Baker J, Kochan LD (2003) GABA and schizophrenia: a review of basic science and clinical studies. J Clin Psychopharmacol 23(6):601-640

    Article  PubMed  CAS  Google Scholar 

  53. Gower HJ, Barton CH, Elsom VL et al (1988) Alternative splicing generates a secreted form of N-CAM in muscle and brain. Cell 55(6):955-964

    Article  PubMed  CAS  Google Scholar 

  54. Endo A, Nagai N, Urano T et al (1998) Proteolysis of highly polysialylated NCAM by the tissue plasminogen activator-plasmin system in rats. Neurosci Lett 246(1):37-40

    Article  PubMed  CAS  Google Scholar 

  55. Diestel S, Hinkle CL, Schmitz B et al (2005) NCAM140 stimulates integrin-dependent cell migration by ectodomain shedding. J Neurochem 95(6):1777-1784

    Article  PubMed  CAS  Google Scholar 

  56. Hubschmann MV, Skladchikova G, Bock E et al (2005) Neural cell adhesion molecule function is regulated by metalloproteinase-mediated ectodomain release. J Neurosci Res 80(6):826-837

    Article  PubMed  Google Scholar 

  57. Kalus I, Bormann U, Mzoughi M et al (2006) Proteolytic cleavage of the neural cell adhesion molecule by ADAM17/TACE is involved in neurite outgrowth. J Neurochem 98(1):78-88

    Article  PubMed  CAS  Google Scholar 

  58. Hinkle CL, Diestel S, Lieberman J et al (2006) Metalloprotease-induced ectodomain shedding of neural cell adhesion molecule (NCAM). J Neurobiol 66(12):1378-1395

    Article  PubMed  CAS  Google Scholar 

  59. Fazeli MS, Breen K, Errington ML et al (1994) Increase in extracellular NCAM and amyloid precursor protein following induction of long-term potentiation in the dentate gyrus of anaesthetized rats. Neurosci Lett 169(1-2):77-80

    Article  PubMed  CAS  Google Scholar 

  60. Wieraszko A, Goldsmith G, Seyfried TN (1989) Stimulation-dependent release of adenosine triphosphate from hippocampal slices. Brain Res 485(2):244-250

    Article  PubMed  CAS  Google Scholar 

  61. Kiryushko D, Berezin V, Bock E (2004) Regulators of neurite outgrowth: role of cell adhesion molecules. Ann N Y Acad Sci 1014:140-154

    Article  PubMed  CAS  Google Scholar 

  62. Maness PF, Schachner M (2007) Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10(1):19-26

    Article  PubMed  CAS  Google Scholar 

  63. Skaper SD (2005) Neuronal growth-promoting and inhibitory cues in neuroprotection and neuroregeneration. Ann N Y Acad Sci 1053:376-385

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin V. Hübschmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hübschmann, M.V., Skladchikova, G. (2010). The Role of ATP in the Regulation of NCAM Function. In: Berezin, V. (eds) Structure and Function of the Neural Cell Adhesion Molecule NCAM. Advances in Experimental Medicine and Biology, vol 663. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1170-4_5

Download citation

Publish with us

Policies and ethics