Skip to main content

Basic Transport Equations According to Thermodynamics, Molecular Diffusion, Mechanisms in Membranes, and Multiphasic Structure

  • Chapter
Biomechanics
  • 1147 Accesses

Abstract

Now we shall consider the movement of water and other fluids in our bodies, especially the exchange of fluid between blood and the extravascular tissues. Red blood cells cannot leave the blood vessel; but water, ions, and some white blood cells can. The fluid in the extravascular space moves and exchanges matter with the cells in the body. The ionic composition of the fluid in the cells is quite different from that in the extracellular space. Extracellular fluid is rich in Na+, Cl, HCO 3 , whereas the intracellular fluid is rich in K+ Mg++, phosphates, proteins, and organic phosphates. The composition of blood plasma is fairly similar to that of the extravascular fluid, except that the plasma has some 14 mEq/L of proteins while extracellular fluid has essentially none. See Table 8.1:1. To talk about mass transport in the body we must explain how this difference in composition comes about.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreoli, T.E., Hoffman, J.F., and Fanestil, D.D. (eds.) (1980). Membrane Physiology. Plenum Medical, New York, London (being Parts 1, 2 and 3 of Physiology of Membrane Disorders by the same editors, which contains Part 4, Specialized Cells, Tissues and Organs,and Part 5, Clinical Disorders of Membrane Disorders).

    Google Scholar 

  • Armstrong, C.G., Lai, W.M., and Mow, V.C. (1984). An analysis of the unconfined compression of articular cartilage. J. Biomech. Eng. 106: 165–173.

    Article  Google Scholar 

  • Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (1960). Transport Phenomena. Wiley, New York. Bowen, R.M. (1976) Theory of mixtures. In: Continuum Physics, (A.C. Eringen, ed.), Vol. III, Academic Press, New York, pp. 1–127.

    Google Scholar 

  • Curry, F.E. and C.C. Michel (1980). A fiber matrix model of capillary permeability. Microvasc. Res. 20: 96–99.

    Article  Google Scholar 

  • Curry, F.E. (1984). Mechanics and thermodynamics of transcapillary exchange. In Handbook of Physiology, Sec. 2, Cardiovascular System, Vol. IV, Part 1, ( E.M. Renkin and C.C. Michel, eds.). Amer. Physiol. Soc. Bethesda, MD.

    Google Scholar 

  • Darcy, H. (1956). Les Fontaines Publiques de la Ville de Dijon. Dalmont.

    Google Scholar 

  • Eisenberg, S.R. and Grodzinsky, A.J. (1985). Swelling of articular cartilage and other connective tissues: Electromechanochemical forces. J. Orthop. Res. 3: 148–159.

    Article  Google Scholar 

  • Einstein, A. (1908). The elementary theory of the Brownian motion. Z. Elektrochem. 14: 235–239.

    Article  Google Scholar 

  • Reprint, 1956, Investigations on the Theory of the Brownian Movement. Dover, New York.

    Google Scholar 

  • Epstein, P. (1937). Textbook of Thermodynamics. Wiley, New York.

    Google Scholar 

  • Friedman, M.H. (1986). Principles and Models of Biological Transport. Springer-Verlag, New York.

    Book  Google Scholar 

  • Fung, Y.C. (1965). Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Fung, Y.C. (1977). A First Course in Continuum Mechanics. Prentice-Hall, Englewood Cliffs, N.J. Fung, Y.C. (1981). Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, New York.

    Google Scholar 

  • Hargens, A.R. (ed.) (1981). Tissue Fluid Pressure and Composition. Williams and Wilkins, Baltimore, p. 3.

    Google Scholar 

  • Intaglietta, M. and Johnson, P.C. (1978). Principles of capillary exchange. In: Peripheral Circulation ( P.C. Johnson, ed.). Wiley, New York.

    Google Scholar 

  • Katchalsky, A. and Curran, P.F. (1965). Nonequilibrium Thermodynamics in Biophysics. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Kenyon, D.E. (1976). The theory of an incompressible solid fluid mixture. Archs. Ration. Mech. Anal. 62: 131–147.

    MathSciNet  ADS  MATH  Google Scholar 

  • Klingenberg, M. (1981). Membrane protein oligomeric structure and transport function. Nature 290: 449–454.

    Article  ADS  Google Scholar 

  • Krupka, R.M. and Deves, R. (1983). Kinetics of inhibition of transport systems. Int. Rev. Cytol. 84: 303–352.

    Article  Google Scholar 

  • Lai, W.M., Mow, V.C., and Roth, V. (1981). Effects of nonlinear strain-dependent permeability and rat of compression on the stress behavior of articular cartilage. J. Biomech. Eng. 103: 61–66.

    Article  Google Scholar 

  • Lanir, Y. (1987). Biorheology and flux in swelling tissue. I. Bicomponent theory for small deformation including concentration effect. Biorheology 24: 173–187.

    Google Scholar 

  • H. Analysis of unconfined compressive response of transversely isotropic cartilage disc. Biorheology 24: 189–205.

    Google Scholar 

  • Lew, H.S. and Fung, Y.C. (1970). Formulation of a statistical equation of motion of a viscous fluid in an anisotropic non-rigid porous solid. Int. J. Solids Struct. 6: 1323–1340.

    Article  MATH  Google Scholar 

  • Lieb, W.R. and Stein, W.D. (1969). Biological membranes behave as non-poroud polymeric sheets with respect to the diffusion of non-electrolytes. Nature 224: 240–243.

    Article  ADS  Google Scholar 

  • Lieb, W.R. and Stein, W.D. (1972). Carrier and non-carrier models for sugar transport in the human red blood cell. Biochim. Biophy. Acta 265: 187–207.

    Article  Google Scholar 

  • Lightfoot, E.N. (1974). Transport Phenomena and Living Systems. Wiley, New York.

    Google Scholar 

  • Lotorre, R. and Miller, C. (1983). Condition and selectivity in potassium channels. J. Membrane Biol. 71: 11–30.

    Article  Google Scholar 

  • Middleman, S. (1972). Transport Phenomena in the Cardiovascular Systems. Wiley, New York. Miller, C, (1982). Feeling around inside a channel in the dark. In: Transport in Biomembranes: Model Systems and Reconstitution. (R. Antolini, G. Allessandra, and A. Gorio, eds.). Raven Press, New York, p. 99.

    Google Scholar 

  • Mow,V.C., Kuei, S.C., Lai, W.M., and Armstrong, C.G. (1980). Biphasic creep and stress relaxation of articular cartilage: Theory and experiments. J. Biomech. Eng. 102: 73–84.

    Google Scholar 

  • Mow, V.C., Kwan, M.K., Lai, W.M., and Holmes, M.H. (1986). A finite deformation theory for nonlinearly permeable soft hydrated biological tissues. In Frontiers in Biomechanics, ( SchmidSchönbein, G., Woo, S.L.Y., Zweifach, B.W., eds). Springer-Verlag, New York. 153–179.

    Chapter  Google Scholar 

  • Muller, I. (1968). A thermodynamic theory of mixtures of fluids. Arch. Rat. Mech. Anal. 28: 1–38.

    Article  Google Scholar 

  • Myers, E.R., Lai, W.M., and Mow, V.C. (1984). A continuum theory and an experiment for the ion-induced swelling behavior of articular cartilage. J. Biomech. Eng. 106: 151–158.

    Article  Google Scholar 

  • Omens, C.W.J., van Campen, D.H., Grootenboer, H.J., and De Boer, L.J. (1984). Experimental and theoretical compression studies on porcine skin. European Soc. of Biomechanics (ESB) Conference, Davos, Switzerland.

    Google Scholar 

  • Onsager, L. (1931). Reciprocal relations in irreversible processes. Phys. Rev. 37: 405–426;

    Article  ADS  Google Scholar 

  • Onsager, L. (1931). Reciprocal relations in irreversible processes. Phys. Rev. 38: 2265–2279.

    Article  ADS  MATH  Google Scholar 

  • Pappenheimer, J.R., Renkin, E.M., and Borrero, L.M. (1951). Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Amer. J. Physiol. 167: 13–46.

    Google Scholar 

  • Patlak, C.S. (1957). Contributions to the theory of active transport. II. The gate type non-carrier mechanism and generalizations concerning tracer flow, efficiency, and measurement of energy expenditure. Bull. Math. Biophys. 19: 209–235.

    Article  MathSciNet  Google Scholar 

  • Prigogine, I. (1955). Introduction to the Thermodynamics of Irreversible Processes. Thomas, Springfield, IL.

    Google Scholar 

  • Renkin, E.M. (1977). Multiple pathways of capillary permeability. Circ. Res. 41: 735–743.

    Article  Google Scholar 

  • Solomon, A.K., Chasan, B., Dix, J.A., Lukocovic, M.F., Toon, M.R., and Verkman, A.S. (1983). The aqueous pore in the red cell membrane: B and 3 as a channel for anions, cations, nonelectrolytes, and water. Ann. N.Y. Acad. Sci. 414: 97–124.

    Article  ADS  Google Scholar 

  • Starling, E.H. (1896). On the absorption of fluid from the connective tissue spaces. J. Physiol. (London) 19: 312–326.

    Google Scholar 

  • Truesdell, C. (1962). Mechanical basis of diffusion. J. Chem. Phys. 37: 2336–2344.

    Article  ADS  Google Scholar 

  • Urban, J.P.G., Maroudas, A., Bayliss, M.T., and Fillon, J. (1979). Swelling pressures of proteoglycans at the concentration found in cartilageneous tissues. Biorheology 16: 447–464.

    Google Scholar 

  • Zweifach, B.W. and Silberberg, A. (1979). The interstitial-lymphatic flow system. In: International Review of Physiology, Cardiovascular Physiology III, Vol. 18, (A.C. Guyton and D.B. Young, eds.). University Park Press, Baltimore.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, Y.C. (1990). Basic Transport Equations According to Thermodynamics, Molecular Diffusion, Mechanisms in Membranes, and Multiphasic Structure. In: Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6856-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6856-2_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5913-6

  • Online ISBN: 978-1-4419-6856-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics