Skip to main content

The Application of Neural Networks to Interpret Evoked Potential Waveforms

  • Chapter
Artificial Neural Networks in Biomedicine

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

Abstract

The electrical activity of the neurones of the brain produce a continuous random time-varying electrical potential at the scalp known as the electroencephalogram (EEG). External stimuli or preparation for a task cause additional electrical scalp potentials known as evoked potentials (EPs). These typically last for hundreds of milliseconds and are an order of magnitude smaller in voltage compared with the EEG. It has been customary to enhance the EP (signal)-to-EEG (noise) ratio by averaging many individual trial recordings, and then to characterise the averaged EP in terms of its maximum and minimum (peak) values (amplitudes) and the times at which they occur (their latencies). These amplitudes and latencies are frequently modified in the case of abnormal brain conditions or by different psychiatric states, and they have therefore been used to study such conditions and states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayden, M. R. Huntington’s Chorea. Springer-Verlag, 1981.

    Google Scholar 

  2. Mazziotta, J. C. Huntington’s disease: studies with structural imaging techniques and positron emission tomography. Seminars in Neurology, 9(4):360–369, 1989.

    Article  Google Scholar 

  3. Parkinson, J. An essay on the shaking palsy. Whittingham and Rowland, London, 1817.

    Google Scholar 

  4. Bennett, J. P. Biochemical pathology and pharmacology of Parkinson’s disease. In The Comprehensive Management of Parkinson’s Disease. Stern, M. B., and Hurtig H. I. (Eds), PMA Publishing Corp., 1988, pp. 63–76.

    Google Scholar 

  5. Revely, M. A. CT scans in schizophrenia. Brit Al Psychiatry, 146:367–371, 1985.

    Article  Google Scholar 

  6. Marks, R. C., and Luchins, D. J. Relationship between brain imaging findings in schizophrenia and psychopathology. In Schizophrenia: Positive and Negative Symptoms and Syndromes. Andreasen, N. C. (Ed)Mod. Probl. Pharmacopsychiatry, 24:89–123, 1990.

    Google Scholar 

  7. Walter, W. G., Cooper, R., Aldridge, V. A., McCallum, W. C., and Winter A. L. Contingent Negative Variation: an electric sign of sensorimotor association and expectancy in human brain. Nature, 230:380–384, 1964.

    Article  Google Scholar 

  8. McCallum, W. C. Potentials related to expectancy, preparation and motor activity. In Human Event-Related Potentials, Handbook of Electroencephalography and Clinical Neurophysiology. Revised Series, 3, Picton T. W., (Ed). Elsevier, New York, 1988, pp. 427–534.

    Google Scholar 

  9. Tecce, J. J., and Cattanach, L. Contingent Negative Variation (CNV). In Electroencephalography Basic Principles,Clinical Applications and Related Fields, Niedermeyer E. and Silva F. L. (Eds), Urban and Schwartzenberg, 1987, pp. 657–679.

    Google Scholar 

  10. Loveless, N. E., and Sanford, A. J. Slow potential correlates of preparatory set. Biol. Psychol, 1:303–314, 1974.

    Article  Google Scholar 

  11. Loveless, N. E., and Sanford, A. J. The impact of warning signal intensity on reaction time and components of the contingent negative variation. Biol. Psychol. 2:217–226, 1975.

    Article  Google Scholar 

  12. Tecce, J. J. Contingent negative variation (CNV) and psychological processes in man. Psychol. Bull., 77:73–108, 1972.

    Article  Google Scholar 

  13. Dubrovski, B., and Dongier, M. Evaluation of event-related slow potentials in selected groups of psychiatric patients. In The Responsive Brain, McCallum, W. C., and Knott J. R. (Eds), Wright and Sons, 1976, pp. 150–153.

    Google Scholar 

  14. Vonsattel, J. Neuropathologic of Huntington’s disease: Dynamics of the striatal neuropathological changes, including unusual findings and differential diagnosis. Movement Disorders, 7, suppl. 1, 185, 1992.

    Google Scholar 

  15. Jervis, B. W., Allen, E. M., Johnson, T. E., Nichols M. J., and Hudson N. R. The application of pattern recognition techniques to the contingent negative variation for the differentiation of subject categories. IEEE Trans. Biomed. Eng., BME-31(4), April: 342–349, 1984.

    Article  Google Scholar 

  16. Guyton, A. C. Basic Human Physiology: Normal Function and Mechanisms of Disease. W. B. Saunders Company, 2nd. ed., 1977, ch. 35.

    Google Scholar 

  17. McCallum, W. C., Walter, W. G., Winter, A., Scotton, L., and Cummins, B. Electroenceph. Clin. Neurophysiol., 28:210, 1970.

    Google Scholar 

  18. Timsit-Berthier, M., Geono, A., Rousseau, J. C., Mantanus, H., Abraham P., et al. An international pilot study of CNV in mental illness: second report. In Brain and Information: Event-Related Potentials, Karrer R., Cohen J., and Tueting P. (Eds), New York Academy of Sciences, 1984, pp. 629–637.

    Google Scholar 

  19. Abraham, P. Two measures of mental illness: contingent negative variation and spiral after-effect. Comp. Biochem. Physiol., 93A(1):291–293, 1989.

    Article  Google Scholar 

  20. Jervis, B. W., Saatchi, M. R., Allen, E. M., Hudson, N. R., Oke, S., et al. Pilot study of computerised differentiation of Huntington’s disease, schizophrenic, and Parkinson’s disease patients using the contingent negative variation. Medical and Biological Engineering and Computing, 31:31–38, 1993.

    Article  Google Scholar 

  21. Jervis, B. W., Ifeachor, E. C., and Allen, E. M. The removal of ocular artefacts from the electroencephalogram: a revew. Medical and Biological Engineering and Computing, 26:2–12, 1988.

    Article  Google Scholar 

  22. Ifeachor, E. C., Jervis, B. W., Allen, E. M., Morris, E. L., Wright, D. E., et al. (1988) Investigation and comparison of some models for removing ocular artefacts from EEG signals. Medical and Biological Engineering and Computing, 26:584–590, 1988.

    Article  Google Scholar 

  23. Kasuba, T. Simplified Fuzzy ARTMAP, AI Expert, 8(11):19–25, 1993.

    Google Scholar 

  24. Bishop, C. M. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995, pp. 17–21.

    Google Scholar 

  25. Wasserman, P. W. Advanced Methods in Neural Computing. Van Nostrand Reinhold, New York, 1993.

    MATH  Google Scholar 

  26. Parzen, E. On estimation of a probability density function and mode, Ann. Math. Stat., 33:1065–1076, 1962.

    Article  MathSciNet  MATH  Google Scholar 

  27. Jervis, B. W., Saatchi, M. R., Lacey, A., Roberts, T., Allen, E. M., et al. Artificial neural network and spectrum analysis methods for detecting brain diseases from the CNV response in the electroencephalogram. IEE Proc.-Sci. Meas. Technol., 141(6):432–440, 1994.

    Article  Google Scholar 

  28. Jervis, B. W., Roberts, T., Lacey, A., Woodcock, R., Yu, S., et al. Detection of brain conditions from evoked responses using artificial neural networks. IEE Colloquium. Artificial Intelligence Methods for Biomedical Data Processing. Coll. Digest, 1996/100, 9/1–9/8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this chapter

Cite this chapter

Jervis, B.W. (2000). The Application of Neural Networks to Interpret Evoked Potential Waveforms. In: Lisboa, P.J.G., Ifeachor, E.C., Szczepaniak, P.S. (eds) Artificial Neural Networks in Biomedicine. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0487-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0487-2_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-005-7

  • Online ISBN: 978-1-4471-0487-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics