Skip to main content

Neurologic Injury and Mechanical Ventilation

  • Chapter
  • First Online:
Textbook of Neurointensive Care
  • 5687 Accesses

Abstract

Patients with many different types of neurologic injury may develop respiratory system failure for a variety of reasons. In addition, the potential complications of respiratory system failure, including hypoxemia and acidosis, may cause significant additional injury to patients with neurologic disease. Mechanical ventilation (MV) is a supportive therapy that can be used to prevent these systemic complications of respiratory system failure in patients with and without neurologic injury.

While MV is generally delivered through one of several conventional modes of ventilation, several advanced modes of ventilation have also been recently developed to further increase the effectiveness of MV. Regardless of the mode of MV used, careful titration and monitoring of many different MV settings is needed to optimize oxygenation and ventilation. The use of one or more adjunctive therapies may be necessary to improve oxygenation in conditions associated with severe respiratory system dysfunction, such as acute respiratory distress syndrome (ARDS). Specific protocols have been described for MV in these patients to gain the maximum benefit to the patient while reducing the potential for complications.

Ventilator separation (typically through tracheal extubation) is an important consideration in MV therapy. The use of protocolized spontaneous breathing trials to determine the optimum timing for ventilator separation has not been validated in patients with neurologic disease; nevertheless, a daily evaluation for the appropriateness of extubation is probably warranted. Careful monitoring for recovery of neurologic dysfunction is an important facet to ventilator separation as many patients may have resolution of their respiratory system dysfunction but cannot be separated from MV due to their underlying neurologic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lumb AB. Nunn’s applied respiratory physiology. 6th ed. Philadelphia: Elsevier; 2005. p. 25–38.

    Google Scholar 

  2. Evans SE, Scanlon PD. Current practice in pulmonary function testing. Mayo Clin Proc. 2003;78(6):758–63.

    Article  PubMed  Google Scholar 

  3. Stocks J, Quanier PH. Reference values for residual volume, functional residual capacity and total lung capacity. ATS Workshop on Lung Volume Measurements. Official Statement of the European Respiratory Society. Eur Respir J. 1995;8(3):492–506.

    Article  PubMed  CAS  Google Scholar 

  4. Sinha P, Flower O, Soni N. Dead space ventilation: a waste of breath! Intensive Care Med. 2011;37(5):735–46.

    Article  PubMed  Google Scholar 

  5. Nicolai T. The physiological basis of respiratory support. Paediatr Respir Rev. 2006;7(2):97–102.

    Article  PubMed  CAS  Google Scholar 

  6. Brochard L, Harf A, Lorino H, Lemaire F. Inspiratory pressure supports prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis. 1989;139:513–21.

    Article  PubMed  CAS  Google Scholar 

  7. Ershowsky P, Krieger B. Changes in breathing pattern during pressure support ventilation. Respir Care. 1987;32:1011–6.

    Google Scholar 

  8. Tokioka H, Saito S, Kosaka F. Effect of pressure support ventilation on breathing pattern and respiratory work. Intensive Care Med. 1989;15:491–4.

    Article  PubMed  CAS  Google Scholar 

  9. Van de Graaff WB, Gordey K, Dornseif SE, et al. Pressure support: changes in ventilatory pattern and components of the work of breathing. Chest. 1991;100:1082–9.

    Article  PubMed  Google Scholar 

  10. Downs JB, Stock MC. Airway pressure release ventilation: a new concept in ventilator support. Crit Care Med. 1987;15:459–61.

    Article  PubMed  CAS  Google Scholar 

  11. Putensen C, Mutz N, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilator support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159:1241–8.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshida T, Rinka A, Kaji A, et al. The impact of spontaneous ventilation on distribution of lung aeration in patients with acute respiratory distress syndrome: airway pressure release ventilation versus pressure support ventilation. Anesth Analg. 2009;109(6):1892–900.

    Article  PubMed  Google Scholar 

  13. Putensen C, Zech S, Wrigge H, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001;164(1):43–9.

    Article  PubMed  CAS  Google Scholar 

  14. Maxwell RA, Green JM, Waldrop J, et al. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma. 2010;69(3):501–10.

    Article  PubMed  Google Scholar 

  15. Gonzalez M, Arroliga AC, Frutos-Vivar F, et al. Airway pressure release ventilation versus assist-control ventilation: a comparative propensity score and international cohort study. Intensive Care Med. 2010;36(5):817–27.

    Article  PubMed  Google Scholar 

  16. Derdak S, Mehta S, Stewart TE, et al. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med. 2002;166(6):801–8.

    Article  PubMed  Google Scholar 

  17. Bollen CW, van Well GT, Sherry T, et al. High frequency oscillatory ventilation compared with conventional mechanical ventilation in adult respiratory distress syndrome: a randomized controlled trial. Crit Care. 2005;9(4):R430–9.

    Article  PubMed  Google Scholar 

  18. Sud S, Sud M, Friedrich JO, et al. High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): systematic review and meta-analysis. BMJ. 2010;340:c2327.

    Article  PubMed  Google Scholar 

  19. Terzi N, Pelieu I, Guittet L, et al. Neurally adjusted ventilatory assist in patients recovering spontaneous breathing after acute respiratory distress syndrome: physiological evaluation. Crit Care Med. 2010;38(9):1830–7.

    Article  PubMed  Google Scholar 

  20. Coisel Y. Neurally adjusted ventilatory assist in critically ill postoperative patients: a crossover randomized study. Anesthesiology. 2010;113:925–35.

    Article  PubMed  Google Scholar 

  21. Colombo D, Cammarota G, Bergamaschi V, et al. Physiologic response to varying levels of pressure support and neutrally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med. 2008;34(11):2010–8.

    Article  PubMed  Google Scholar 

  22. Piquilloud L, Vignaux L, Bialais E, et al. Neurally adjusted ventilatory assist improves patients-ventilator interaction. Intensive Care Med. 2011;37(2):263–71.

    Article  PubMed  Google Scholar 

  23. Spahija J, de Marchie M, Albert M, et al. Patient-ventilator interaction during pressure support ventilation and neutrally adjusted ventilatory assist. Crit Care Med. 2010;38(2):518–26.

    Article  PubMed  Google Scholar 

  24. Passam F, Hoing S, Prinianakis G, et al. Effect of different levels of pressure support and proportional assist ventilation on breathing pattern, work of breathing and gas exchange in mechanically ventilated hypercapnic COPD patients with acute respiratory failure. Respiration. 2003;70(4):355–61.

    Article  PubMed  CAS  Google Scholar 

  25. Giannouli E, Webster K, Roberts D, Younes M. Response of ventilator-dependent patients to different levels of pressure support and proportional assist. Am J Respir Crit Care Med. 1999;159(6):1716–25.

    Article  PubMed  CAS  Google Scholar 

  26. Garpestad E, Brennan J, Hill NS. Noninvasive ventilation for critical care. Chest. 2007;132(2):711–20.

    Article  PubMed  Google Scholar 

  27. Bott J, Carroll MP, Conway JH, et al. Randomized controlled trial of nasal ventilation in acute ventilator failure due to chronic obstructive airways disease. Lancet. 1993;341(8860):1555–7.

    Article  PubMed  CAS  Google Scholar 

  28. Brochard L, Isabey D, Piquet J, et al. Reversal of acute exacerbations of chronic obstructive lung disease by inspiratory assistance with a face mask. N Engl J Med. 1990;323(22):1523–30.

    Article  PubMed  CAS  Google Scholar 

  29. Winck JC, Azevedo LF, Costa-Pereira A, et al. Efficacy and safety of non-invasive ventilation in the treatment of acute cardiogenic pulmonary edema – a systematic review and meta-analysis. Crit Care. 2006;10(2):R69.

    Article  PubMed  Google Scholar 

  30. Ho KM, Wong K. A comparison of continuous and bi-level positive airway pressure non-invasive ventilation in patients with acute cardiogenic pulmonary oedema: a meta-analysis. Crit Care. 2006;10(2):R49.

    Article  PubMed  Google Scholar 

  31. Antonelli M, Conti G, Bufi M, et al. Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation: a randomized trial. JAMA. 2000;283(2):235–41.

    Article  PubMed  CAS  Google Scholar 

  32. Soroksky A, Klinowski E, Ilgyev E, et al. Noninvasive positive pressure ventilation in acute asthmatic attack. Eur Respir Rev. 2010;19(115):39–45.

    Article  PubMed  CAS  Google Scholar 

  33. Soroksky A, Stav D, Shpirer I. A pilot prospective, randomized, placebo-controlled trial of bi-level positive airway pressure in acute asthmatic attack. Chest. 2003;123(4):1018–25.

    Article  PubMed  Google Scholar 

  34. Squadrone V, Coha M, Cerutti E, et al. Continuous positive airway pressure for treatment of postoperative hypoxemia: a randomized controlled trial. JAMA. 2005;293(5):589–95.

    Article  PubMed  CAS  Google Scholar 

  35. Auriant I, Jallot A, Hervé P, et al. Noninvasive ventilation reduces mortality in acute respiratory failure following lung resection. Am J Respir Crit Care Med. 2001;164(7):1231–5.

    Article  PubMed  CAS  Google Scholar 

  36. Curtis JR, Cook DJ, Sinuff T, et al. Noninvasive positive pressure ventilation in critical and palliative care settings: understanding the goals of therapy. Crit Care Med. 2007;35(3):932–9.

    Article  PubMed  Google Scholar 

  37. Schettino G, Altobelli N, Kacmarek RM. Noninvasive positive pressure ventilation reverses acute respiratory failure in select “do- not-intubate” patients. Crit Care Med. 2005;33(9):1976–82.

    Article  PubMed  Google Scholar 

  38. Levy MM, Tanios MA, Nelson D, et al. Outcomes of patients with do-not-intubate orders treated with noninvasive ventilation. Crit Care Med. 2004;32(10):2002–7.

    Article  PubMed  Google Scholar 

  39. Kwok H, McCormack J, Cece R, et al. Controlled trial of oronasal versus nasal mask ventilation in the treatment of acute respiratory failure. Crit Care Med. 2003;31(2):468–73.

    Article  PubMed  Google Scholar 

  40. Antonelli M, Pennisi MA, Pelosi P, et al. Noninvasive positive pressure ventilation using a helmet in patients with acute exacerbation of chronic obstructive pulmonary disease: a feasibility study. Anesthesiology. 2004;100(1):16–24.

    Article  PubMed  Google Scholar 

  41. Albert SP, DiRocco J, Allen GB, et al. The role of time and pressure on alveolar recruitment. J Appl Physiol. 2009;106(3):757–65.

    Article  PubMed  Google Scholar 

  42. Gattinoni L, D’Andrea L, Pelosi P, et al. Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA. 1993;269(16):2122–7.

    Article  PubMed  CAS  Google Scholar 

  43. Gattinoni L, Carlesso E, Brazzi L, Caironi P. Positive end-expiratory pressure. Curr Opin Crit Care. 2010;16:39–44.

    Article  PubMed  Google Scholar 

  44. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.

    Article  Google Scholar 

  45. Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome. JAMA. 2008;299(6):637–45.

    Article  PubMed  CAS  Google Scholar 

  46. Mercat A, Richard JM, Vielle B, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome. JAMA. 2008;299(6):646–55.

    Article  PubMed  CAS  Google Scholar 

  47. McGuire G, Crossley D, Richards J, Wong D. Effects of varying levels of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure. Crit Care Med. 1997;25:1059–62.

    Article  PubMed  CAS  Google Scholar 

  48. Huynh T, Messer M, Sing RF, et al. Positive end-expiratory pressure alters intracranial and cerebral perfusion pressure in severe traumatic brain injury. J Trauma. 2002;53(3):488–92.

    Article  PubMed  Google Scholar 

  49. Mascia L, Grasso S, Fiore T, et al. Cerebro-pulmonary interactions during the application of low levels of positive end-expiratory pressure. Intensive Care Med. 2005;31(3):373–9.

    Article  PubMed  Google Scholar 

  50. Celebi S, Koner O, Menda F, et al. The pulmonary and hemodynamic effects of two different recruitment maneuvers after cardiac surgery. Anesth Analg. 2007;104(2):384–90.

    Article  PubMed  Google Scholar 

  51. Nemer SN, Caldeira JB, Azeredo LM, et al. Alveolar recruitment maneuver in patients with subarachnoid hemorrhage and acute respiratory distress syndrome: a comparison of 2 approaches. J Crit Care. 2011;26(1):22–7.

    Article  PubMed  Google Scholar 

  52. Afshari A, Brok J, Moller AM, Wetterslev J. Inhaled nitric oxide for acute respiratory distress syndrome and acute lung injury in adults and children: a systematic review with meta-analysis and trial sequential analysis. Anesth Analg. 2011;112(6):1411–21.

    Article  PubMed  Google Scholar 

  53. Afshari A, Brok J, Moller AM, Wetterslev J. Inhaled nitric oxide for acute respiratory distress syndrome and acute lung injury in adults and children. Cochrane Database Syst Rev. 2010;(7):CD002787.

    Google Scholar 

  54. Afshari A, Brok J, Moller AM, Wetterslev J. Aerosolized prostacyclin for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Cochrane Database Syst Rev. 2010;(8):CD007733.

    Google Scholar 

  55. Hill DJ, O’Brien TG, Murray JJ. Prolonged extracorporeal oxygenation in severe acute respiratory failure (shock-lung-syndrome). N Engl J Med. 1972;286:629–34.

    Article  PubMed  CAS  Google Scholar 

  56. Zapol WM, Snider MT, Hill JD, et al. Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. JAMA. 1979;242(20):2193–6.

    Article  PubMed  CAS  Google Scholar 

  57. Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicenter randomized controlled trial. Lancet. 2009;374(9698):1351–63.

    Article  PubMed  Google Scholar 

  58. Australia and New Zealand Extracorporeal Membrane Oxygenation (ANZ ECMO) Influenza Investigators. Extracorporeal membrane oxygenation for 2009 Influenza A (H1N1) acute respiratory distress syndrome. JAMA. 2009;302(17):1888–95.

    Article  Google Scholar 

  59. Roch A, Lepaul-Ercole R, Grisoli D, et al. Extracorporeal membrane oxygenation for severe influenza A (H1N1) acute respiratory distress syndrome: a prospective observational comparative study. Intensive Care Med. 2010;36(11):1899–905.

    Article  PubMed  Google Scholar 

  60. Epstein SK. Weaning from ventilatory support. Curr Opin Crit Care. 2009;15(1):36–43.

    Article  PubMed  Google Scholar 

  61. Epstein SK. Weaning parameters. Respir Care Clin N Am. 2000;6:263–301.

    Google Scholar 

  62. Meade M, Guyatt G, Cook D, et al. Predicting success in weaning from mechanical ventilation. Chest. 2001;120(6 Suppl):400S–24.

    Article  PubMed  CAS  Google Scholar 

  63. Monaco F, Drummond GB, Ramsay P, et al. Do simple ventilation and gas exchange measurements predict early successful weaning from respiratory support in unselected general intensive care patients? Br J Anaesth. 2010;105(3):326–33.

    Article  PubMed  CAS  Google Scholar 

  64. Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med. 1991;324(21):1445–50.

    Article  PubMed  CAS  Google Scholar 

  65. Epstein SK. Etiology of extubation failure and the predictive value of the rapid shallow breathing index. Am J Respir Crit Care Med. 1995;152(2):545–9.

    Article  PubMed  CAS  Google Scholar 

  66. El-Khatib MF, Zeineldine SM, Jamaleddine GW. Effect of pressure support ventilation and positive end expiratory pressure on the rapid shallow breathing index in intensive care unit patients. Intensive Care Med. 2008;34(3):505–10.

    Article  PubMed  Google Scholar 

  67. MacIntyre NR, Cook DJ, Ely Jr EW, et al. Evidence-based guidelines for weaning and discontinuing ventilatory support: a collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest. 2001;120(6 Suppl):375S–95.

    Article  PubMed  CAS  Google Scholar 

  68. Boles JM, Bion J, Connors A, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29(5):1033–56.

    Article  PubMed  Google Scholar 

  69. Girad TD, Kress JP, Fuchs BD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. Lancet. 2008;371(9607):126–34.

    Article  Google Scholar 

  70. Fitting JW. Respiratory muscles during ventilator support. Eur Respir J. 1994;7(12):2223–5.

    Article  PubMed  CAS  Google Scholar 

  71. Hess D. Ventilator modes used in weaning. Chest. 2001;120(6 Suppl):474S–6.

    Article  PubMed  CAS  Google Scholar 

  72. Imsand C, Feihl F, Perret C, Fitting JW. Regulation of inspiratory neuromuscular output during synchronized intermittent mechanical ventilation. Anesthesiology. 1994;80(1):13–22.

    Article  PubMed  CAS  Google Scholar 

  73. Marini JJ, Smith TC, Lamb VJ. External work output and force generation during synchronized intermittent mandatory ventilation: effect of machine assistance on breathing effort. Am Rev Respir Dis. 1988;138(5):1169–79.

    Article  PubMed  CAS  Google Scholar 

  74. Brochard L, Rauss A, Benito S, et al. Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med. 1994;150(4):896–903.

    Article  PubMed  CAS  Google Scholar 

  75. Esteban A, Frutos F, Tobin MJ, et al. A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure Collaborative Group. N Engl J Med. 1995;332(6):345–50.

    Article  PubMed  CAS  Google Scholar 

  76. Kacmarek RM. Proporational assist ventilation and neutrally adjusted ventilator assist. Respir Care. 2011;56(2):140–8.

    Article  PubMed  Google Scholar 

  77. Navalesi P, Costa R. New modes of mechanical ventilation: proportional assist ventilation, neutrally adjusted ventilator assist, and fractal ventilation. Curr Opin Crit Care. 2003;9(1):51–8.

    Article  PubMed  Google Scholar 

  78. Mion LC, Minnick AF, Leipzig R, et al. Patient-initiated device removal in intensive care units: a national prevalence study. Crit Care Med. 2007;35(12):2714–20.

    Article  PubMed  Google Scholar 

  79. Ely EW, Baker AM, Evans GW, Haponik EF. The prognostic significance of passing a daily screen of weaning parameters. Intensive Care Med. 1999;25(6):581–7.

    Article  PubMed  CAS  Google Scholar 

  80. Girard TD, Kress JP, Fuchs BD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. Lancet. 2008;371(9607):126–34.

    Article  PubMed  Google Scholar 

  81. Esteban A, Alía I, Tobin MJ, et al. Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Spanish Lung Failure Collaborative Group. Am J Respir Crit Care Med. 1999;159(2):512–8.

    Article  PubMed  CAS  Google Scholar 

  82. Perren A, Domenighetti G, Mauri S, et al. Protocol-directed weaning from mechanical ventilation: clinical outcome in patients randomized for a 30-min or 120-min trial with pressure support ventilation. Intensive Care Med. 2002;28(8):1058–63.

    Article  PubMed  Google Scholar 

  83. Jones DP, Byrne P, Morgan C, et al. Positive end-expiratory pressure vs T-piece. Extubation after mechanical ventilation. Chest. 1991;100(6):1655–9.

    Article  PubMed  CAS  Google Scholar 

  84. Esteban A, Alía I, Gordo F, et al. Extubation outcome after spontaneous breathing trials with T-tube or pressure support ventilation. The Spanish Lung Failure Collaborative Group. Am J Respir Crit Care Med. 1997;156(2 Pt 1):459–65.

    Article  PubMed  CAS  Google Scholar 

  85. Ely EW, Baker AM, Dunagan DP, et al. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med. 1996;335(25):1864–9.

    Article  PubMed  CAS  Google Scholar 

  86. Ely EW, Bennett PA, Bowton DL, et al. Large-scale implementation of a respiratory therapist-driven protocol for ventilator weaning. Am J Respir Crit Care Med. 1999;159:439–46.

    Article  PubMed  CAS  Google Scholar 

  87. Kollef MH, Shapiro SD, Silver P, et al. A randomized, controlled trial of protocol-directed versus physician-directed weaning from mechanical ventilation. Crit Care Med. 1997;25(4):567–74.

    Article  PubMed  CAS  Google Scholar 

  88. Marelich GP, Murin S, Battistella F, et al. Protocol weaning of mechanical ventilation in medical and surgical patients by respiratory care practitioners and nurses: effect on weaning time and incidence of ventilator-associated pneumonia. Chest. 2000;118(2):459–67.

    Article  PubMed  CAS  Google Scholar 

  89. Namen AM, Ely EW, Tatter SB, et al. Predictors of successful extubation in neurosurgical patients. Am J Respir Crit Care Med. 2001;163(3 Pt 1):658–64.

    Article  PubMed  CAS  Google Scholar 

  90. Navalesi P, Frigerio P, Moretti MP, et al. Rate of reintubation in mechanically ventilated neurosurgical and neurologic patients: evaluation of a systematic approach to weaning and extubation. Crit Care Med. 2008;36(11):2986–92.

    Article  PubMed  Google Scholar 

  91. Jackson RM. Pulmonary oxygen toxicity. Chest. 1985;88(6):900–5.

    Article  PubMed  CAS  Google Scholar 

  92. Stogner SW, Payne DK. Oxygen toxicity. Ann Pharmacother. 1992;26(12):1554–62.

    PubMed  CAS  Google Scholar 

  93. Bitterman H. Bench-to-bedside review: oxygen as a drug. Crit Care. 2009;13(1):205.

    Article  PubMed  Google Scholar 

  94. Pierson DJ. Alveolar rupture during mechanical ventilation: role of PEEP, peak airway pressure, and distending volume. Respir Care. 1988;33:472–84.

    Google Scholar 

  95. Maunder RJ, Pierson DJ, Hudson LD. Subcutaneous and mediastinal emphysema: pathophysiology, diagnosis, and management. Arch Intern Med. 1984;144:1447–53.

    Article  PubMed  CAS  Google Scholar 

  96. Gajic O, Dara SI, Mendez JL, et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;32:1817–24.

    Article  PubMed  Google Scholar 

  97. Wolthuis EK, Choi G, Dessing MC, et al. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury. Anesthesiology. 2008;108:46–54.

    Article  PubMed  Google Scholar 

  98. Schultz MJ, Haitsma JJ, Slutsky AS, Gajic O. What tidal volume should be used in patients without acute lung injury? Anesthesiology. 2007;106(6):1226–31.

    Article  PubMed  Google Scholar 

  99. Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–54.

    Article  PubMed  CAS  Google Scholar 

  100. Brower RG, Lanken PN, MacIntyre N, et al. Higher vs. lower positive end-expiration pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351(4):327–36.

    Article  PubMed  Google Scholar 

  101. Briel M, Meade M, Mercat A, et al. Higher vs. lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303(9):865–73.

    Article  PubMed  CAS  Google Scholar 

  102. American Thoracic Society. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388–416.

    Article  Google Scholar 

  103. Vincent JL, Bihari DJ, Suter PM, et al. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European prevalence of infection in intensive care (EPIC) study. EPIC international advisory committee. JAMA. 1995;274(8):639–44.

    Article  PubMed  CAS  Google Scholar 

  104. Rello L, Ollendorf DA, Oster G, et al. Epidemiology and outcomes of ventilator-associated pneumonia in a large US database. Chest. 2002;122:2121.

    Google Scholar 

  105. Lepelletier D, Roquilly A, Demeure dit latte D, et al. Retrospective analysis of the risk factors and pathogens associated with early-onset ventilator-associated pneumonia in surgical-ICU head-trauma patients. J Neurosurg Anesthesiol. 2010;22:32–7.

    Article  PubMed  Google Scholar 

  106. Brochard R, Albaladejo P, Brezac G, et al. Early onset pneumonia: risk factors and consequences in head trauma patients. Anesthesiology. 2004;100(2):234–9.

    Article  Google Scholar 

  107. Heyland DK, Cook DJ, et al. The attributable morbidity and mortality of ventilator-associated pneumonia in the critically ill patient. Am J Respir Crit Care Med. 1999;159:1249–56.

    Article  PubMed  CAS  Google Scholar 

  108. Pugin J, Ackenthaler R, Mili N, et al. Diagnosis of ventilator-associated pneumonia by bacteriologic analysis of bronchoscopic and nonbronchoscopic “blind” bronchoalveolar lavage fluid. Am Rev Respir Dis. 1991;143(5):1121–9.

    Article  PubMed  CAS  Google Scholar 

  109. Fartoukh M, Maitre B, Honore S, et al. Diagnosing pneumonia during mechanical ventilation: the clinical pulmonary infection score revisited. Am J Respir Crit Care Med. 2003;168:173–9.

    Article  PubMed  Google Scholar 

  110. Shan J, Chen HL, Zhu JH. Diagnostic accuracy of clinical pulmonary infection score for ventilator-associated pneumonia: a meta-analysis. Respir Care. 2011;56(8):1087–94.

    Article  PubMed  Google Scholar 

  111. Palazzo SJ, Simpson T, Schnapp L. Biomarkers for ventilator-associated pneumonia: review of the literature. Heart Lung. 2011;40(4):293–8.

    Article  PubMed  Google Scholar 

  112. Rea-Neto A, Youssef NC, Tuche F, et al. Diagnosis of ventilator-associated pneumonia: a systematic review of the literature. Crit Care. 2008;12(2):R56.

    Article  PubMed  Google Scholar 

  113. Bird D, Zambuto A, O’Donnell C, et al. Adherence to ventilator-associated pneumonia bundle and incidence of ventilator-associated pneumonia in the surgical intensive care unit. Arch Surg. 2010;145(5):465–70.

    Article  PubMed  Google Scholar 

  114. Lorente L, Blot S, Rello J. Evidence on measures for the prevention of ventilator-associated pneumonia. Eur Respir J. 2007;30(6):1193–207.

    Article  PubMed  CAS  Google Scholar 

  115. Zilberberg MD, Shorr AF, Kollef MH. Implementing quality improvements in the intensive care unit: ventilator bundle as an example. Crit Care Med. 2009;37(1):305–9.

    Article  PubMed  Google Scholar 

  116. Chastre J, Wolff M, Fagon JY, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA. 2003;290(19):2588–98.

    Article  PubMed  CAS  Google Scholar 

  117. Combes A, Luyt CE, Fagon JY, et al. Early predictors for infection recurrence and death in patients with ventilator-associated pneumonia. Crit Care Med. 2007;35(1):146–54.

    Article  PubMed  Google Scholar 

  118. Anzueto A, Peters JI, Tobin MJ, et al. Effects of prolonged mechanical ventilation on diaphragmatic function in healthy adult baboons. Crit Care Med. 1997;25(7):1187–90.

    Article  PubMed  CAS  Google Scholar 

  119. Sassoon CS, Caiozzo VJ, Manka A, Sieck CC. Altered diaphragm contractile properties with controlled mechanical ventilation. J Appl Physiol. 2002;92:2585–95.

    PubMed  Google Scholar 

  120. Radell PJ, Remahl S, Nichols DG, Eriksson LI. Effects of prolonged mechanical ventilation and inactivity on piglet diaphragm function. Intensive Care Med. 2002;28:358–64.

    Article  PubMed  Google Scholar 

  121. Le Bourdelles G, Viires N, Boczkowski J, et al. Effects of mechanical ventilation on diaphragmatic contractile properties in rats. Am J Respir Crit Care Med. 1994;149(6):1539–44.

    Article  PubMed  Google Scholar 

  122. Powers SK, Shanely RA, Coobes JS, et al. Mechanical ventilation results in progressive contractile dysfunction in the diaphragm. J Appl Physiol. 2002;92(5):1851–8.

    PubMed  Google Scholar 

  123. Bernard N, Matecki S, Py G, et al. Effects of prolonged mechanical ventilation on respiratory muscle ultrastructure and mitochondrial respiration in rabbits. Intensive Care Med. 2003;29(1):111–8.

    PubMed  Google Scholar 

  124. Shanely RA, Van Gammeren D, DeRuisseau KC, et al. Am J Respir Crit Care Med. 2004;170(9):994–9.

    Article  PubMed  Google Scholar 

  125. Zergeroglu MA, McKenzie MJ, Shanely RA, et al. Mechanical ventilation-induced oxidative stress in the diaphragm. J Appl Physiol. 2003;95(3):1116–24.

    PubMed  CAS  Google Scholar 

  126. DeRuisseau KC, Shanely RA, Akunuri N, et al. Am J Respir Crit Care Med. 2005;172(10):1267–75.

    Article  PubMed  Google Scholar 

  127. Radell P, Edstrom L, Stibler H, et al. Changes in diaphragm structure following prolonged mechanical ventilation in piglets. Acta Anaesthesiol Scand. 2004;48(4):430–7.

    Article  PubMed  CAS  Google Scholar 

  128. Powers SK, Kavazis AN, Levine S. Prolonged mechanical ventilation alters diaphragmatic structure and function. Crit Care Med. 2009;37(10 Suppl):S347–53.

    Article  PubMed  Google Scholar 

  129. Sassoon CS, Zhu E, Caiozzo VJ. Assist-control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med. 2004;170(6):626–32.

    Article  PubMed  Google Scholar 

  130. Gayan-Ramirez G, Testelmans D, Maes K, et al. Intermittent spontaneous breathing protects the rat diaphragm from mechanical ventilation effects. Crit Care Med. 2005;33(12):2804–9.

    Article  PubMed  Google Scholar 

  131. Futier E, Constantin JM, Combaret L, et al. Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. Crit Care. 2008;12(5):R116.

    Article  PubMed  Google Scholar 

  132. Nathens AB, Neff MJ, Jurkovich GJ, et al. Randomized prospective trial of antioxidant supplementation in critically ill surgical patients. Ann Surg. 2002;236(6):814–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin W. Hatton MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Hatton, K.W. (2013). Neurologic Injury and Mechanical Ventilation. In: Layon, A., Gabrielli, A., Friedman, W. (eds) Textbook of Neurointensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-5226-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5226-2_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5225-5

  • Online ISBN: 978-1-4471-5226-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics