Skip to main content

Endocrine Issues in Neurocritical Care

  • Chapter
  • First Online:
Textbook of Neurointensive Care

Abstract

The endocrine system is an integral organ system that maintains homeostasis in humans. Critical illness causes dysregulation of the endocrine system and threatens to disrupt human hormonal balance. Neurologically injured patients are at particularly high risk for various endocrinopathies depending on their individual insults and comorbidities. Hormonal imbalances seen in the neurocritically ill may vary depending on the acute or chronic phase of critical illness. Emerging therapeutic hormonal measures continue to be investigated in order to reverse the deleterious effects of hormonal dysregulation, particularly in the chronic phase of critical illness. Neurointensivists should be aware of the various perioperative endocrine abnormalities and the associated ICU polypharmacy that also causes endocrine disorders. Recognition of these causes may lead to earlier interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://en.wikipedia.org/wiki/Endocrinology.

  2. Kreiger DT. Brain peptides, part 1. N Engl J Med. 1981;304:876.

    Article  Google Scholar 

  3. Smith FG, Sheehy AM, Vincent JL, Coursin DB. Critical illness-induced dysglycaemia: diabetes and beyond. Crit Care. 2010;14:327.

    Article  PubMed  Google Scholar 

  4. Amar AP, Weiss MH. Pituitary anatomy and physiology. Neurosurg Clin N Am. 2003;13:11–23.

    Article  Google Scholar 

  5. Gimpl G, Fahrenholz F. The oxytocin receptor system: structure, function, and regulation. Physiol Rev. 2001;81:629.

    PubMed  CAS  Google Scholar 

  6. Eikermann M, Schimidt U. Does adrenal size matter? Anesthesiology. 2011;115:223–4.

    Article  PubMed  Google Scholar 

  7. Vanhorebeek I, Van den Berge G. The neuroendocrine response to critical illness is a dynamic process. Crit Care Clin. 2006;22:1–15.

    Article  PubMed  CAS  Google Scholar 

  8. Clayton RN. Mortality, cardiovascular events and risk factors in hypopituitarism. Growth Horm IGF Res. 1998;8:69–76.

    Article  PubMed  Google Scholar 

  9. Monson JP, Besser GM. Premature mortality and hypopituitarism. Lancet. 2001;357:1972–3.

    Article  PubMed  CAS  Google Scholar 

  10. Ascoli P, Cavagnini F. Hypopituitarism. Pituitary. 2006;9:335–42.

    Article  PubMed  CAS  Google Scholar 

  11. Prabhakar VK, Shalet SM. Aetiology, diagnosis, and management of hypopituitarism in adult life. Postgrad Med. 2006;82:259–66.

    Article  CAS  Google Scholar 

  12. Schneider HJ, Kreitschmann-Andermahr I, Ghigo E, et al. Hypothalamopituitary dysfunction following traumatic brain injury and aneurysmal subarachnoid hemorrhage. A systematic review. JAMA. 2007;298:1429–38.

    Article  PubMed  CAS  Google Scholar 

  13. Cowie CC, Rust KF, Ford ES, et al. Full accounting of diabetes and pre-diabetes in the U.S. population in 1988–1994 and 2005–2006. Diabetes Care. 2009;32:287–94.

    Article  PubMed  Google Scholar 

  14. Finfer S, Chittock DR, Su SY, NICE-SUGAR Study Investigators, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97.

    Article  PubMed  Google Scholar 

  15. Van den Berghe G, Wouters P, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–67.

    Article  PubMed  Google Scholar 

  16. Vespa PM, Boonyaputthikul R, McArthur DL, et al. Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving lactate/pyruvate ratio after traumatic brain injury. Crit Care Med. 2006;34:850–6.

    Article  PubMed  CAS  Google Scholar 

  17. Holbein M, Bechir M, Ludwig S, et al. Differential influence of arterial blood glucose on cerebral metabolism following severe traumatic brain injury. Crit Care. 2009;13:R13.

    Article  PubMed  Google Scholar 

  18. Abate MG, Trivedi M, Fryer TD, et al. Early derangements in oxygen and glucose metabolism following head injury: the ischemic penumbra and pathophysiological heterogeneity. Neurocrit Care. 2008;9:319–25.

    Article  PubMed  CAS  Google Scholar 

  19. Timofeev I, Carpenter KL, Nortje J, et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain. 2011;134:484–94.

    Article  PubMed  Google Scholar 

  20. Krinsley JS. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med. 2008;36:3008–13.

    Article  PubMed  CAS  Google Scholar 

  21. Moghissi ES, Korytkowski MT, DiNardo M, et al. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Diabetes Care. 2009;32:1119–31.

    Article  PubMed  Google Scholar 

  22. Vanhorebeek I, Van den Berghe G. Hormonal and metabolic strategies to attenuate catabolism in critically ill patients. Curr Opin Pharmacol. 2004;4:621–62.

    Article  PubMed  CAS  Google Scholar 

  23. Sakharova OV, Inzucchi SE. Endocrine assessments during critical illness. Crit Care Clin. 2007;23:467–90.

    Article  PubMed  CAS  Google Scholar 

  24. Nylen ES, Muller B. Endocrine changes in critical illness. J Intensive Care Med. 2004;19:67–82.

    Article  PubMed  Google Scholar 

  25. Mongardon N, Dyson A, Singer M, et al. Is MOF an outcome parameter or a transient adaptive state in critical illness? Curr Opin Crit Care. 2009;15:431–6.

    Article  PubMed  Google Scholar 

  26. Annane D, Sébille V, Troché G, et al. A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotrophin. JAMA. 2000;283:1038–45.

    Article  PubMed  CAS  Google Scholar 

  27. Sudlow CL, Warlow CP. For the international stroke incidence collaboration. Stroke. 1997;28:491–9.

    Article  PubMed  CAS  Google Scholar 

  28. Kase CS. Intracerebral hemorrhage. Baillieres Clin Neurol. 1995;4:247–78.

    PubMed  CAS  Google Scholar 

  29. Stebhens WE. Aneurysm and anatomical variations of cerebral arteries. Arch Pathol. 1963;75:45.

    Google Scholar 

  30. Jordan LC, Johnston SC, Wu YW, Sidney S, Fullerton HJ. The importance of cerebral aneurysms in childhood hemorrhagic stroke: a population-based study. Stroke. 2009;40(2):400.

    Article  PubMed  Google Scholar 

  31. Rinkel GJ, Djibuti M, Algra A, et al. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke. 1998;29:251.

    Article  PubMed  CAS  Google Scholar 

  32. Broderick JP, Brott TG, et al. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke. 1994;25(7):1342.

    Article  PubMed  CAS  Google Scholar 

  33. Kale SP, Edgell RC, Alshekhlee A, et al. Age-associated vasospasm in aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2013;22:22–7.

    Article  PubMed  Google Scholar 

  34. Parenti G, Cecchi PC, Ragghianti B, et al. Evaluation of the anterior pituitary function in the acute phase after spontaneous subarachnoid hemorrhage. J Endocrinol Invest. 2001;34:361–5.

    Google Scholar 

  35. Franceschini R, Tenconi GL, Zoppoli F, et al. Endocrine abnormalities and outcomes of ischemic stroke. Biomed Pharmacother. 2001;55:458–65.

    Article  PubMed  CAS  Google Scholar 

  36. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet. 2004;364:1321–8.

    Article  PubMed  CAS  Google Scholar 

  37. Rothman MS, Arciniegas DB, Filley CM, et al. The neuroendocrine effects of traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2007;19:363–72.

    Article  PubMed  CAS  Google Scholar 

  38. Edwards P, Arango M, Balica L, et al. Final results of MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroid in adults with head injury-outcomes at 6 months. Lancet. 2005;365:1957–9.

    Article  PubMed  CAS  Google Scholar 

  39. Bavisetty S, Bavisetty S, McArthur DL, et al. Chronic hypopituitarism after traumatic brain injury: risk assessment and relationship to outcome. Neurosurgery. 2008;62:1080–93.

    Article  PubMed  Google Scholar 

  40. Ives JC, Alderman M, Stred SE. Hypopituitarism after multiple concussions: a retrospective case study in an adolescent male. J Athl Train. 2007;42:431–9.

    PubMed  Google Scholar 

  41. Rees JH, Soudain SE, Gregson NA, et al. Campylobacter jejuni infection and Guillain-Barré syndrome. N Engl J Med. 1995;333:1374–9.

    Article  PubMed  CAS  Google Scholar 

  42. Ropper AH. The Guillain-Barré syndrome. N Engl J Med. 1992;326:1130–6.

    Article  PubMed  CAS  Google Scholar 

  43. Asbury AK, Cornblath DR. Assessment of current diagnostic criteria for Guillain-Barré syndrome. Ann Neurol. 1990;27:S21.

    Article  PubMed  Google Scholar 

  44. Hoffmann O, Reuter U, Schielke E, et al. SIADH as the first symptom of Guillain-Barré syndrome. Neurology. 1999;53:1365.

    Article  PubMed  CAS  Google Scholar 

  45. Ramanathan S, McMeniman J, Cabela R, Holmes-Walker DJ, et al. SIADH and dysautonomia as the initial presentation of Guillain-Barré syndrome. J Neurol Neurosurg Psychiatry. 2012;83:344–5. doi:10.1136/jnnp.2010.233767.

    Article  PubMed  Google Scholar 

  46. Sharshar T, Chevret S, Bourdain F, et al. Early predictors of mechanical ventilation in Guillain-Barré syndrome. Crit Care Med. 2003;31:278–83.

    Article  PubMed  Google Scholar 

  47. Hughes RAC, Wijdicks EFM, Benson E, et al. Supportive care for patients with Guillain-Barré syndrome. Arch Neurol. 2005;62:1194–8.

    Article  PubMed  Google Scholar 

  48. McKhann GM, Griffin JW. Plasmapheresis and the Guillain-Barré syndrome. Ann Neurol. 1987;22:762–3.

    Article  PubMed  CAS  Google Scholar 

  49. Cortese I, Chaudhry V, So YT, et al. Evidence-based guideline update: plasmapheresis in neurologic disorders. Neurology. 2011;76:294–300.

    Article  PubMed  CAS  Google Scholar 

  50. Hughes RAC, Swan AV, Raphael JC, et al. Immunotherapy for Guillain-Barré syndrome: a systematic review. Brain. 2007;130:2245–57.

    Article  PubMed  Google Scholar 

  51. Potz G, Neundorfer B. Polyradiculoneuritis and Hashimoto’s thyroiditis. J Neurol. 1975;210:283–9.

    Article  PubMed  CAS  Google Scholar 

  52. Behar R, Penny R, Powell HC. Guillain-Barré syndrome associated with Hashimoto’s thyroiditis. J Neurol. 1986;233:233–6.

    Article  PubMed  CAS  Google Scholar 

  53. Davies AG, Dingle HR. Observations on cardiovascular and neuroendocrine disturbance in the Guillain-Barré syndrome. J Neurol Neurosurg Psychiatry. 1972;35:176–9.

    Article  PubMed  CAS  Google Scholar 

  54. Créange A, Bélec L, Clair B, et al. Circulating transforming growth factor beta 1 (TGF- β1) in Guillain-Barré syndrome: decreased concentrations in the early course and increase with motor function. J Neurol Neurosurg Psychiatry. 1998;64:162–5.

    Article  PubMed  Google Scholar 

  55. Strauss J, Aboab J, Rottman M, et al. Plasma cortisol levels in Guillain-Barré syndrome. Crit Care Med. 2009;37:2436–40.

    Article  PubMed  CAS  Google Scholar 

  56. Colls BM. Guillain-Barré syndrome and hyponatremia. Intern Med J. 2003;33:5–9.

    Article  PubMed  CAS  Google Scholar 

  57. Saifudheen K, Jose J, Gafoor VA, et al. Guillain-Barré syndrome and SIADH. Neurology. 2011;76:701–4.

    Article  PubMed  Google Scholar 

  58. Pessin MS. Transient diabetes insipidus in the Landry-Guillain-Barré syndrome. Arch Neurol. 1972;27:85–6.

    Article  PubMed  CAS  Google Scholar 

  59. Berteau P, Morvan J, Bernard AM, et al. The association of acute polyradiculoneuritis, transitory diabetes insipidus and pregnancy. Apropos of a case and review of the literature. J Gynecol Obstet Biol Reprod. 1990;19:793–802.

    CAS  Google Scholar 

  60. Cooke CR, Latif KA, Huch KM, et al. Inappropriate antidiuresis and hyponatremia with suppressible vasopressin in Guillain-Barré syndrome. Am J Nephrol. 1998;18:71–6.

    Article  PubMed  CAS  Google Scholar 

  61. Steinberger B, Ford SM, Coleman TA. Intravenous immunoglobulin therapy results in post-infusional hyperproteinemia, increased serum viscosity, and pseudohyponatremia. Am J Hematol. 2003;73:97–100.

    Article  PubMed  Google Scholar 

  62. Burgess JR, Sheperd JJ, Parameswaran V, et al. Spectrum of pituitary disease in multiple endocrine neoplasia type 1 (MEN 1): clinical, biochemical, and radiological features of pituitary disease in a large MEN 1 kindred. J Clin Endocrinol Metab. 1996;81:2642–6.

    Article  PubMed  CAS  Google Scholar 

  63. Lam KSL, Sham MMK, Tam SCF, et al. Hypopituitarism after tuberculous meningitis in childhood. Ann Intern Med. 1993;118:701–6.

    Article  PubMed  CAS  Google Scholar 

  64. Tien RD, Felsberg GJ, Osumi AK. Herpes virus infections of the CNS. MR findings. AJR Am J Roentgenol. 1993;161:167–76.

    Article  PubMed  CAS  Google Scholar 

  65. Van de Beek D, de Gans J, McIntyre P, et al. Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev. 2007:(1):CD004405.

    Google Scholar 

  66. Tsiakalos A, Xynos I, Sipsas NV, et al. Pituitary insufficiency after infectious meningitis: a prospective study. J Clin Endocrinol Metab. 2010;95:3277–81.

    Article  PubMed  CAS  Google Scholar 

  67. Schaefer S, Boegershausen N, Meyer S, et al. Hypothalamic-pituitary insufficiency following infectious diseases of the central nervous system. Eur J Endocrinol. 2008;158:3–9.

    Article  PubMed  CAS  Google Scholar 

  68. Tanriverdi F, Alp E, Demiraslan H, et al. Investigation of pituitary functions in patients with acute meningitis: a pilot study. J Endocrinol Invest. 2008;31:489–91.

    PubMed  CAS  Google Scholar 

  69. Ickenstein GW, Klotz JM, Langohr HD. Virus encephalitis with symptomatic Parkinson syndrome, diabetes insipidus and panhypopituitarism. Fortschr Neurol Psychiatr. 1999;67:476–81.

    Article  PubMed  CAS  Google Scholar 

  70. Lichtenstein MJ, Tilley WS, Sandler MP. The syndrome of hypothalamic hypopituitarism complicating viral meningoencephalitis. J Endocrinol Invest. 1982;5:111–5.

    PubMed  CAS  Google Scholar 

  71. Bartsocas CS, Pantelakis SN. Human growth hormone therapy in hypopituitarism due to tuberculous meningitis. Acta Paediatr Scand. 1973;62:304–6.

    Article  PubMed  CAS  Google Scholar 

  72. Ezzat S, Asa SL, Couldwell WT, et al. The prevalence of pituitary adenomas: systematic review. Cancer. 2004;101:613–9.

    Article  PubMed  Google Scholar 

  73. Chambers EF, Turski PA, LaMasters D, et al. Regions of low density in the contrast-enhanced pituitary gland: normal and pathologic processes. Radiology. 1982;144:109–13.

    PubMed  CAS  Google Scholar 

  74. Terada T, Kovacs K, Stefaneanu L, et al. Incidence, pathology, and recurrence of pituitary adenomas: study of 647 unselected surgical cases. Endocr Pathol. 1995;6:301–10.

    Article  PubMed  Google Scholar 

  75. Watson JC, Shawker TH, Nieman LK, et al. Localization of pituitary adenomas by using intraoperative ultrasound in patients with Cushing’s disease and no demonstrable pituitary tumor on magnetic resonance imaging. J Neurosurg. 1998;89:927–32.

    Article  PubMed  CAS  Google Scholar 

  76. Jeffcoat WJ, Pound N, Sturrock ND, et al. Long term follow-up of patients with hyperprolactinaemia. Clin Endocrinol. 1996;45:299–303.

    Article  Google Scholar 

  77. Greenman Y, Tordjman K, Stern N. Increased body weight associated with prolactin secreting pituitary adenomas: weight loss with normalization of prolactin. Clin Endocrinol. 1998;48:547–53.

    Article  CAS  Google Scholar 

  78. Faglia G. Prolactinomas and hyperprolactinemic syndrome. In: DeGroot LJ, Jameson JL, editors. Endocrinology. 4th ed. Philadelphia: WB Saunders; 2001.

    Google Scholar 

  79. Simard MF. Pituitary tumor endocrinopathies and their endocrine evaluation. Neurosurg Clin N Am. 2003;14:41–54.

    Article  PubMed  Google Scholar 

  80. Rand T, Kink E, Sator M, et al. MRI of microadenomas in patients with hyperprolactinaemia. Neuroradiology. 1996;38:744–6.

    Article  PubMed  CAS  Google Scholar 

  81. Molitch ME. Disorders of prolactin secretion. Endocrinol Metab Clin North Am. 2001;30:585–609.

    Article  PubMed  CAS  Google Scholar 

  82. Molitch ME, Elton RL, Blackwell RE, et al. Bromocriptine as primary therapy for prolactin-secreting macroadenomas: results of a prospective multicenter study. J Clin Endocrinol Metab. 1985;60:698–705.

    Article  PubMed  CAS  Google Scholar 

  83. Biller BM, Molitch ME, Vance ML, et al. Treatment of prolactin-secreting macroadenomas with the once-weekly dopamine agonist cabergoline. J Clin Endocrinol Metab. 1996;81:2338–43.

    Article  PubMed  CAS  Google Scholar 

  84. Thorner MO, Schran HF, Evans WS, et al. A broad spectrum of prolactin suppression by bromocriptine in hyperprolactinemic women: a study of serum prolactin and bromocriptine levels after acute and chronic administration of bromocriptine. J Clin Endocrinol Metab. 1980;50:1026–33.

    Article  PubMed  CAS  Google Scholar 

  85. Wenig BM, Heffess CS, Adair CF. Neoplasms of the pituitary gland. In: Wenig BM, Heffess CS, Adair CF, editors. Atlas of endocrine pathology. 1st ed. Philadelphia: WB Saunders; 1997.

    Google Scholar 

  86. Colao A, Cuocolo A, Marzullo P. Impact of patient’s age and disease duration on cardiac performance in acromegaly: a radionuclide angiography study. J Clin Endocrinol Metab. 1999;84:1518–23.

    Article  PubMed  CAS  Google Scholar 

  87. Minniti G, Jaffrain-Rea ML, Moroni C, et al. Echocardiographic evidence for a direct effect of GH/IGF-1 hypersecretion on cardiac mass and function in young acromegalics. Clin Endocrinol. 1998;49:101–6.

    Article  CAS  Google Scholar 

  88. Quabbe H-J, Plockinger U. Metabolic aspects of acromegaly and its treatment. Metabolism. 1996;45:61–2.

    Article  PubMed  CAS  Google Scholar 

  89. Cannavo S, Squadrito S, Finocchiaro MD, et al. Goiter and impairment of thyroid function in acromegalic patients: basal evaluation and follow-up. Horm Metab Res. 2000;32:190–5.

    Article  PubMed  CAS  Google Scholar 

  90. Jenkins PJ, Frajese V, Jones AM, et al. Insulin like growth factor I and the development of colorectal neoplasia in acromegaly. J Clin Endocrinol Metab. 2000;85:3218–21.

    Article  PubMed  CAS  Google Scholar 

  91. Vance ML. Endocrinological evaluation of acromegaly. J Neurosurg. 1998;89:499–500.

    PubMed  CAS  Google Scholar 

  92. Lissett CA, Peacey SR, Laing I, et al. The outcome of surgery for acromegaly: the need for a specialist pituitary surgeon for all types of growth hormone (GH) secreting adenomas. Clin Endocrinol. 1998;49:653–7.

    Article  CAS  Google Scholar 

  93. Kreutzer J, Vance ML, Lopes MBS, Laws ER. Surgical management of growth hormone secreting pituitary adenomas. An outcome study using modern remission criteria. J Clin Endocrinol Metab. 2001;86:4072–7.

    Article  PubMed  CAS  Google Scholar 

  94. Vance ML. Medical treatment of functional pituitary tumors. Neurosurg Clin N Am. 2003;14:81–7.

    Article  PubMed  Google Scholar 

  95. Barkan AL. Acromegaly: diagnosis and therapy. Endocrinol Metab Clin North Am. 1989;18:277–310.

    PubMed  CAS  Google Scholar 

  96. Trainer PJ, Drake WM, Katznelson L, et al. Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant. N Engl J Med. 2000;342:1171–7.

    Article  PubMed  CAS  Google Scholar 

  97. Van der Lely AJ, Hutson RK, Trainer PJ, et al. Long-term treatment of acromegaly with pegvisomant, a growth hormone receptor antagonist. Lancet. 2001;358:1754–9.

    Article  PubMed  Google Scholar 

  98. Landolt AM, Haller D, Lomax N, et al. Octreotide may act as a radioprotective agent in acromegaly. J Clin Endocrinol Metab. 2000;85:1287–9.

    Article  PubMed  CAS  Google Scholar 

  99. Bonelli FS, Huston J, Carpenter PC, et al. Adrenocorticotropic hormone-dependent Cushing’s syndrome: sensitivity and specificity of inferior petrosal sinus sampling. AJNR Am J Neuroradiol. 2000;21:690–6.

    PubMed  CAS  Google Scholar 

  100. Nieman LK. Medical therapy of Cushing’s disease. Pituitary. 2002;5:77–82.

    Article  PubMed  CAS  Google Scholar 

  101. Tucker WS, Snell BB, Island DP, et al. Reversible adrenal insufficiency induced by ketoconazole. JAMA. 1985;253:2413–4.

    Article  PubMed  Google Scholar 

  102. Nieman LK. Cushing’s syndrome. In: DeGroot LJ, Jameson JL, editors. Endocrinology. 4th ed. Philadelphia: WB Saunders; 2001.

    Google Scholar 

  103. Belsky JL, Cuello B, Swanson LW, Simmons DM, Jarrett RM, Braza F. Cushing’s syndrome due to ectopic production of corticotropin-releasing factor. J Clin Endocrinol Metab. 1985;60:496–500.

    Article  PubMed  CAS  Google Scholar 

  104. Doppman JL, Frank JA, Dwyer AJ, et al. Gadolinium DTPA enhanced imaging of ACTH secreting microadenomas of the pituitary gland. J Comput Assist Tomogr. 1988;12:728–35.

    Article  PubMed  CAS  Google Scholar 

  105. Shimon I, Melmed S. Management of pituitary tumors. Ann Intern Med. 1998;129:472–83.

    Article  PubMed  CAS  Google Scholar 

  106. Newell-Price J, Bertagna X, Grossman AB, Nieman LK. Cushing’s syndrome. Lancet. 2006;367:1605–7.

    Article  PubMed  CAS  Google Scholar 

  107. Young Jr WF, Scheithauer BW, Kovacs KT, Horvath E, Davis DH, Randall RV. Gonadotroph adenoma of the pituitary gland: a clinicopathologic analysis of 100 cases. Mayo Clin Proc. 1996;71:649–56.

    Article  PubMed  Google Scholar 

  108. Vance ML, Ridgway EC, Thorner MO. Follicle stimulating hormone and alpha subunit secreting pituitary tumor treated with bromocriptine. J Clin Endocrinol Metab. 1985;61:580–4.

    Article  PubMed  CAS  Google Scholar 

  109. Verhelst J, Berwaerts J, Abs R, et al. Obstructive hydrocephalus as complication of a giant nonfunctioning pituitary adenoma: therapeutical approach. Acta Clin Belg. 1998;53:47–52.

    PubMed  CAS  Google Scholar 

  110. Leese G, Jeffreys R, Vora J. Effects of cabergoline in a pituitary adenoma secreting follicle-stimulating hormone. Postgrad Med J. 1997;73:507–8.

    Article  PubMed  CAS  Google Scholar 

  111. Beck-Peccoz P, Bruckner-Davis F, Persani L, Smallridge RC, Weintraub BD. Thyrotropin-secreting pituitary tumors. Endocr Rev. 1996;17:610–38.

    PubMed  CAS  Google Scholar 

  112. Burgess JR, Shepherd JJ, Greenaway TM. Thyrotropinomas in multiple endocrine neoplasia type 1 (MEN-1). Aust N Z J Med. 1994;24:740–1.

    Article  PubMed  CAS  Google Scholar 

  113. Bruckner-Davis F, Oldfield EH, Skarulis MC, et al. Thyrotropin-secreting pituitary tumors: diagnostic criteria, thyroid hormone sensitivity, and treatment outcome in 25 patients followed at the National Institutes of Health. J Clin Endocrinol Metab. 1999;84:476–86.

    Article  Google Scholar 

  114. Frank SJ, Gesundheit N, Doppman JL, et al. Preoperative lateralization of pituitary microadenomas by petrosal sinus sampling: utility in two patients with non-ACTH-secreting tumors. Am J Med. 1989;87:679–82.

    Article  PubMed  CAS  Google Scholar 

  115. Faglia G, Beck-Peccoz P, Piscitelli G, et al. Inappropriate secretion of thyrotropin by the pituitary. Horm Res. 1987;26:79–99.

    Article  PubMed  CAS  Google Scholar 

  116. Spada A, Bassetti M, Martino E, et al. In vitro studies on TSH secretion and adenylate cyclase activity in a human TSH-secreting pituitary adenoma. Effects of somatostatin and dopamine. J Endocrinol Invest. 1985;8:193–8.

    PubMed  CAS  Google Scholar 

  117. Beck-Peccoz P, Persani L. Medical management of thyrotropin secreting pituitary adenomas. Pituitary. 2002;5:83–8.

    Article  PubMed  CAS  Google Scholar 

  118. Ness-Abramof R, Ishay A, Harel G, et al. TSH-secreting pituitary adenomas: follow-up of 11 cases and review of the literature. Pituitary. 2007;10:307–10.

    Article  PubMed  Google Scholar 

  119. Blumberg DL, Sklar CA, Wisoff J, et al. Abnormalities of water metabolism in c children and adolescents following craniotomy for a brain tumor. Childs Nerv Syst. 1994;10:505–8.

    Article  PubMed  CAS  Google Scholar 

  120. Singer I, Oster JR, Fishman LM. The management of diabetes insipidus in adults. Arch Intern Med. 1997;157:1293–301.

    Article  PubMed  CAS  Google Scholar 

  121. Seckl JR, Dunger DB. Postoperative diabetes insipidus. Correct interpretation of water balance and electrolyte data essential. BMJ. 1989;298:2–3.

    Article  PubMed  CAS  Google Scholar 

  122. Turner HE, Adams CB, Wass JA. Transsphenoidal surgery for microprolactinoma: an acceptable alternative to dopamine agonists? Eur J Endocrinol. 1999;140:43–7.

    Article  PubMed  CAS  Google Scholar 

  123. Central Brain Tumor Registry of the United States (CBTRUS). Available at: http://www.cbtrus.org/2011-NPCR-SEER/WEB-0407-Report-3-3-2011.pdf. Accessed 8 Aug 2011.

  124. Raff H. Glucocorticoid inhibition of neurohypophyseal vasopressin secretion. Am J Physiol. 1987;252:635–44.

    Google Scholar 

  125. Chinitz A, Turner FL. The association of primary hypothyroidism and inappropriate secretion of the antidiuretic hormone. Arch Intern Med. 1965;116:871–4.

    Article  PubMed  CAS  Google Scholar 

  126. Laureno R, Karp BI. Myelinolysis after correction of hyponatremia. Ann Intern Med. 1997;126:57–62.

    Article  PubMed  CAS  Google Scholar 

  127. Hirschberg R, Adler S. Insulin like growth factor system and the kidney physiology, pathophysiology and therapeutic implications. Am J Kidney Dis. 1998;31:901–19.

    Article  PubMed  CAS  Google Scholar 

  128. Bunin GR, Surawicz TS, Witman PA, et al. The descriptive epidemiology of craniopharyngioma. J Neurosurg. 1998;89:547–51.

    Article  PubMed  CAS  Google Scholar 

  129. Kristopaitis T, Thomas C, Petruzzelli G, et al. Malignant craniopharyngioma. Arch Pathol Lab Med. 2000;124:1356–60.

    PubMed  CAS  Google Scholar 

  130. Weiner HL, Wisoff JH, Rosenberg ME, et al. Craniopharyngiomas: a clinicopathological analysis of factors predictive of recurrence and functional outcome. Neurosurgery. 1994;35:1001–11.

    Article  PubMed  CAS  Google Scholar 

  131. Nelson GA, Bastian FO, Schlitt M, et al. Malignant transformation of craniopharyngioma. Neurosurgery. 1988;22:427–9.

    Article  PubMed  CAS  Google Scholar 

  132. Szeifert GT, Pasztor E. Could craniopharyngiomas produce pituitary hormones? Neurol Res. 1993;15:68–9.

    PubMed  CAS  Google Scholar 

  133. Thapar K, Stefaneanu L, Kovacs K, et al. Estrogen receptor gene expression in craniopharyngiomas: an in situ hybridization study. Neurosurgery. 1994;35:1012–7.

    Article  PubMed  CAS  Google Scholar 

  134. Honegger J, Renner C, Fahlbusch R, et al. Progesterone receptor gene expression in craniopharyngiomas and evidence for biological activity. Neurosurgery. 1997;41:1359–64.

    Article  PubMed  CAS  Google Scholar 

  135. Ulfarsson E, Karstrom A, Yin S, et al. Expression and growth dependency of the insulin-like growth factor I receptor in craniopharyngioma cells: a novel therapeutic approach. Clin Cancer Res. 2005;11:4674–80.

    Article  PubMed  CAS  Google Scholar 

  136. Karavitaki N, Cudlip S, Adams CBT, et al. Craniopharyngiomas. Endocr Rev. 2006;27:371–97.

    Article  PubMed  Google Scholar 

  137. Hetelekidis S, Barnes PD, Tao ML, et al. 20-year experience in childhood craniopharyngioma. Int J Radiat Oncol Biol Phys. 1993;27:189–95.

    Article  PubMed  CAS  Google Scholar 

  138. Duff JM, Meyer FB, Ilstrup DM, et al. Long-term outcomes for surgically resected craniopharyngiomas. Neurosurgery. 2000;46:291–305.

    Article  PubMed  CAS  Google Scholar 

  139. Gonzales-Portillo G, Tomita T. The syndrome of inappropriate secretion of antidiuretic hormone: an unusual presentation for childhood craniopharyngioma: report of three cases. Neurosurgery. 1998;42:917–21.

    Article  PubMed  CAS  Google Scholar 

  140. Banna M, Hoare RD, Stanley P, et al. Craniopharyngioma in children. J Pediatr. 1973;83:781–5.

    Article  PubMed  CAS  Google Scholar 

  141. Baskin DS, Wilson CB. Surgical management of craniopharyngiomas. J Neurosurg. 1986;65:22–7.

    Article  PubMed  CAS  Google Scholar 

  142. Karavitaki N, Brufani C, Warner JT, et al. Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long-term follow-up. Clin Endocrinol. 2005;62:397–409.

    Article  CAS  Google Scholar 

  143. Van Effenterre R, Boch AL. Craniopharyngioma in adults and children; a study of 122 surgical cases. J Neurosurg. 2002;97:3–11.

    Article  PubMed  Google Scholar 

  144. Rajan B, Ashley S, Thomas DGT, et al. Craniopharyngioma: improving outcome by early recognition and treatment of acute complications. Int J Radiat Oncol Biol Phys. 1997;37:517–21.

    Article  PubMed  CAS  Google Scholar 

  145. Fahlbusch R, Honegger J, Paulus W, et al. Surgical treatment of craniopharyngiomas: experience with 168 patients. J Neurosurg. 1999;90:237–50.

    Article  PubMed  CAS  Google Scholar 

  146. Hoffman HJ, DeSilva M, Humphreys RP, et al. Aggressive surgical management of craniopharyngiomas in children. J Neurosurg. 1992;76:47–52.

    Article  PubMed  CAS  Google Scholar 

  147. DeVile CJ. Craniopharyngioma. In: Wass JAH, Shalet SM, editors. Oxford textbook of endocrinology and diabetes. 1st ed. Oxford: Oxford University Press; 2002.

    Google Scholar 

  148. Paja M, Lucas T, Garcia-Uria F, et al. Hypothalamic-pituitary dysfunction in patients with craniopharyngioma. Clin Endocrinol. 1995;42:467–73.

    Article  CAS  Google Scholar 

  149. Dusick JR, Fatemi N, Mattozo C, et al. Pituitary function after endonasal surgery for nonadenomatous parasellar tumors: Rathke’s cysts, craniopharyngiomas, and meningiomas. Surg Neurol. 2008;70:482–90.

    Article  PubMed  Google Scholar 

  150. De Vile CJ, Grant DB, Hayward RD, et al. Growth and endocrine sequelae of craniopharyngioma. Arch Dis Child. 1996;75:108–14.

    Article  Google Scholar 

  151. Crowley RK, Sherlock M, Agha A, et al. Clinical insights into adipsic diabetes insipidus: a large case series. Clin Endocrinol. 2007;66:475–82.

    CAS  Google Scholar 

  152. Bondy M, Ligon BL. Epidemiology and etiology of intracranial meningiomas: a review. J Neurooncol. 1996;29:197–205.

    Article  PubMed  CAS  Google Scholar 

  153. Rockhill J, Mrugala M, Chamberlain MC. Intracranial meningiomas: and overview of diagnosis and treatment. Neurosurg Focus. 2007;23:1–7.

    Article  Google Scholar 

  154. Nakasu S, Hirano A, Shimura T, et al. Incidental meningiomas in autopsy study. Surg Neurol. 1987;27:319–22.

    Article  PubMed  CAS  Google Scholar 

  155. Donnell MS, Meyer GA, Donegan WL. Estrogen-receptor protein in intracranial meningioma. J Neurosurg. 1979;50:499–502.

    Article  PubMed  CAS  Google Scholar 

  156. Black PM, Carroll R, Zhang J. The molecular biology of hormone and growth factor receptors in meningiomas. Acta Neurochir Suppl. 1996;65:50–3.

    PubMed  CAS  Google Scholar 

  157. Carroll RS, Zhang J, Black PM. Expression of estrogen receptors alpha and beta in human meningiomas. J Neurooncol. 1999;42:109–16.

    Article  PubMed  CAS  Google Scholar 

  158. Pravdenkova S, Al-Mefty O, Sawyer J, et al. Progesterone and estrogen receptors: opposing prognostic indicators in meningioma. J Neurosurg. 2006;105:163–73.

    Article  PubMed  CAS  Google Scholar 

  159. Wang CJ, Lin PC, Howng SL. Expression of thyroid hormone receptors in intracranial meningiomas. Kaohsiung J Med Sci. 2003;19:334–8.

    Article  PubMed  CAS  Google Scholar 

  160. Hirota Y, Tachibana O, Uchiyama N, Hayashi Y, Nakada M, Kita D, Watanabe T, Higashi R, Hamada J, Hayashi Y. Gonadotropin-releasing hormone (GnRH) and its receptor in human meningiomas. Clin Neurol Neurosurg. 2009;111:127–33.

    Article  PubMed  Google Scholar 

  161. Lee E, Grutsch J, Persky V, et al. Association of meningioma with reproductive factors. Int J Cancer. 2006;119:1152–7.

    Article  PubMed  CAS  Google Scholar 

  162. Jhawar BS, Fuchs CS, Colditz GA, et al. Sex steroid hormone exposures and risk for meningioma. J Neurosurg. 2003;99:848–53.

    Article  PubMed  CAS  Google Scholar 

  163. Custer B, Longstreth Jr WT, Phillips LE, et al. Hormonal exposures and the risk of intracranial meningioma in women: a population-based case–control study. BMC Cancer. 2006;6:152.

    Article  PubMed  CAS  Google Scholar 

  164. McCutcheon IE, Flyvbjerg A, Hill H, et al. Antitumor activity of the growth hormone receptor antagonist pegvisomant against human meningiomas in nude mice. J Neurosurg. 2001;94:487–92.

    Article  PubMed  CAS  Google Scholar 

  165. Friend KE, Radinsky R, McCutcheon IE. Growth hormone receptor expression and function in meningiomas: effect of a specific receptor antagonist. J Neurosurg. 1999;91:93–9.

    Article  PubMed  CAS  Google Scholar 

  166. Hsu DW, Efird JT, Hedley-Whyte ET. Progesterone and estrogen receptors in meningiomas: prognostic considerations. J Neurosurg. 1997;86:113–20.

    Article  PubMed  CAS  Google Scholar 

  167. Korhonen K, Salminen T, Raitanen J, et al. Female predominance in meningiomas cannot be explained by differences in progesterone, estrogen, or androgen receptor expression. J Neurooncol. 2006;80:1–7.

    Article  PubMed  CAS  Google Scholar 

  168. Grunberg SM, Weiss MH, Spitz IM, et al. Treatment of unresectable meningiomas with the anti-progesterone agent mifepristone. J Neurosurg. 1991;74:861–6.

    Article  PubMed  CAS  Google Scholar 

  169. Grunberg SM, Weiss MH, Russell CA, Spitz IM, Ahmadi J, Sadun A, Sitruk-Ware R. Long-term administration of mifepristone (RU486): clinical tolerance during extended treatment of meningioma. Cancer Invest. 2006;24:727–33.

    Article  PubMed  CAS  Google Scholar 

  170. Grunberg SM, Rankin C, Townsend C, et al. Phase III double-blind randomized placebo controlled study of mifepristone (RU-486) for the treatment of unresectable meningioma. Proc Am Soc Clin Oncol. 2001;20:222 (abstract).

    Google Scholar 

  171. Goodwin JW, Crowley J, Eyre HJ, et al. A phase II evaluation of tamoxifen unresectable or refractory meningiomas: a Southwest Oncology Group Study. J Neurooncol. 1993;15:73–7.

    Article  Google Scholar 

  172. Takala J, Ruokonen E, Webster NR, et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med. 1999;34:785–92.

    Article  Google Scholar 

  173. Angele MK, Ayala A, Cioffi WG, et al. Comparison of the anabolic effects and complications of human growth hormone and the testosterone analog, oxandrolone, after severe burn injury. Burns. 1999;25:215–21.

    Article  Google Scholar 

  174. Annane D, Sebille V, Charpentier C, et al. Effect of low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288:862–71.

    Article  PubMed  CAS  Google Scholar 

  175. Sprung CL, Annane D, Keh D, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358:111–24.

    Article  PubMed  CAS  Google Scholar 

  176. Ferrando AA, Sheffield-Moore M, Wolf SE, et al. Testosterone administration in severe burns ameliorates muscle catabolism. Crit Care Med. 2001;29:1936–42.

    Article  PubMed  CAS  Google Scholar 

  177. Basakis AM, Kunzler C. Altered mental status due to metabolic or endocrine disorders. Emerg Med Clin North Am. 2005;23:901–8.

    Article  Google Scholar 

  178. Kanich W, Brady WJ, Huff S. Altered mental status: evaluation and etiology in the ED. Am J Emerg Med. 2002;20:613–7.

    Article  PubMed  Google Scholar 

  179. Brooks SM, Werk EE, Ackerman SJ, et al. Adverse effects of phenobarbital on corticosteroid metabolism in patients with bronchial asthma. N Engl J Med. 1972;286:1125–8.

    Article  PubMed  CAS  Google Scholar 

  180. Thomas Z, Bandali F, McCowen K, et al. Drug-induced endocrine disorders in the intensive care unit. Crit Care Med. 2010;38:S219–30.

    Article  PubMed  CAS  Google Scholar 

  181. Jabre P, Combes X, Lapostolle F, et al. Etomidate versus ketamine for rapid sequence intubation in acutely ill patients: a multicenter randomized controlled trial. Lancet. 2009;374:293–300.

    Article  PubMed  CAS  Google Scholar 

  182. Lipiner-Friedman D, Sprung CL, Laterre PF, et al. Adrenal function in sepsis: the retrospective Corticus cohort study. Crit Care Med. 2007;35:1012–8.

    Article  PubMed  Google Scholar 

  183. Mistraletti G, Donatelli F, Carli F. Metabolic and endocrine effects of sedative agents. Curr Opin Crit Care. 2005;11:312–7.

    Article  PubMed  Google Scholar 

  184. Cohen-Lehman J, Dahl P, Danzi S, et al. Effects of amiodarone therapy on thyroid function. Nat Rev Endocrinol. 2010;6:34–41.

    Article  PubMed  CAS  Google Scholar 

  185. Tanda ML, Bogazzi F, Martino E, et al. Amiodarone-induced thyrotoxicosis: something new to refine the initial diagnosis? Eur J Endocrinol. 2008;159:359–61.

    Article  PubMed  CAS  Google Scholar 

  186. Yiu KH, Jim MH, Siu CM, et al. Amiodarone-induced thyrotoxicosis is a predictor of adverse cardiovascular outcome. J Clin Endocrinol Metab. 2009;94:109–14.

    Article  PubMed  CAS  Google Scholar 

  187. Sakr Y, Reinhart K, Vincent JL, et al. Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely Ill Patients (SOAP) Study. Crit Care Med. 2006;34:589–97.

    Article  PubMed  CAS  Google Scholar 

  188. De Backer D, Biston P, Devriendt J, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779–89.

    Article  PubMed  Google Scholar 

  189. Kaptein EM, Spencer CA, Kamiel MB, et al. Prolonged dopamine administration and thyroid hormone economy in normal and critically ill subjects. J Clin Endocrinol Metab. 1980;51:387–93.

    Article  PubMed  CAS  Google Scholar 

  190. Oakley PW, Dawson AH, Whyte IM. Lithium: thyroid effect and altered renal handling. J Toxicol Clin Toxicol. 2000;38:333–7.

    Article  PubMed  CAS  Google Scholar 

  191. Herings RM, de Boer A, Stricker BH, et al. Hypoglycaemia associated with use of inhibitors of angiotensin converting enzyme. Lancet. 1995;345:1195–8.

    Article  PubMed  CAS  Google Scholar 

  192. Murad MH, Coto-Yglesias F, Wang AT, et al. Clinical review: drug-induced hypoglycemia: a systematic review. J Clin Endocrinol Metab. 2009;94:741–5.

    Article  PubMed  CAS  Google Scholar 

  193. Singh M, Jacob JJ, Kapoor R, et al. Fatal hypoglycemia associated with levofloxacin use in an elderly patient in the postoperative period. Langenbecks Arch Surg. 2008;393:235–8.

    Article  PubMed  Google Scholar 

  194. Carr R, Zed PJ. Octreotide for sulfonylurea-induced hypoglycemia following overdose. Ann Pharmacother. 2002;36:1727–32.

    Article  PubMed  Google Scholar 

  195. Clore JN, Thurby-Hay L. Glucocorticoid-induced hyperglycemia. Endocr Pract. 2009;15:469–74.

    Article  PubMed  Google Scholar 

  196. Loisa P, Parviainen I, Tenhunen J, et al. Effect of mode of hydrocortisone administration on glycemic control in patients with septic shock: a prospective randomized trial. Crit Care. 2007;11:R21.

    Article  PubMed  Google Scholar 

  197. Romagnoli J, Citterio F, Violi P, et al. Post-transplant diabetes mellitus after kidney transplantation with different immunosuppressive agents. Transplant Proc. 2004;36:690–1.

    Article  PubMed  CAS  Google Scholar 

  198. Barth E, Albuszies G, Baumgart K, et al. Glucose metabolism and catecholamines. Crit Care Med. 2007;35:S508–18.

    Article  PubMed  CAS  Google Scholar 

  199. Yood MU, DeLorenze G, Quesenberry Jr CP, et al. The incidence of diabetes in atypical antipsychotics users differs according to agent – results from a multisite epidemiologic study. Pharmacoepidemiol Drug Saf. 2009;18:791–9.

    Article  PubMed  Google Scholar 

  200. Sazontseva IE, Kozlov IA, Moisuc YG, et al. Hormonal response to brain death. Transplant Proc. 1991;23:2467.

    PubMed  CAS  Google Scholar 

  201. Rosendale JD, Kauffman HM, McBride MA, et al. Hormonal resuscitation yields more transplanted hearts, with improved early function. Transplantation. 2003;75:1336–41.

    Article  PubMed  Google Scholar 

  202. Howlett TA, Keogh AM, Perry L, et al. Anterior and posterior pituitary dysfunction in brain dead donors. Transplantation. 1989;47:828–34.

    Article  PubMed  CAS  Google Scholar 

  203. Rosengard BR, Feng S, Alfrey EJ, et al. Report of the Crystal City meeting to maximize the use of organs recovered from the cadaver donor. Am J Transplant. 2002;2:701–11.

    Article  PubMed  Google Scholar 

  204. Smith M. Physiologic changes during brain stem death—lessons for management of the organ donor. J Heart Lung Transplant. 2004;23:S217–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven B. Greenberg MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Greenberg, S.B., Tokarczyk, A.J., Zahed, C., Coursin, D.B. (2013). Endocrine Issues in Neurocritical Care. In: Layon, A., Gabrielli, A., Friedman, W. (eds) Textbook of Neurointensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-5226-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5226-2_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5225-5

  • Online ISBN: 978-1-4471-5226-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics