Skip to main content

Noninvasive Monitoring in the Neurointensive Care Unit: EEG, Oximetry, TCD

  • Chapter
  • First Online:
Textbook of Neurointensive Care

Abstract

Noninvasive monitoring modalities in the neurointensive care unit fall into two broad categories. The first aims to assess function of the nervous system. Examples of such monitoring modalities are the clinical exam, the electroencephalogram, and the recording of evoked potentials. Since neurological function is disrupted before cellular integrity is lost, monitors of function provide early warning of inadequate oxygen supply and provide opportunity to correct this problem before irreversible damage occurs. The second category aims to determine the adequacy of cerebral perfusion. Examples are transcranial Doppler ultrasonography, near-infrared spectroscopy, tissue pO2, and brain or jugular venous oximetry. No single monitoring technique is without its limitations or addresses all questions raised by a given patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kornbluth J, Bhardwaj A. Evaluation of coma: a critical appraisal of popular scoring systems. Neurocrit Care. 2011;14:134–43.

    Article  PubMed  Google Scholar 

  2. Seel RT, Sherer M, Whyte J, Katz DI, Giacino JT, Rosenbaum AM, Hammond FM, Kalmar K, Bender-Pape TL, Zafonte R, Biester RC, Kaelin D, Kean J, Zasler N. Assessment scales for disorders of consciousness: evidence-based recommendations for clinical practice and research. Arch Phys Med Rehabil. 2010;91:1795–813.

    Article  PubMed  Google Scholar 

  3. Wijdicks EF, Varelas PN, Gronseth GS, Greer DM. Evidence–based guideline update: determining brain death in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2010;74:1911–8.

    Article  PubMed  Google Scholar 

  4. Santamaria J, Orteu N, Iranzo A, Tolosa E. Eye opening in brain death. J Neurol. 1999;246:720–2.

    Article  PubMed  CAS  Google Scholar 

  5. Wijdicks EF. Brain death. Philadelphia: Lippincott Williams & Wilkins; 2001.

    Google Scholar 

  6. Schmidt JE, Tamburro RF, Hoffman GM. Dilated nonreactive pupils secondary to neuromuscular blockade. Anesthesiology. 2000;92:1476–80.

    Article  PubMed  CAS  Google Scholar 

  7. Fisch BJ. Digital and analog EEG instruments: parts and functions, chapter 3. In: Fisch BJ, editor. Fisch and Spehlmann’s EEG primer. Amsterdam: Elsevier; 1999.

    Google Scholar 

  8. Pauri F, Pierelli F, et al. Long-term EEG-video-audio monitoring: computer detection of focal EEG patterns. Electroencephalogr Clin Neurophysiol. 1992;82:1–9.

    PubMed  CAS  Google Scholar 

  9. Wijdicks EF, Hijdra A, Young GB, Bassetti CL, Wiebe S. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;67:203–10.

    Article  PubMed  CAS  Google Scholar 

  10. Hirsch LJ. Continuous EEG, monitoring in the ICU. J Clin Neurophysiol. 2004;21:332–40.

    PubMed  Google Scholar 

  11. Friedman D, Claasen J, Hirsch LJ. Continuous electroencephalogram monitoring in the intensive care unit. Anesth Analg. 2009;109:506–23.

    Article  PubMed  Google Scholar 

  12. Hirsch L, Brenner RP. Atlas of EEG in critical care. Hoboken: Wiley-Blackwell; 2010.

    Book  Google Scholar 

  13. Claasen J, Mayer SA, Hirsch LJ. Continuous EEG monitoring in patients with subarachnoid hemorrhage. J Clin Neurophysiol. 2005;22:92–8.

    Article  Google Scholar 

  14. Vespa P, Nuwer MR, et al. Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol. 1997;103:607–15.

    Article  PubMed  CAS  Google Scholar 

  15. van Putten MJ. The revised brain symmetry index. Clin Neurophysiol. 2007;118:2362–7.

    Article  PubMed  Google Scholar 

  16. de Vos CC, van Maarseveen SM, Brouwers PJ, van Putten MJ. Continuous EEG monitoring during thrombolysis in acute hemispheric stroke patients using the brain symmetry index. J Clin Neurophysiol. 2008;25:77–82.

    Article  PubMed  Google Scholar 

  17. Scheuer ML, Wilson SB. Data analysis for continuous EEG monitoring in the ICU: seeing the forest and the trees. J Clin Neurophysiol. 2004;21:353–78.

    PubMed  Google Scholar 

  18. Morandi A, Brummel NE, Ely EW. Sedation, delirium and mechanical ventilation: the “ABCDE” approach. Curr Opin Crit Care. 2011;17:43–9.

    Article  PubMed  Google Scholar 

  19. Jackson DL, Proudfoot CW, Cann KF, Walsh T. A systematic review of the impact of sedation practice in the ICU on resource use, costs and patient safety. Crit Care. 2010;14:R59. 1–12.

    Article  PubMed  Google Scholar 

  20. Beretta L, DeVitis A, Grandi E. Sedation in neurocritical patients: is it useful? Minerva Anestesiol. 2011;77:828–34.

    PubMed  CAS  Google Scholar 

  21. Ely EW, Truman B, Shintani A, Thomason JWW, Wheeler AP, Gordon S, et al. Monitoring sedation status over time in ICU patients: the reliability and validity of the Richmond Agitation Sedation Scale (RASS). JAMA. 2003;289:2983–91.

    Article  PubMed  Google Scholar 

  22. Cottenceau V, Petit L, Masson F, Guehl D, Asselineau J, Cochard JF, Pinaquy C, Leger A, Sztark F. The use of bispectral index to monitor barbiturate coma in severely brain injured patients with refractory intracranial hypertension. Anesth Analg. 2008;107:1676–82.

    Article  PubMed  Google Scholar 

  23. Bruhn J, Bullion TW, Shafer SL. Bispectral Index (BIS) and burst suppression: revealing a part of the BIS algorithm. J Clin Monit Comput. 2000;16:593–6.

    Article  PubMed  CAS  Google Scholar 

  24. Sackey PV. Frontal EEG, for intensive care unit sedation: treating numbers or patients? Crit Care. 2008;12:186.

    Article  PubMed  Google Scholar 

  25. Legatt AD, Arezzo JC, Vaughn Jr HG. The anatomic and physiologic basis of brainstem auditory evoked potentials. Neurol Clin. 1988;6:681–704.

    PubMed  CAS  Google Scholar 

  26. Young GB. Clinical practice. Neurologic prognosis after cardiac arrest. N Engl J Med. 2009;361:605–11.

    Article  PubMed  CAS  Google Scholar 

  27. Zandbergen EG, de Haan RJ, Stoutenbeek CP, Koelman JH, Hijdra A. Systematic review of early prediction of poor outcome in anoxic-ischaemic coma. Lancet. 1998;352:1808–12.

    Article  PubMed  CAS  Google Scholar 

  28. Legatt A, Ellen R. Grass lecture: motor evoked potential monitoring. Am J Electroneurodiagnostic Technol. 2004;44:223–43.

    PubMed  Google Scholar 

  29. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55:187–99.

    Article  PubMed  CAS  Google Scholar 

  30. Goodwin SR, Toney KA, Mahla ME. Sensory evoked potentials accurately predict recovery from prolonged coma caused by strangulation. Crit Care Med. 1993;21:631–3.

    Article  PubMed  CAS  Google Scholar 

  31. Goodwin SR, Friedman WA, Bellefleur M. Is it time to use evoked potentials to predict outcome in comatose children and adults? Crit Care Med. 1991;19:518–24.

    Article  PubMed  CAS  Google Scholar 

  32. Greenberg RP, Newlon PG, Hyatt MS, Narayan RK, Becker DP. Prognostic implications of early multimodality evoked potentials in severely head-injured patients. A prospective study. J Neurosurg. 1981;55:227–36.

    Article  PubMed  CAS  Google Scholar 

  33. Greenberg RP, Becker DP, Miller JD, Mayer DJ. Evaluation of brain function in severe human head trauma with multimodality evoked potentials. Part 2: localization of brain dysfunction and correlation with posttraumatic neurological conditions. J Neurosurg. 1977;47:163–77.

    Article  PubMed  CAS  Google Scholar 

  34. Greenberg RP, Mayer DJ, Becker DP, Miller JD. Evaluation of brain function in severe human head trauma with multimodality evoked potentials. Part 1: evoked brain-injury potentials, methods, and analysis. J Neurosurg. 1977;47:150–62.

    Article  PubMed  CAS  Google Scholar 

  35. Greenberg RP, Newlon PG, Becker DP. The somatosensory evoked potential in patients with severe head injury: outcome prediction and monitoring of brain function. Ann N Y Acad Sci. 1982;388:683–8.

    Article  PubMed  CAS  Google Scholar 

  36. Machado C. Multimodality evoked potentials and electroretinography in a test battery for an early diagnosis of brain death. J Neurosurg Sci. 1993;37:125–31.

    PubMed  CAS  Google Scholar 

  37. Machado C, Valdes P, Garcia-Tigera J, Virues T, Biscay R, Miranda J, Coutin P, Roman J, Garcia O. Brain-stem auditory evoked potentials and brain death. Electroencephalogr Clin Neurophysiol. 1991;80:392–8.

    Article  PubMed  CAS  Google Scholar 

  38. Guerit JM, Fischer C, Facco E, Tinuper P, Murri L, Ronne-Engstrom E, Nuwer M. Standards of clinical practice of EEG and EPs in comatose and other unresponsive states. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:117–31.

    PubMed  CAS  Google Scholar 

  39. Guerit JM, de Tourtchaninoff M, Soveges L, Mahieu P. The prognostic value of three-modality evoked potentials (TMEPs) in anoxic and traumatic comas. Neurophysiol Clin. 1993;23:209–26.

    Article  PubMed  CAS  Google Scholar 

  40. Sleigh JW, Havill JH, Frith R, Kersel D, Marsh N, Ulyatt D. Somatosensory evoked potentials in severe traumatic brain injury: a blinded study. J Neurosurg. 1999;91:577–80.

    Article  PubMed  CAS  Google Scholar 

  41. Schwarz S, Schwab S, Aschoff A, Hacke W. Favorable recovery from bilateral loss of somatosensory evoked potentials. Crit Care Med. 1999;27:182–7.

    Article  PubMed  CAS  Google Scholar 

  42. Lindsay K, Pasaoglu A, Hirst D, Allardyce G, Kennedy I, Teasdale G. Somatosensory and auditory brain stem conduction after head injury: a comparison with clinical features in prediction of outcome. Neurosurgery. 1990;26:278–85.

    Article  PubMed  CAS  Google Scholar 

  43. Martin NA, Doberstein C. Cerebral blood flow measurement in neurosurgical intensive care. Neurosurg Clin N Am. 1994;5:607–18.

    PubMed  CAS  Google Scholar 

  44. Madsen PL, Secher NH. Near-infrared oximetry of the brain. Prog Neurobiol. 1999;58:541–60.

    Article  PubMed  CAS  Google Scholar 

  45. Cottrell JE. Cerebral blood flow. In: Cottrell JE, editor. Anesthesia and neurosurgery. New York: Mosby Year Book, Inc; 2001. p. 800–25.

    Google Scholar 

  46. Keller E, Wietasch G, Ringleb P, Scholz M, Schwarz S, Stingele R, Schwab S, Hanley D, Hacke W. Bedside monitoring of cerebral blood flow in patients with acute hemispheric stroke. Crit Care Med. 2000;28:511–6.

    Article  PubMed  CAS  Google Scholar 

  47. Nedelmann M, Stolz E, Gerriets T, Baumgartner RW, Malferrari G, Seidel G, Kaps M. Consensus recommendations for transcranial color-coded duplex sonography for the assessment of intracranial arteries in clinical trials on acute stroke. Stroke. 2009;40:3238–44.

    Article  PubMed  Google Scholar 

  48. Manno EM. Transcranial Doppler ultrasonography in the neurocritical care unit. Crit Care Clin. 1997;13:79–104.

    Article  PubMed  CAS  Google Scholar 

  49. Ringelstein EB, Biniek R, Weiller C, Ammeling B, Nolte PN, Thron A. Type and extent of hemispheric brain infarctions and clinical outcome in early and delayed middle cerebral artery recanalization. Neurology. 1992;42:289–98.

    Article  PubMed  CAS  Google Scholar 

  50. Halsey JH, McDowell HA, Gelmon S, Morawetz RB. Blood velocity in the middle cerebral artery and regional cerebral blood flow during carotid endarterectomy. Stroke. 1989;20:53–8.

    Article  PubMed  CAS  Google Scholar 

  51. Nuttall GA, Cook DJ, Fulgham JR, Oliver Jr WC, Proper JA. The relationship between cerebral blood flow and transcranial Doppler blood flow velocity during hypothermic cardiopulmonary bypass in adults. Anesth Analg. 1996;82:1146–51.

    PubMed  CAS  Google Scholar 

  52. Weyland A, Stephan H, Kazmaier S, Weyland W, Schorn B, Grune F, Sonntag H. Flow velocity measurements as an index of cerebral blood flow. Validity of transcranial Doppler sonographic monitoring during cardiac surgery. Anesthesiology. 1994;81:1401–10.

    Article  PubMed  CAS  Google Scholar 

  53. Sloan MA, Haley Jr EC, Kassell NF, Henry ML, Stewart SR, Beskin RR, Sevilla EA, Torner JC. Sensitivity and specificity of transcranial Doppler ultrasonography in the diagnosis of vasospasm following subarachnoid hemorrhage. Neurology. 1989;39:1514–8.

    Article  PubMed  CAS  Google Scholar 

  54. Wozniak MA, Sloan MA, Rothman MI, Burch CM, Rigamonti D, Permutt T, Numaguchi Y. Detection of vasospasm by transcranial Doppler sonography. The challenges of the anterior and posterior cerebral arteries. J Neuroimaging. 1996;6:87–93.

    PubMed  CAS  Google Scholar 

  55. Sloan MA, Burch CM, Wozniak MA, Rothman MI, Rigamonti D, Permutt T, Numaguchi Y. Transcranial Doppler detection of vertebrobasilar vasospasm following subarachnoid hemorrhage. Stroke. 1994;25:2187–97.

    Article  PubMed  CAS  Google Scholar 

  56. Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P. Cerebral vasospasm after subarachnoid haemorrhage investigated by means of transcranial Doppler ultrasound. Acta Neurochir Suppl (Wien). 1988;42:81–4.

    Article  CAS  Google Scholar 

  57. Klingelhofer J, Dander D, Holzgraefe M, Bischoff C, Conrad B. Cerebral vasospasm evaluated by transcranial Doppler ultrasonography at different intracranial pressures. J Neurosurg. 1991;75:752–8.

    Article  PubMed  CAS  Google Scholar 

  58. Giller CA, Purdy P, Giller A, Batjer HH, Kopitnik T. Elevated transcranial Doppler ultrasound velocities following therapeutic arterial dilation. Stroke. 1995;26:123–7.

    Article  PubMed  CAS  Google Scholar 

  59. Kelly DF, Kordestani RK, Martin NA, Nguyen T, Hovda DA, Bergsneider M, McArthur DL, Becker DP. Hyperemia following traumatic brain injury: relationship to intracranial hypertension and outcome. J Neurosurg. 1996;85:762–71.

    Article  PubMed  CAS  Google Scholar 

  60. Kordestani RK, Counelis GJ, McBride DQ, Martin NA. Cerebral arterial spasm after penetrating craniocerebral gunshot wounds: transcranial Doppler and cerebral blood flow findings. Neurosurgery. 1997;41:351–9.

    Article  PubMed  CAS  Google Scholar 

  61. Lee JH, Martin NA, Alsina G, McArthur DL, Zaucha K, Hovda DA, Becker DP. Hemodynamically significant cerebral vasospasm and outcome after head injury: a prospective study. J Neurosurg. 1997;87:221–33.

    Article  PubMed  CAS  Google Scholar 

  62. Martin NA, Patwardhan RV, Alexander MJ, Africk CZ, Lee JH, Shalmon E, Hovda DA, Becker DP. Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg. 1997;87:9–19.

    Article  PubMed  CAS  Google Scholar 

  63. Sander D, Klingelhofer J. Cerebral vasospasm following post-traumatic subarachnoid hemorrhage evaluated by transcranial Doppler ultrasonography. J Neurol Sci. 1993;119:1–7.

    Article  PubMed  CAS  Google Scholar 

  64. Lee JH, Kelly DF, Oertel M, McArthur DL, Glenn TC, Vespa P, Boscardin WJ, Martin NA. Carbon dioxide reactivity, pressure autoregulation, and metabolic suppression reactivity after head injury: a transcranial Doppler study. J Neurosurg. 2001;95:222–32.

    Article  PubMed  CAS  Google Scholar 

  65. Klingelhofer J, Sander D. Doppler CO2 test as an indicator of cerebral vasoreactivity and prognosis in severe intracranial hemorrhages. Stroke. 1992;23:962–6.

    Article  PubMed  CAS  Google Scholar 

  66. Hassler W, Steinmetz H, Gawlowski J. Transcranial Doppler ultrasonography in raised intracranial pressure and in intracranial circulatory arrest. J Neurosurg. 1988;68:745–51.

    PubMed  CAS  Google Scholar 

  67. Goraj B, Rifkinson-Mann S, Leslie DR, Lansen TA, Kasoff SS, Tenner MS. Correlation of intracranial pressure and transcranial Doppler resistive index after head trauma. AJNR Am J Neuroradiol. 1994;15:1333–9.

    PubMed  CAS  Google Scholar 

  68. Klingelhofer J, Conrad B, Benecke R, Sander D, Markakis E. Evaluation of intracranial pressure from transcranial Doppler studies in cerebral disease. J Neurol. 1988;235:159–62.

    Article  PubMed  CAS  Google Scholar 

  69. Schmidt B, Klingelhofer J, Schwarze JJ, Sander D, Wittich I. Noninvasive prediction of intracranial pressure curves using transcranial Doppler ultrasonography and blood pressure curves. Stroke. 1997;28:2465–72.

    Article  PubMed  CAS  Google Scholar 

  70. Monteiro LM, Bollen CW, van Huffelen AC, Ackerstaff RG, Jansen NJ, van Vught AJ. Transcranial Doppler ultrasonography to confirm brain death: a meta-analysis. Intensive Care Med. 2006;32:1937–44.

    Article  PubMed  Google Scholar 

  71. Vajkoczy P, Roth H, Horn P, Luecke T, Thomé C, Huebner U, Martin GT, Zappletal C, Klar E, Schilling L, Schmiedek P. Continuous monitoring of regional cerebral blood flow—experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg. 2000;93:265–74.

    Article  PubMed  CAS  Google Scholar 

  72. Rosenthal G, Sanchez-Mejia RO, Phan N, Hemphill 3rd JC, Martin C, Manley GT. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury. J Neurosurg. 2011;114:62–70.

    Article  PubMed  Google Scholar 

  73. Howells T, Elf K, Jones PA, Ronne-Engström E, Piper I, Nilsson P, Andrews P, Enblad P. Pressure reactivity as a guide in the treatment of cerebral perfusion pressure in patients with brain trauma. J Neurosurg. 2005;102:311–7.

    Article  PubMed  Google Scholar 

  74. Gupta AK, Hutchinson PJ, Al Rawi P, Gupta S, Swart M, Kirkpatrick PJ, Menon DK, Datta AK. Measuring brain tissue oxygenation compared with jugular venous oxygen saturation for monitoring cerebral oxygenation after traumatic brain injury. Anesth Analg. 1999;88:549–53.

    PubMed  CAS  Google Scholar 

  75. Valadka AB, Gopinath SP, Contant CF, Uzura M, Robertson CS. Relationship of brain tissue PO2 to outcome after severe head injury. Crit Care Med. 1998;26:1576–81.

    Article  PubMed  CAS  Google Scholar 

  76. Latronico N, Beindorf AE, Rasulo FA, Febbrari P, Stefini R, Cornali C, Candiani A. Limits of intermittent jugular bulb oxygen saturation monitoring in the management of severe head trauma patients. Neurosurgery. 2000;46:1131–8.

    Article  PubMed  CAS  Google Scholar 

  77. Lam JM, Chan MS, Poon WS. Cerebral venous oxygen saturation monitoring: is dominant jugular bulb cannulation good enough? Br J Neurosurg. 1996;10:357–64.

    Article  PubMed  CAS  Google Scholar 

  78. Macmillan CS, Andrews PJ. Cerebrovenous oxygen saturation monitoring: practical considerations and clinical relevance. Intensive Care Med. 2000;26:1028–36.

    Article  PubMed  CAS  Google Scholar 

  79. Goetting MG, Preston G. Jugular bulb catheterization does not increase intracranial pressure. Intensive Care Med. 1991;17:195–8.

    Article  PubMed  CAS  Google Scholar 

  80. Coplin WM, O’Keefe GE, Grady MS, Grant GA, March KS, Winn HR, Lam AM. Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit. Neurosurgery. 1997;41:101–7.

    Article  PubMed  CAS  Google Scholar 

  81. Gopinath SP, Robertson CS, Contant CF, Hayes C, Feldman Z, Narayan RK, Grossman RG. Jugular venous desaturation and outcome after head injury. J Neurol Neurosurg Psychiatry. 1994;57:717–23.

    Article  PubMed  CAS  Google Scholar 

  82. Fandino J, Stocker R, Prokop S, Trentz O, Imhof HG. Cerebral oxygenation and systemic trauma related factors determining neurological outcome after brain injury. J Clin Neurosci. 2000;7:226–33.

    Article  PubMed  CAS  Google Scholar 

  83. Cormio M, Valadka AB, Robertson CS. Elevated jugular venous oxygen saturation after severe head injury. J Neurosurg. 1999;90:9–15.

    Article  PubMed  CAS  Google Scholar 

  84. Macmillan CS, Andrews PJ, Easton VJ. Increased jugular bulb saturation is associated with poor outcome in traumatic brain injury. J Neurol Neurosurg Psychiatry. 2001;70:101–4.

    Article  PubMed  CAS  Google Scholar 

  85. Highton D, Elwell C, Smith M. Noninvasive cerebral oximetry: is there light at the end of the tunnel? Curr Opin Anaesthesiol. 2010;23:576–81.

    Article  PubMed  Google Scholar 

  86. Cho H, Nemoto EM, Yonas H, Balzer J, Sclabassi RJ. Cerebral monitoring by means of oximetry and somatosensory evoked potentials during carotid endarterectomy. J Neurosurg. 1998;89:533–8.

    Article  PubMed  CAS  Google Scholar 

  87. Duffy CM, Manninen PH, Chan A, Kearns CF. Comparison of cerebral oximeter and evoked potential monitoring in carotid endarterectomy. Can J Anaesth. 1997;44:1077–81.

    Article  PubMed  CAS  Google Scholar 

  88. Pennekamp CW, Bots ML, Kappelle LJ, Moll FL, de Borst GJ. The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review. Eur J Vasc Endovasc Surg. 2009;38:539–45.

    Article  PubMed  CAS  Google Scholar 

  89. Maloney-Wilensky E, Le Roux P. The physiology behind direct brain oxygen monitors and practical aspects of their use. Childs Nerv Syst. 2010;26:419–30.

    Article  PubMed  Google Scholar 

  90. Maloney-Wilensky E, Gracias V, Itkin A, Hoffman K, Bloom S, Yang W, Christian S, LeRoux PD. Brain tissue oxygen and outcome after severe traumatic brain injury: a systematic review. Crit Care Med. 2009;37:2057–63.

    Article  PubMed  Google Scholar 

  91. Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS, Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW. Guidelines for the management of severe traumatic brain injury. X. Brain oxygen monitoring and thresholds. J Neurotrauma. 2007;24 Suppl 1:S65–70.

    PubMed  Google Scholar 

  92. Seubert CN, Mahla ME. Neurologic monitoring in the neurointensive care unit. In: Layon AG, Gabrielli A, Friedman WA, editors. Textbook of neurointensive care. Philadelphia: WB Saunders; 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph N. Seubert MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Seubert, C.N., Cibula, J.E., Mahla, M.E. (2013). Noninvasive Monitoring in the Neurointensive Care Unit: EEG, Oximetry, TCD. In: Layon, A., Gabrielli, A., Friedman, W. (eds) Textbook of Neurointensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-5226-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5226-2_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5225-5

  • Online ISBN: 978-1-4471-5226-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics