Skip to main content

Invasive Neurological and Multimodality Monitoring in the NeuroICU

  • Chapter
  • First Online:
Textbook of Neurointensive Care
  • 5769 Accesses

Abstract

Patients admitted to the neurocritical care unit (NCCU) are at risk for secondary brain injury that frequently can exacerbate outcome. Consequently, current NCCU management strategies focus on the identification, prevention, and management of secondary brain injury, since there are few pharmacological agents that demonstrate efficacy in these patients. In the last decade, techniques to monitor brain function have evolved and, in the modern NCCU, play an important role in patient care and in particular in a patient-specific targeted approach. Monitors include radiologic techniques that provide information about a specific point in time or bedside monitors that provide continuous or noncontinuous physiologic information. In turn, these bedside techniques may be subdivided into invasive or noninvasive monitors. In this review we will discuss invasive intracranial monitors including (1) intracranial pressure; (2) monitors of cerebral oxygenation (direct measurement of brain oxygen [PbtO2] and jugular venous catheters); (3) metabolic monitors, i.e., cerebral microdialysis; and (4) cerebral blood flow monitors such as thermal diffusion flowmetry and laser Doppler flowmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones PA, Andrews PJ, Midgley S, et al. Measuring the burden of secondary insults in head-injured patients during intensive care. J Neurosurg Anesthesiol. 1994;6:4–14.

    PubMed  CAS  Google Scholar 

  2. Maas AI, Menon DK, Lingsma HF, Pineda JA, Sandel ME, Manley GT. Re-orientation of clinical research in traumatic brain injury: report of an international workshop on comparative effectiveness research. J Neurotrauma. 2012;29(1):32–46.

    Article  PubMed  Google Scholar 

  3. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW, Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS. Guidelines for the management of severe traumatic brain injury. VII. Intracranial pressure monitoring technology. J Neurotrauma. 2007;24 Suppl 1:S45–54.

    PubMed  Google Scholar 

  4. Citerio G, Andrews PJ. Intracranial pressure. Part two: clinical applications and technology. Intensive Care Med. 2004;30:1882–5.

    Article  PubMed  Google Scholar 

  5. Smith M. Monitoring intracranial pressure in traumatic brain injury. Anesth Analg. 2008;106:240–8.

    Article  PubMed  Google Scholar 

  6. Marshall LF, Smith RW, Shapiro HM. The outcome with aggressive treatment in severe head injuries. Part I: the significance of intracranial pressure monitoring. J Neurosurg. 1979;50(1):20–5.

    Article  PubMed  CAS  Google Scholar 

  7. Narayan RK, Kishore PR, Becker DP, et al. Intracranial pressure: to monitor or not to monitor? A review of our experience with severe head injury. J Neurosurg. 1982;56:650–9.

    Article  PubMed  CAS  Google Scholar 

  8. Marmarou A, Anderson RL, Ward JD, et al. Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg. 1991;75(Suppl):S159–66.

    Google Scholar 

  9. Vik A, Nag T, Fredriksli OA, Skandsen T, Moen KG, Schirmer-Mikalsen K, Manley GT. Relationship of “dose” of intracranial hypertension to outcome in severe traumatic brain injury. J Neurosurg. 2008;109(4):678–84.

    Article  PubMed  Google Scholar 

  10. Stein DM, Hu PF, Brenner M, Sheth KN, Liu KH, Xiong W, Aarabi B, Scalea TM. Brief episodes of intracranial hypertension and cerebral hypoperfusion are associated with poor functional outcome after severe traumatic brain injury. J Trauma. 2011;71(2):364–74.

    Article  PubMed  Google Scholar 

  11. Marmarou A. A review of progress in understanding the pathophysiology and treatment of brain edema. Neurosurg Focus. 2007;22(5):E1.

    Article  Google Scholar 

  12. Treggiari MM, Schutz N, Yanez ND, Romand JA. Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: a systematic review. Neurocrit Care. 2007;6:104–12.

    Article  PubMed  Google Scholar 

  13. Heuer G, Smith MJ, Elliott JP, Winn HR, Le Roux P. The relationship between intracranial pressure and other clinical variables in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;101:408–16.

    Article  PubMed  Google Scholar 

  14. Stein SC, Georgoff P, Meghan S, Mirza KL, El Falaky OM. Relationship of aggressive monitoring and treatment to improved outcomes in severe traumatic brain injury. J Neurosurg. 2010;112(5):1105–12.

    Article  PubMed  Google Scholar 

  15. Whitmore RG, Thawani JP, Grady MS, Levine JM, Sanborn MR, Stein SC. Is aggressive treatment of traumatic brain injury cost-effective? J Neurosurg. 2012;116(5):1106–13.

    Article  PubMed  Google Scholar 

  16. Cremer OL, van Dijk GW, van Wensen E, Brekelmans GJ, Moons KG, Leenen LP, Kalkman CJ. Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury. Crit Care Med. 2005;33(10):2207–13.

    Article  PubMed  Google Scholar 

  17. Shafi S, Diaz-Arrastia R, Madden C, Gentilello L. Intracranial pressure monitoring in brain-injured patients is associated with worsening of survival. J Trauma. 2008;64(2):335–40.

    Article  PubMed  Google Scholar 

  18. Forsyth RJ, Wolny S, Rodrigues B. Routine intracranial pressure monitoring in acute coma. Cochrane Database Syst Rev. 2010;(2):CD002043.

    Google Scholar 

  19. Oddo M, Le Roux P. What is the etiology, pathogenesis and pathophysiology of elevated intracranial pressure? In: Neligan P, Deutschman CS, editors. The evidenced based practice of critical care. Philadelphia: Elsevier Science; 2009. p. 399–405.

    Google Scholar 

  20. Rosenthal G, Sanchez-Mejia RO, Phan N, et al. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury. J Neurosurg. 2011;114:62–70.

    Article  PubMed  Google Scholar 

  21. Lang EW, Lagopoulos J, Griffith J, Yip K, Yam A, Mudaliar Y, Mehdorn HM, Dorsch NW. Cerebral vasomotor reactivity testing in head injury: the link between pressure and flow. J Neurol Neurosurg Psychiatry. 2003;74(8):1053–9.

    Article  PubMed  CAS  Google Scholar 

  22. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW, Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS. Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neurotrauma. 2007;24 Suppl 1:S37–44.

    PubMed  Google Scholar 

  23. Katsnelson M, Mackenzie L, Frangos S, Oddo M, Levine JM, Pukenas B, Faerber J, Dong C, Kofke WA, Leroux PD. Are initial radiographic and clinical scales associated with subsequent intracranial pressure and brain oxygen levels after severe traumatic brain injury? Neurosurgery. 2012;70(5):1095–105.

    Article  PubMed  Google Scholar 

  24. Muizelaar JP, Marmarou A, Ward JD, et al. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg. 1991;75(5):731–9.

    Article  PubMed  CAS  Google Scholar 

  25. Robertson CS, Valadka AB, Hannay HJ, et al. Prevention of secondary ischemic insults after severe head injury. Crit Care Med. 1999;27(10):2086–95.

    Article  PubMed  CAS  Google Scholar 

  26. Andrews PJ, Citerio G, Longhi L, Polderman K, Sahuquillo J, Vajkoczy P, Neuro-Intensive Care and Emergency Medicine (NICEM) Section of the European Society of Intensive Care Medicine. NICEM consensus on neurological monitoring in acute neurological disease. Intensive Care Med. 2008;34(8):1362–70.

    Article  PubMed  Google Scholar 

  27. Maas AI, Dearden M, Teasdale GM, Braakman R, Cohadon F, Iannotti F, Karimi A, Lapierre F, Murray G, Ohman J, Persson L, Servadei F, Stocchetti N, Unterberg A. EBIC-guidelines for management of severe head injury in adults. European Brain Injury Consortium. Acta Neurochir (Wien). 1997;139(4):286–94.

    Article  CAS  Google Scholar 

  28. Procaccio F, Stocchetti N, Citerio G, Berardino M, Beretta L, Della Corte F, D’Avella D, Brambilla GL, Delfini R, Servadei F, Tomei G. Guidelines for the treatment of adults with severe head trauma (part I). Initial assessment; evaluation and pre-hospital treatment; current criteria for hospital admission; systemic and cerebral monitoring. J Neurosurg Sci. 2000;44(1):1–10.

    PubMed  CAS  Google Scholar 

  29. Padayachy LC, Figaji AA, Bullock MR. Intracranial pressure monitoring for traumatic brain injury in the modern era. Childs Nerv Syst. 2010;26(4):441–52. Review.

    Article  PubMed  Google Scholar 

  30. Ehtisham A, Taylor S, Bayless L, et al. Placement of external ventricular drains and intracranial pressure monitors by neurointensivists. Neurocrit Care. 2009;10:241–7.

    Article  PubMed  Google Scholar 

  31. Martinez-Manas RM, Santamarta D, de Campos JM, Ferrer E. Camino intracranial pressure monitor: prospective study of accuracy and complications. J Neurol Neurosurg Psychiatry. 2000;69:82–6.

    Article  PubMed  CAS  Google Scholar 

  32. Bauer DF, McGwin Jr G, Melton SM, George RL, Markert JM. The relationship between INR and development of hemorrhage with placement of ventriculostomy. J Trauma. 2011;70(5):1112–7.

    Article  PubMed  Google Scholar 

  33. Timofeev I, Dahyot-Fizelier C, Keong N, Nortje J, Al-Rawi PG, Czosnyka M, Menon DK, Kirkpatrick PJ, Gupta AK, Hutchinson PJ. Ventriculostomy for control of raised ICP in acute traumatic brain injury. Acta Neurochir Suppl. 2008;102:99–104.

    Article  PubMed  CAS  Google Scholar 

  34. Exo J, Kochanek PM, Adelson PD, Greene S, Clark RS, Bayir H, Wisniewski SR, Bell MJ. Intracranial pressure-monitoring systems in children with traumatic brain injury: combining therapeutic and diagnostic tools. Pediatr Crit Care Med. 2011;12(5):560–5.

    Article  PubMed  Google Scholar 

  35. Birch AA, Eynon CA, Schley D. Erroneous intracranial pressure measurements from simultaneous pressure monitoring and ventricular drainage catheters. Neurocrit Care. 2006;5:51–4.

    Article  PubMed  CAS  Google Scholar 

  36. Lozier AP, Sciacca RR, Romagnoli MF, Connolly Jr ES. Ventriculostomy-related infections: a critical review of the literature. Neurosurgery. 2002;51(1):170–81; discussion 181–2.

    Article  PubMed  Google Scholar 

  37. Beer R, Lackner P, Pfausler B, Schmutzhard E. Nosocomial ventriculitis and meningitis in neurocritical care patients. J Neurol. 2008;255:1617–24.

    Article  PubMed  CAS  Google Scholar 

  38. Bremmer R, de Jong BM, Wagemakers M, et al. The course of intracranial pressure in traumatic brain injury: relation with outcome and CT-characteristics. Neurocrit Care. 2010;12:362–8.

    Article  PubMed  Google Scholar 

  39. O’Phelan KH, Park D, Efird JT, Johnson K, Albano M, Beniga J, Green DM, Chang CW. Patterns of increased intracranial pressure after severe traumatic brain injury. Neurocrit Care. 2009;10(3):280–6.

    Article  PubMed  Google Scholar 

  40. Le Roux P, Lam AM, Newell DW, Grady MS, Winn HR. Cerebral arteriovenous difference of oxygen: a predictor of cerebral infarction and outcome in severe head injury. J Neurosurg. 1997;87:1–8.

    Article  PubMed  Google Scholar 

  41. Stiefel MF, Udoetek J, Spiotta A, Gracias VH, Goldberg AH, Maloney-Wilensky E, Bloom S, Le Roux P. Conventional neurocritical care and cerebral oxygenation after traumatic brain injury. J Neurosurgery. 2006;105:568–75.

    Article  Google Scholar 

  42. Menon DK, Coles JP, Gupta AK, Fryer TD, Smielewski P, Chatfield DA, Aigbirhio F, Skepper JN, Minhas PS, Hutchinson PJ, Carpenter TA, Clark JC, Pickard JD. Diffusion limited oxygen delivery following head injury. Crit Care Med. 2004;32:1384–90.

    Article  PubMed  Google Scholar 

  43. Vespa PM, O’Phelan K, McArthur D, Miller C, Eliseo M, Hirt D, Glenn T, Hovda DA. Pericontusional brain tissue exhibits persistent elevation of lactate/pyruvate ratio independent of cerebral perfusion pressure. Crit Care Med. 2007;35(4):1153–60.

    Article  PubMed  Google Scholar 

  44. Oddo M, Levine JM, Mackenzie L, Frangos S, Feihl F, Kasner SE, Katsnelson M, Pukenas B, Macmurtrie E, Maloney-Wilensky E, Kofke WA, LeRoux PD. Brain hypoxia is associated with short-term outcome after severe traumatic brain injury independently of intracranial hypertension and low cerebral perfusion pressure. Neurosurgery. 2011;69(5):1037–45; discussion 1045.

    PubMed  Google Scholar 

  45. Maloney-Wilensky E, Gracias V, Itkin A, Hoffman K, Bloom S, Yang W, Christian S, Le Roux P. Brain tissue oxygen and outcome after severe traumatic brain injury: a systematic review. Crit Care Med. 2009;37(6):2057–63.

    Article  PubMed  Google Scholar 

  46. Maset AL, Marmarou A, Ward JD, et al. Pressure-volume index in head injury. J Neurosurg. 1987;67:832–40.

    Article  PubMed  CAS  Google Scholar 

  47. Steiner LA, Czosnyka M, Piechnik SK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8.

    Article  PubMed  Google Scholar 

  48. Czosnyka M, Guazzo E, Whitehouse M, et al. Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir. 1996;138:531–41; discussion 41–2.

    Article  PubMed  CAS  Google Scholar 

  49. Balestreri M, Czosnyka M, Steiner LA, et al. Association between outcome, cerebral pressure reactivity and slow ICP waves following head injury. Acta Neurochir Suppl. 2005;95:25–8.

    Article  PubMed  CAS  Google Scholar 

  50. Zweifel C, Lavinio A, Steiner LA, Radolovich D, Smielewski P, Timofeev I, Hiler M, Balestreri M, Kirkpatrick PJ, Pickard JD, Hutchinson P, Czosnyka M. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25(4):E2.

    Article  PubMed  Google Scholar 

  51. Kim DJ, Czosnyka Z, Kasprowicz M, Smieleweski P, Baledent O, Guerguerian AM, Pickard JD, Czosnyka M. Continuous monitoring of the Monro-Kellie doctrine: is it possible? J Neurotrauma. 2012;29(7):1354–63.

    Article  PubMed  Google Scholar 

  52. Aries MJ, Czosnyka M, Budohoski KP, Kolias AG, Radolovich DK, Lavinio A, Pickard JD, Smielewski P. Continuous monitoring of cerebrovascular reactivity using pulse waveform of intracranial pressure. Neurocrit Care. 2012;17(1):67–76.

    Article  PubMed  Google Scholar 

  53. Sorrentino E, Diedler J, Kasprowicz M, Budohoski KP, Haubrich C, Smielewski P, Outtrim JG, Manktelow A, Hutchinson PJ, Pickard JD, Menon DK, Czosnyka M. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16(2):258–66.

    Article  PubMed  CAS  Google Scholar 

  54. Belli A, Sen J, Petzold A, Russo S, Kitchen N, Smith M. Metabolic failure precedes intracranial pressure rises in traumatic brain injury: a microdialysis study. Acta Neurochir (Wien). 2008;150:461–9.

    Article  CAS  Google Scholar 

  55. Adamides AA, Rosenfeldt FL, Winter CD, Pratt NM, Tippett NJ, Lewis PM, Bailey MJ, Cooper DJ, Rosenfeld JV. Brain tissue lactate elevations predict episodes of intracranial hypertension in patients with traumatic brain injury. J Am Coll Surg. 2009;209(4):531–9.

    Article  PubMed  Google Scholar 

  56. Nangunoori R, Maloney-Wilensky E, Stiefel MDM, Park S, Kofke WA, Levine J, Yang W, Le Roux P. Brain tissue oxygen based therapy and outcome after severe traumatic brain injury: a systematic literature review. Neurocrit Care. 2012;17(1):131–8.

    Article  PubMed  CAS  Google Scholar 

  57. Timofeev I, Carpenter KL, Nortje J, Al-Rawi PG, O’Connell MT, Czosnyka M, Smielewski P, Pickard JD, Menon DK, Kirkpatrick PJ, Gupta AK, Hutchinson PJ. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain. 2011;134(Pt 2):484–94.

    Article  PubMed  Google Scholar 

  58. Ketty SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest. 1948;27:476–83.

    Article  Google Scholar 

  59. Matta BF, Lam AM, Mayberg TS, Shapira Y, Winn HR. A critique of the intraoperative use of jugular venous bulb catheters during neurosurgical procedures. Anesth Analg. 1994;79:745–50.

    PubMed  CAS  Google Scholar 

  60. Feldman Z, Robertson CS. Monitoring of cerebral hemodynamics with jugular bulb catheters. Crit Care Clin. 1997;13(1):51–77.

    Article  PubMed  CAS  Google Scholar 

  61. Robertson CS, Gopinath SP, Goodman JC, et al. SjvO2 monitoring in head injured patients. J Neurotrauma. 1995;12:891–6.

    Article  PubMed  CAS  Google Scholar 

  62. Gibbs EL, Gibbs FA. The cross sectional areas of the vessels that form the torcular and the manner in which blood is distributed to the right and to the left lateral sinus. Anat Rec. 1934;54:419.

    Article  Google Scholar 

  63. Gibbs FA. A thermoelectric blood flow recorder in the form of a needle. In: Proceedings of the Society for Experimental Biology and Medicine, San Francisco, 1933, p. 141–6.

    Google Scholar 

  64. Stocchetti N, Paparella A, Brindelli F, Bacchi M, Piazza P, Zuccoli P. Cerebral venous oxygen saturation studied with bilateral samples in the internal jugular veins. Neurosurgery. 1994;34:38–44.

    Article  PubMed  CAS  Google Scholar 

  65. National Institute for Clinical Excellence. NICE technology appraisal guidance No 49: guidance on the use of ultrasound locating devices for placing central venous catheters. 2002. London NICE. Available from www.nice.org.uk/pdf/ultrasound_49_GUIDANCE.pdf.

  66. Bankier AA, Fleischmann D, Windiscch A, et al. Position of jugular oxygen saturation catheter in patients with head trauma: assessment by use of plain films. Am J Radiol. 1995;164:437–41.

    CAS  Google Scholar 

  67. Gunn HC, Matta BF, Lam AM, Mayberg TS. Accuracy of continuous jugular bulb venous oximetry during intracranial surgery. J Neurosurg Anesthesiol. 1995;7:174–7.

    Article  PubMed  CAS  Google Scholar 

  68. Goetting MG, Preston G. Jugular bulb catheterization: experience with 123 patients. Crit Care Med. 1990;18(11):1220–3.

    Article  PubMed  CAS  Google Scholar 

  69. Sheinberg GM, Kanter MJ, Robertson CS, et al. Continuous monitoring of jugular venous oxygen saturation in head-injured patients. J Neurosurg. 1992;76:212–7.

    Article  PubMed  CAS  Google Scholar 

  70. Gopinath SP, Rogertson CS, Constant CF, et al. Jugular venous desaturation and outcome after head injury. J Neurol Neurosurg Psychiatry. 1994;57:717–23.

    Article  PubMed  CAS  Google Scholar 

  71. Thiagarajan A, Goverdhan P, Chari P, Somasunderam K. The effect of hyperventilation and hyperoxia on cerebral venous oxygen saturation in patients with traumatic brain injury. Anesth Analg. 1998;87:850–3.

    PubMed  CAS  Google Scholar 

  72. Crossman J, Banister K, Bythell V, Bullock R, Chambers I, Mendelow AD. Predicting clinical ischaemia during awake carotid endarterectomy: use of the SJVO2 probe as a guide to selective shunting. Physiol Meas. 2003;24:347–54.

    Article  PubMed  Google Scholar 

  73. Croughwell ND, Newman MF, Blumenthal JA, White WD, Lewis JB, Frasco PE, Smith LR, Thyrum EA, Hurwitz BJ, Leone BJ, Schell RM, Reves JG. Jugular bulb saturation and cognitive dysfunction after cardiopulmonary bypass. Ann Thorac Surg. 1994;58:1702–8.

    Article  PubMed  CAS  Google Scholar 

  74. Artru F, Dailler F, Burel E, et al. Assessment of jugular blood oxygen and lactate indices for detection of cerebral ischemia and prognosis. J Neurosurg Anesthesiol. 2004;16:226–31.

    Article  PubMed  Google Scholar 

  75. Longhi L, Pagan F, Valeriani V, et al. Monitoring brain tissue oxygen tension in brain-injured patients reveals hypoxic episodes in normal-appearing and in perifocal tissue. Intensive Care Med. 2007;33:2136–42.

    Article  PubMed  Google Scholar 

  76. Ponce LL, Pillai S, Cruz J, Li X, Hannay HJ, Gopinath S, Robertson CS. Position of probe determines prognostic information of brain tissue pO2 in severe traumatic brain injury. Neurosurgery. 2012;70(6):1492–502; discussion 1502–3.

    Article  PubMed  Google Scholar 

  77. Kiening KL, Unterberg AW, Bardt TF, Schneider GH, Lanksch WR. Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue PO2 versus jugular vein oxygen saturation. J Neurosurg. 1996;85:751–7.

    Article  PubMed  CAS  Google Scholar 

  78. Gupta AK, Hutchinson PJ, Al-Rawi P, et al. Measuring brain tissue oxygenation compared with jugular venous oxygen saturation for monitoring cerebral oxygenation after traumatic brain injury. Anesth Analg. 1999;88:549–53.

    PubMed  CAS  Google Scholar 

  79. Maloney-Wilensky E, Le Roux P. The physiology behind direct brain oxygen monitors and practical aspects of their use. Childs Nerv Syst. 2010;26(4):419–30.

    Article  PubMed  Google Scholar 

  80. Hlatky R, Valadka AB, Gopinath SP, Robertson CS. Brain tissue oxygen tension response to induced hyperoxia reduced in hypoperfused brain. J Neurosurg. 2008;108(1):53–8.

    Article  PubMed  Google Scholar 

  81. Bailey RL, Quattrone F, Curtain C, Frangos S, Maloney-Wilensky E, Park S, Le Roux P. The safety of multimodal monitoring in severe brain injury. Neurocritical Care Society meeting, Montreal, 2011.

    Google Scholar 

  82. Dings J, Meixensberger J, Jager A, et al. Clinical experience with 118 brain tissue oxygen partial pressure catheter probes. Neurosurgery. 1998;43:1082–95.

    Article  PubMed  CAS  Google Scholar 

  83. Orakcioglu B, Sakowitz OW, Neumann JO, Kentar MM, Unterberg A, Kiening KL. Evaluation of a novel brain tissue oxygenation probe in an experimental swine model. Neurosurgery. 2010;67(6):1716–22; discussion 1722–3.

    Article  PubMed  Google Scholar 

  84. Dengler J, Frenzel C, Vajkoczy P, et al. Cerebral tissue oxygenation measured by two different probes: challenges and interpretation. Intensive Care Med. 2011;37:1809–15.

    Article  PubMed  CAS  Google Scholar 

  85. Hemphill 3rd JC, Knudson MM, Derugin N, Morabito D, Manley GT. Carbon dioxide reactivity and pressure autoregulation of brain tissue oxygen. Neurosurgery. 2001;48:377–83.

    PubMed  Google Scholar 

  86. Rosenthal G, Hemphill III JC, Sorani M, et al. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med. 2008;36:1917–24.

    Article  PubMed  CAS  Google Scholar 

  87. Scheufler KM, Rohrborn HJ, Zentner J. Does tissue oxygen-tension reliably reflect cerebral oxygen delivery and consumption? Anesth Analg. 2002;95:1042–8.

    PubMed  CAS  Google Scholar 

  88. Scheufler K-M, Lehnert A, Rohrborn H-J, et al. Individual values of brain tissue oxygen pressure, microvascular oxygen saturation, cytochrome redox level and energy metabolites in detecting critically reduced cerebral energy state during acute changes in global cerebral perfusion. J Neurosurg Anesthesiol. 2004;16:210–9.

    Article  PubMed  Google Scholar 

  89. Longhi L, Valeriani V, Rossi S, De Marchi M, Egidi M, Stocchetti N. Effects of hyperoxia on brain tissue oxygen tension in cerebral focal lesions. Acta Neurochir Suppl. 2002;81:315–7.

    PubMed  CAS  Google Scholar 

  90. Johnston AJ, Steiner LA, Coles JP, et al. Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury. Crit Care Med. 2005;33:189–95; discussion 255–7.

    Article  PubMed  Google Scholar 

  91. Pennings FA, Schuurman PR, van den Munckhof P, Bouma GJ. Brain tissue oxygen pressure monitoring in awake patients during functional neurosurgery: the assessment of normal values. J Neurotrauma. 2008;25:1173–7.

    Article  PubMed  Google Scholar 

  92. Zauner A, Bullock R, Di X, Young HF. Brain oxygen, CO2, pH, and temperature monitoring: evaluation in the feline brain. Neurosurgery. 1995;37:1168–76; discussion 76–7.

    Article  PubMed  CAS  Google Scholar 

  93. Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. X. Brain oxygen monitoring and thresholds. J Neurotrauma. 2007;24 Suppl 1:S65–70.

    PubMed  Google Scholar 

  94. Hlatky R, Valadka AB, Goodman JC, Contant CF, Robertson CS. Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma. 2004;21(7):894–906.

    Article  PubMed  Google Scholar 

  95. Hoffman WE, Charbel FT, Edelman G. Brain tissue oxygen, carbon dioxide, and pH in neurosurgical patients at risk for ischemia. Anesth Analg. 1996;82(3):582–6.

    PubMed  CAS  Google Scholar 

  96. Smith ML, Counelis GJ, Maloney-Wilensky E, Stiefel MF, Donley K, LeRoux PD. Brain tissue oxygen tension in clinical brain death: a case series. Neurol Res. 2007;29:755–9.

    Article  PubMed  CAS  Google Scholar 

  97. Figaji AA, Kent SJ. Brain tissue oxygenation in children diagnosed with brain death. Neurocrit Care. 2010;12(1):56–61.

    Article  PubMed  CAS  Google Scholar 

  98. van Santbrink H, Maas AIR, Avezaat CJJ. Continuous monitoring of partial pressure of brain tissue oxygen in patients with severe head injury. Neurosurgery. 1996;38:21–31.

    Article  PubMed  Google Scholar 

  99. van den Brink WA, van Santbrink H, Steyerberg EW, et al. Brain oxygen tension in severe head injury. Neurosurgery. 2000;46:868–78.

    PubMed  Google Scholar 

  100. Bardt TF, Unterberg AW, Hartl R, et al. Monitoring of brain tissue PO2 in traumatic brain injury: effect of cerebral hypoxia on outcome. Acta Neurochir Suppl. 1998;71:153–6.

    PubMed  CAS  Google Scholar 

  101. Doppenberg EM, Zauner A, Watson JC, et al. Determination of the ischemic threshold for brain oxygen tension. Acta Neurochir Suppl. 1998;71:166–9.

    PubMed  CAS  Google Scholar 

  102. Chang JJ, Youn TS, Benson D, Mattick H, Andrade N, Harper CR, Moore CB, Madden CJ, Diaz-Arrastia RR. Physiologic and functional outcome correlates of brain tissue hypoxia in traumatic brain injury. Crit Care Med. 2009;37(1):283–90.

    Article  PubMed  CAS  Google Scholar 

  103. Gopinath SP, Valadka AB, Uzura M, Robertson CS. Comparison of jugular venous oxygen saturation and brain tissue PO2 as monitors of cerebral ischemia after head injury. Crit Care Med. 1999;27:2337–45.

    Article  PubMed  CAS  Google Scholar 

  104. Nortje J, Gupta AK. The role of tissue oxygen monitoring in patients with acute brain injury. Br J Anaesth. 2006;97:95–106.

    Article  PubMed  CAS  Google Scholar 

  105. Gracias VH, Guillamondegui OD, Stiefel MF, Wilensky EM, Bloom S, Pryor JP, Reilly PM, Le Roux P, Schwab CW. Cerebral cortical oxygenation: a pilot study. J Trauma. 2004;56:469–74.

    Article  PubMed  Google Scholar 

  106. Rohlwink UK, Zwane E, Graham Fieggen A, Argent AC, le Roux PD, Figaji AA. The relationship between intracranial pressure and brain oxygenation in children with severe traumatic brain injury. Neurosurgery. 2012;70(5):1220–31.

    Article  PubMed  Google Scholar 

  107. Tolias CM, Reinert M, Seiler R, et al. Normobaric hyperoxia–induced improvement in cerebral metabolism and reduction in intracranial pressure in patients with severe head injury: a prospective historical cohort-matched study. J Neurosurg. 2004;101(3):435–44.

    Article  PubMed  Google Scholar 

  108. Gupta AK, Hutchinson PJ, Fryer T, et al. Measurement of brain tissue oxygenation performed using positron emission tomography scanning to validate a novel monitoring method. J Neurosurg. 2002;96(2):263–8.

    Article  PubMed  Google Scholar 

  109. Jaeger M, Schuhmann MU, Soehle M, Meixensberger J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med. 2006;34:1783–8.

    Article  PubMed  Google Scholar 

  110. Jaeger M, Soehle M, Schuhmann MU, et al. Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen. Acta Neurochir. 2005;147:51–6.

    Article  PubMed  CAS  Google Scholar 

  111. Menzel M, Doppenberg EM, Zauner A, Soukup J, Reinert MM, Bullock R. Increased inspired oxygen concentration as a factor in improved brain tissue oxygenation and tissue lactate levels after severe human head injury. J Neurosurg. 1999;91:1–10.

    Article  PubMed  CAS  Google Scholar 

  112. al-Rawi PG, Hutchinson PJ, Gupta AK, et al. Multiparameter brain tissue monitoring correlation between parameters and identification of CPP thresholds. Zentralbl Neurochirv. 2000;61(2):74–9.

    Article  CAS  Google Scholar 

  113. Coles JP, Minhas PS, Fryer TD, et al. Effect of hyperventilation on cerebral blood flow in traumatic head injury: clinical relevance and monitoring correlates. Crit Care Med. 2002;30:1950–9.

    Article  PubMed  CAS  Google Scholar 

  114. Dohmen C, Bosche B, Graf R, et al. Identification and clinical impact of impaired cerebrovascular autoregulation in patients with malignant middle cerebral artery infarction. Stroke. 2007;38(1):56–61.

    Article  PubMed  Google Scholar 

  115. Sakowitz OW, Stover JF, Sarrafzadeh AS, Unterberg AW, Kiening KL. Effects of mannitol bolus administration on intracranial pressure, cerebral extracellular metabolites, and tissue oxygenation in severely head-injured patients. J Trauma. 2007;62:292–8.

    Article  PubMed  CAS  Google Scholar 

  116. Oddo M, Milby A, Chen I, Frangos S, MacMutrie E, Maloney-Wilensky E, Stiefel MF, Kofke A, Levine JM, Le Roux P. Hemoglobin concentration and cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage: a microdialysis study. Stroke. 2009;40(4):1275–81.

    Article  PubMed  CAS  Google Scholar 

  117. Oddo M, Levine JM, Frangos S, et al. Effect of mannitol and hypertonic saline on cerebral oxygenation in patients with severe traumatic brain injury and refractory intracranial hypertension. J Neurol Neurosurg Psychiatry. 2009;80(8):916–20.

    Article  PubMed  CAS  Google Scholar 

  118. Oddo M, Frangos S, Milby A, Chen I, Maloney-Wilensky E, Murtrie EM, Stiefel M, Kofke WA, Le Roux P, Levine JM. Induced normothermia attenuates cerebral metabolic distress in patients with aneurysmal subarachnoid hemorrhage and refractory fever. Stroke. 2009;40(5):1913–6.

    Article  PubMed  Google Scholar 

  119. Oddo M, Frangos S, Maloney-Wilensky E, Andrew Kofke W, Le Roux P, Levine JM. Effect of shivering on brain tissue oxygenation during induced normothermia in patients with severe brain injury. Neurocrit Care. 2010;12(1):10–6.

    Article  PubMed  CAS  Google Scholar 

  120. Weiner GM, Lacey MR, Mackenzie L, Shah DP, Frangos SG, Grady MS, Kofke WA, Levine J, Schuster J, Le Roux P. Decompressive craniectomy for elevated intracranial pressure and its effect on the cumulative ischemic burden and therapeutic intensity levels after sever traumatic brain injury. Neurosurgery. 2010;66:1111–9.

    Article  PubMed  Google Scholar 

  121. Figaji AA, Zwane E, Fieggen AG, Argent AC, Le Roux P, Siesjo P, Peter JC. Pressure autoregulation, intracranial pressure and brain tissue oxygenation in children with severe traumatic brain injury. J Neurosurg Pediatr. 2009;4(5):420–8.

    Article  PubMed  Google Scholar 

  122. Smith MJ, Maggee S, Stiefel M, Bloom S, Gracias V, Le Roux P. Packed red blood cell transfusion increases local cerebral oxygenation. Crit Care Med. 2005;33:1104–8.

    Article  PubMed  Google Scholar 

  123. Muench E, Horn P, Bauhuf C, Roth H, Philipps M, Hermann P, Quintel M, Schmiedek P, Vajkoczy P. Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage. Crit Care Med. 2007;35:1844–51.

    Article  PubMed  Google Scholar 

  124. Nortje J, Coles JP, Timofeev I, et al. Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings. Crit Care Med. 2008;36:273–81.

    Article  PubMed  CAS  Google Scholar 

  125. Spiotta AM, Stiefel MF, Gracias VH, et al. Brain tissue oxygen-directed management and outcome in patients with severe traumatic brain injury. J Neurosurg. 2010;113:571–80.

    Article  PubMed  Google Scholar 

  126. Narotam PK, Morrison JF, Nathoo N. Brain tissue oxygen monitoring in traumatic brain injury and major trauma: outcome analysis of a brain tissue oxygen-directed therapy. J Neurosurg. 2009;111:672–82.

    Article  PubMed  Google Scholar 

  127. Martini RP, Deem S, Yanez ND, et al. Management guided by brain tissue oxygen monitoring and outcome following severe traumatic brain injury. J Neurosurg. 2009;111(4):644–9.

    Article  PubMed  Google Scholar 

  128. Nordström CH. Cerebral energy metabolism and microdialysis in neurocritical care. Childs Nerv Syst. 2010;26:465–72.

    Article  PubMed  Google Scholar 

  129. Bellander BM, Cantais E, Enblad P, et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 2004;30:2166–9.

    Article  PubMed  Google Scholar 

  130. Tisdall MM, Smith M. Cerebral microdialysis: research technique or clinical tool. Br J Anaesth. 2006;97:18–25.

    Article  PubMed  CAS  Google Scholar 

  131. Goodman JC, Robertson CS. Microdialysis: is it ready for prime time? Curr Opin Crit Care. 2009;15:110–7.

    Article  PubMed  Google Scholar 

  132. Cecil S, Chen PM, Callaway SE, Rowland SM, Adler DE, Chen JW. Traumatic brain injury: advanced multimodal neuromonitoring from theory to clinical practice. Crit Care Nurse. 2011;31(2):25–36, quiz 37.

    Article  PubMed  Google Scholar 

  133. Oddo M, Levine J, Frangos S, Maloney-Wilensky E, Carrera E, Daniel R, Magistretti PJ, Le Roux P. Brain lactate metabolism in humans with subarachnoid haemorrhage. Stroke. 2012;43(5):1418–21.

    Article  PubMed  CAS  Google Scholar 

  134. Marcoux J, McArthur DA, Miller C, Glenn TC, Villablanca P, Martin NA, Hovda DA, Alger JR, Vespa PM. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med. 2008;36(10):2871–7.

    Article  PubMed  CAS  Google Scholar 

  135. Belli A, Sen J, Petzold A, Russo S, Kitchen N, Smith M, Tavazzi B, Vagnozzi R, Signoretti S, Amorini AM, Bellia F, Lazzarino G. Extracellular N-acetylaspartate depletion in traumatic brain injury. J Neurochem. 2006;96(3):861–9.

    Article  PubMed  CAS  Google Scholar 

  136. Chen HI, Stiefel MF, Oddo M, Milby AH, Maloney-Wilenksy E, Frangos S, Levine JM, Kofke WA, Le Roux P. Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery. 2011;69:53–63.

    Article  PubMed  Google Scholar 

  137. Stein NR, McArthur DL, Etchepare M, Vespa PM. Early cerebral metabolic crisis after TBI influences outcome despite adequate hemodynamic resuscitation. Neurocrit Care. 2012;17(1):49–57.

    Article  PubMed  Google Scholar 

  138. Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma. 2005;22:3–41.

    Article  PubMed  Google Scholar 

  139. Hutchinson PJ, O’Connell MT, Al-Rawi PG, et al. Clinical cerebral microdialysis: a methodological study. J Neurosurg. 2000;93:37–43.

    Article  PubMed  CAS  Google Scholar 

  140. Larach DB, Kofke WA, Le Roux P. Potential non-hypoxic/ischemic causes of increased cerebral interstitial fluid lactate/pyruvate ratio: a review of available literature. Neurocrit Care. 2011;15(3):609–22.

    Article  PubMed  Google Scholar 

  141. Reinstrup P, Stahl N, Mellergard P, et al. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery. 2000;47(3):701–9.

    PubMed  CAS  Google Scholar 

  142. Schulz MK, Wang LP, Tange M, et al. Cerebral microdialysis monitoring: determination of normal and ischemic cerebral metabolisms in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2000;93(5):808–14.

    Article  PubMed  CAS  Google Scholar 

  143. Vespa PM, McArthur D, O’Phelan K, et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab. 2003;23(7):865–77.

    Article  PubMed  CAS  Google Scholar 

  144. Oddo M, Schmidt JM, Carrera C, Badjatia N, Connolly ES, Presciutti M, Ostapkovich ND, Levine JM, Le Roux P, Mayer SA. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med. 2008;36:3233–8.

    Article  PubMed  CAS  Google Scholar 

  145. Goodman JC, Valadka AB, Gopinath SP, et al. Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis. Crit Care Med. 1999;27(9):1965–73.

    Article  PubMed  CAS  Google Scholar 

  146. Unterberg AW, Sakowitz OW, Sarrafzadeh AS, et al. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2001;94(5):740–9.

    Article  PubMed  CAS  Google Scholar 

  147. Vespa P, Bergsneider M, Hattori N, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25(6):763–74.

    Article  PubMed  CAS  Google Scholar 

  148. Berthet C, Lei H, Thevenet J, Gruetter R, Magistretti PJ, Hirt L. Neuroprotective role of lactate after cerebral ischemia. J Cereb Blood Flow Metab. 2009;29(11):1780–9.

    Article  PubMed  CAS  Google Scholar 

  149. Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B. In vivo evidence for lactate as a neuronal energy source. J Neurosci. 2011;31(20):7477–85.

    Article  PubMed  CAS  Google Scholar 

  150. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 2011;144(5):810–23.

    Article  PubMed  CAS  Google Scholar 

  151. Skjoth-Rasmussen J, Schulz M, Kristensen SR, et al. Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;100(1):8–15.

    Article  PubMed  CAS  Google Scholar 

  152. Kett-White R, Hutchinson PJ, Al-Rawi PG, et al. Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes. Neurosurgery. 2002;50(6):1213–21.

    PubMed  Google Scholar 

  153. Nordstrom CH, Reinstrup P, Xu W, et al. Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology. 2003;98(4):809–14.

    Article  PubMed  Google Scholar 

  154. Hillered L, Valtysson J, Enblad P, et al. Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatry. 1998;64(4):486–91.

    Article  PubMed  CAS  Google Scholar 

  155. Peerdeman SM, Girbes AR, Polderman KH, et al. Changes in cerebral interstitial glycerol concentration in head-injured patients; correlation with secondary events. Intensive Care Med. 2003;29(10):1825–8.

    Article  PubMed  Google Scholar 

  156. Vespa P, Prins M, Ronne-Engstrom E, et al. Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg. 1998;89(6):971–82.

    Article  PubMed  CAS  Google Scholar 

  157. Staub F, Graf R, Gabel P, et al. Multiple interstitial substances measured by microdialysis in patients with subarachnoid hemorrhage. Neurosurgery. 2000;47(5):1106–15.

    Article  PubMed  CAS  Google Scholar 

  158. Gopinath SP, Valadka AB, Goodman JC, Robertson CS. Extracellular glutamate and aspartate in head injured patients. Acta Neurochir Suppl. 2000;76:437–8.

    PubMed  CAS  Google Scholar 

  159. Obrenovitch TP, Urenjak J. Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury? J Neurotrauma. 1997;14(10):677–98.

    Article  PubMed  CAS  Google Scholar 

  160. Folkersma H, Brevé JJ, Tilders FJ, Cherian L, Robertson CS, Vandertop WP. Cerebral microdialysis of interleukin (IL)-1beta and IL-6: extraction efficiency and production in the acute phase after severe traumatic brain injury in rats. Acta Neurochir (Wien). 2008;150(12):1277–84; discussion 1284.

    Article  Google Scholar 

  161. Tisdall MM, Rejdak K, Kitchen ND, Smith M, Petzold A. The prognostic value of brain extracellular fluid nitric oxide metabolites after traumatic brain injury. Neurocrit Care. 2011 [Epub ahead of print].

    Google Scholar 

  162. Petzold A, Tisdall MM, Girbes AR, Martinian L, Thom M, Kitchen N, Smith M. In vivo monitoring of neuronal loss in traumatic brain injury: a microdialysis study. Brain. 2011;134(Pt 2):464–83.

    Article  PubMed  Google Scholar 

  163. Czosnyka M, Matta BF, Smielewski P, et al. Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial Doppler ultrasonography. J Neurosurg. 1998;88(5):802–8.

    Article  PubMed  CAS  Google Scholar 

  164. Czosnyka M, Smielewski P, Kirkpatrick P, et al. Continuous monitoring of cerebrovascular pressure-reactivity in head injury. Acta Neurochir Suppl. 1998;71:74–7.

    PubMed  CAS  Google Scholar 

  165. Robertson CS. Management of cerebral perfusion pressure after traumatic brain injury. Anesthesiology. 2001;95(6):1513–7.

    Article  PubMed  CAS  Google Scholar 

  166. Vespa P. What is the optimal threshold for cerebral perfusion pressure following traumatic brain injury? Neurosurg Focus. 2003;15(6):E4.

    Article  PubMed  Google Scholar 

  167. Frerichs KU, Feuerstein GZ. Laser-Doppler flowmetry. A review of its application for measuring cerebral and spinal cord blood flow. Mol Chem Neuropathol. 1990;12:55–70.

    Article  PubMed  CAS  Google Scholar 

  168. Bonner RF, Nossal R. Principles of laser-Doppler flowmetry. In: Shepherd AP, Oberg PA, editors. Laser Doppler flowmetry. Boston: Kluwer Academic; 1990. p. 17–45.

    Chapter  Google Scholar 

  169. Bolognese P, Miller JI, Heger IM, et al. Laser Doppler flowmetry in neurosurgery. J Neurosurg Anesthesiol. 1993;5:151–8.

    PubMed  CAS  Google Scholar 

  170. Klaessens JHGM, Kolkman RGM, Hopman JCW, et al. Monitoring cerebral perfusion using near-infrared spectroscopy and laser Doppler flowmetry. Physiol Meas. 2003;24:N35–40.

    Article  PubMed  CAS  Google Scholar 

  171. Eyre JA, Essex TJH, Flecknell PA, et al. A comparison of measurements of cerebral blood flow in the rabbit using laser Doppler spectroscopy and radionuclide labelled microspheres. Clin Phys Physiol Meas. 1988;9:65–74.

    Article  PubMed  CAS  Google Scholar 

  172. Fakuda O, Endo S, Kuwayama N, et al. The characteristics of laser-Doppler flowmetry for the measurement of regional cerebral blood flow. Neurosurgery. 1995;36:358–64.

    Article  Google Scholar 

  173. Kirkpatrick PJ, Smielweski P, Czosnyka M, et al. Continuous monitoring of cortical perfusion by laser Doppler flowmetry in ventilated patients with head injury. J Neurol Neurosurg Psychiatry. 1994;57:1382–8.

    Article  PubMed  CAS  Google Scholar 

  174. Kirkpatrick PJ, Smielweski P, Piechnik S, et al. Early effects of mannitol in patients with head injuries assessed using bedside multimodality monitoring. Neurosurgery. 1996;39:714–20.

    Article  PubMed  CAS  Google Scholar 

  175. Lam JMK, Hsiang JNK, Poon WS. Monitoring of autoregulation using laser Doppler flowmetry in patients with head injury. J Neurosurg. 1997;86:438–45.

    Article  PubMed  CAS  Google Scholar 

  176. Smielewski P, Czosnyka M, Kirkpatrick P, et al. Evaluation of the transient hyperemic response test in head injured patients. J Neurosurg. 1997;86:773–8.

    Article  PubMed  CAS  Google Scholar 

  177. Lee SC, Chen JF, Lee ST. Continuous regional cerebral blood flow monitoring in the neurosurgical intensive care unit. J Clin Neurosci. 2005;12:520–3.

    Article  PubMed  Google Scholar 

  178. Gaines C, Carter LP, Crowell RM. Comparison of local cerebral blood flow determined by thermal and hydrogen clearance. Stroke. 1983;14:66–9.

    Article  PubMed  CAS  Google Scholar 

  179. Vajkoczy P, Roth H, Horn P, et al. Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg. 2000;93:265–74.

    Article  PubMed  CAS  Google Scholar 

  180. Sioutos PJ, Orozco JA, Carter LP, Weinand ME, Hamilton AJ, Williams FC. Continuous regional cerebral cortical blood flow monitoring in head-injured patients. Neurosurgery. 1995;36(5):943–9.

    Article  PubMed  CAS  Google Scholar 

  181. Vajkoczy P, Horn P, Thome C, et al. Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2003;98:1227–34.

    Article  PubMed  Google Scholar 

  182. Miller JI, Chou MW, Capocelli A, et al. Continuous intracranial multimodality monitoring comparing local cerebral blood flow, cerebral perfusion pressure, and microvascular resistance. Acta Neurochir Suppl. 1998;71:82–4.

    PubMed  CAS  Google Scholar 

  183. Lang EW, Czosnyka M, Mehdorn HM. Tissue oxygen reactivity and cerebral autoregulation after severe traumatic brain injury. Crit Care Med. 2003;31:267–71.

    Article  PubMed  CAS  Google Scholar 

  184. Chambers IR, et al. BrainIT: a trans-national head injury monitoring research network. Acta Neurochir Suppl. 2006;96:7–10.

    Article  PubMed  CAS  Google Scholar 

  185. Sorani MD, Hemphill 3rd JC, Morabito D, Rosenthal G, Manley GT. New approaches to physiological informatics in neurocritical care. Neurocrit Care. 2007;7:45–52.

    Article  PubMed  Google Scholar 

  186. Peelen L, et al. Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the Intensive Care Unit. J Biomed Inform. 2010;43:273–86.

    Article  PubMed  Google Scholar 

  187. Hemphill JC, Andrews P, De Georgia M, Medscape. Multimodal monitoring and neurocritical care bioinformatics. Nat Rev Neurol. 2011;7(8):451–60.

    Article  PubMed  Google Scholar 

  188. Buchman TG. Novel representation of physiologic states during critical illness and recovery. Crit Care. 2010;14:127.

    Article  PubMed  Google Scholar 

  189. Jacono FF, DeGeorgia MA, Wilson CG, Dick TE, Loparo KA. Data acquisition and complex systems analysis in critical care: developing the intensive care unit of the future. J Healthc Eng. 2010;1:337–56.

    Article  Google Scholar 

  190. AVERT-IT project. Avert-IT [online]. 2011. http://www.avert-it.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Le Roux MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Le Roux, P. (2013). Invasive Neurological and Multimodality Monitoring in the NeuroICU. In: Layon, A., Gabrielli, A., Friedman, W. (eds) Textbook of Neurointensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-5226-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5226-2_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5225-5

  • Online ISBN: 978-1-4471-5226-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics