Skip to main content

Biomedical Engineering in Upper-Extremity Prosthetics

  • Chapter
Comprehensive Management of the Upper-Limb Amputee

Abstract

The newly fashionable field of biomedical engineering is so widely misunderstood that some explanation may be helpful. Perhaps it is even essential, if the potential contribution of engineers in prosthetics is to be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mann, R.W., “Biomedical Engineering, a Cornucopia of Challenging Engineering Tasks—all of Direct Human Significance,” IEEE Engineering in Medicine and Biology Magazine, Vol. 4, No. 3, pp 43–45; September, 1985.

    Article  PubMed  CAS  Google Scholar 

  2. Reswick, J.B., “Technology—An Unfulfilled Promise for the Handicapped,” Medical Progress through Technology, Vol. 9, pp 209–215; 1983.

    PubMed  CAS  Google Scholar 

  3. Reiter, R., “Eine neue Elektrokunsthand.” Grenzgebiete der Medizin, Vol. 1, No. 4, pp 133–135; September, 1948.

    PubMed  CAS  Google Scholar 

  4. Kobrinski, A.E. et al, “Problems of Bioelectric Control,” in Automatic and Remote Control, (Proc. 1st. IFAC Int’l. Congress, Moscow, 1960), Butterworths, London, Vol. 2, pp 619–623; 1961.

    Google Scholar 

  5. Reswick, J.B., “Final Report, Biomedical Research Program on Cybernetic Systems for the Disabled,” Case Western Reserve University, Engineering Design Centre, EDC Report 4-70-29, Cleveland, Ohio; 1970.

    Google Scholar 

  6. Long, Chas. II, “Normal and Abnormal Motor Control in the Upper Extremities,” Case Western Reserve University, Ampersand Group, Final Report on SRS RD-2377-M, Cleveland, Ohio; 1970.

    Google Scholar 

  7. Childress, D.S., “Design of a Myoelectric Signal Conditioner,” J. Audio Eng. Soc., Vol. 17, No. 3, pp 286–291; June, 1969.

    Google Scholar 

  8. Antonelli, D.J. and Waring, W., “Myoelectric Control of Powered Devices,” Archives Phys. Med. and Rehab., Vol. 48, pp 345–349; July, 1967.

    CAS  Google Scholar 

  9. Bottomley, A.H., “Myo-Electric Control of Powered Prosthesis,” J. Bone Jt. Surg., Vol. 47B, No. 3, pp 411–415; August, 1965.

    Google Scholar 

  10. Herberts, P., “Myoelectric Signals in Control of Prostheses,” Acta Orthopaedica Scandinavica, Supplementum No. 124; 1969.

    Google Scholar 

  11. Kato, I., Okazaki, E., and Nakamura, H., “The Electrically Controlled Hand Prosthesis Using Command Disc and/or EMG,” J. Society Instrument and Control Engineers, Vol. 6, No. 4, pp 236–241; April, 1967.

    Google Scholar 

  12. Scott, R.N., “Myolectric Control Systems,” in Advances in Biomedical Engineering and Medical Physics, S.N. Levine, Ed., Wiley-Interscience Publishers, New York, Vol. 2, pp 45–72; 1968.

    Google Scholar 

  13. Katz, B., “Nerve, Muscle and Synapse,” McGraw-Hill, New York; 1966.

    Google Scholar 

  14. Basmajian, J.C., “Muscles Alive,” 3rd Ed., Williams and Wilkins, Baltimore; 1974.

    Google Scholar 

  15. Basmajian, J.V., and Simard, T.G., “Methods in Training the Conscious Control of Motor Units,” Arch. Phys. Med. Rehab., Vol. 48, pp 12–19; January, 1967.

    Google Scholar 

  16. Tucker, F.R., Foort, J., and Ivey, W., “Myoelectric Studies on the Tibialis Anterior Muscle In Shank Amputees,” Canadian Journal of Surgery, Vol. 12, pp 188–192; April, 1969.

    CAS  Google Scholar 

  17. Milsum, J.H., “Biological Control System Analysis,” McGraw-Hill, New York, pp 342–350; 1966.

    Google Scholar 

  18. Tucker, F.R. and Scott, R.N., “Development of a Surgically Implanted Myo-Telementry Control System,” J. Bone Jt. Surg., Vol. 50B, No. 4, pp 771–779; November, 1968.

    Google Scholar 

  19. Reswick, J.B., Op. cit., pp 506–517.

    Google Scholar 

  20. Ibid., pp 440–461.

    Google Scholar 

  21. Geddes, L.A., “Electrodes and the Measurement of Bioelectric Events,” John Wiley, New York; 1972.

    Google Scholar 

  22. Pacela, A.F., “Collecting the Body’s Signals,” Electronics, Vol. 40, No. 14, pp 103–112; July 10, 1967.

    Google Scholar 

  23. Buchthal, F. Guld, C., and Rosenfalck, P., “Multielectrode Study of the Territory of a Motor Unit,” Acta Physiologica Scandinavica, Vol. 39, pp 83–104; 1957.

    Article  PubMed  CAS  Google Scholar 

  24. Geddes, L.A. and Baker, L.E., “Principles of Applied Biomedical Instrumentation,” John Wiley, New York, pp 365–375; 1968.

    Google Scholar 

  25. Offner, F.F., “Electronics for Biologists,” McGraw Hill, New York, pp 84–92; 1967.

    Google Scholar 

  26. Evans, H.B., et al., “Signal Processing for Proportional Myoelectric Control,” IEEE Trans. Biomedical Engineering, Vol. BME-31, No. 2, pp 207–211; February, 1984.

    Article  Google Scholar 

  27. Dorcas, D.S. and Scott, R.N., “A Three-State Myo-Electric Control,” Medical and Biological Engineering, Vol. 4, No. 4, pp 367–371; July 1966.

    Article  CAS  Google Scholar 

  28. Dorcas, D.S., Dunfield, V.A., and Scott, R.N., “Improved Myo-Electric Control Systems,” Medical and Biological Engineering, Vol. 8, No. 4, pp 333–341; June 1970.

    Article  CAS  Google Scholar 

  29. Parker, P.A., Stuller, J.A., and Scott, R.N., “Signal Processing for the Multistate Myoelectric Channel,” Proceedings of the Institute of Electrical and Electronics Engineers, Vol. 65, No. 5, pp 662–674; May, 1977.

    Google Scholar 

  30. Malone, J.M., et al., “Immediate, Early, and Late Postsurgical Management of Upper-Limb Amputation,” Journal of Rehabilitation Research and Development, Vol. 21, No. 1, pp 33–41; May, 1984.

    PubMed  CAS  Google Scholar 

  31. Sörbye, R., “Myoelectric Prosthetic Fittings in Young Children,” Clinical Orthopaedics and Related Research, No. 148, pp 34–40; May, 1980.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Scott, R.N. (1989). Biomedical Engineering in Upper-Extremity Prosthetics. In: Atkins, D.J., Meier, R.H. (eds) Comprehensive Management of the Upper-Limb Amputee. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3530-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3530-9_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8143-6

  • Online ISBN: 978-1-4612-3530-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics