Skip to main content

Fibrosarcoma and Its Variants

  • Chapter
  • First Online:
Management of Soft Tissue Sarcoma

Abstract

Fibrosarcoma can occur at all ages (Fig. 12.1) and in all sites (Fig. 12.2). Before the era of immunohistochemistry, fibrosarcoma was one of the most common diagnoses for a soft tissue sarcoma. With the development of immunohistochemical and molecular techniques, it is now rare for a sarcoma to be termed a fibrosarcoma, which by its name implies fibroblasts as the cell of origin. With increasing sophistication in diagnosis, more and more subtypes of fibroblastic sarcomas are now appreciated, all relatively rare tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pedeutour F, Simon MP, Minoletti F, et al. Translocation, t(17;22)(q22;q13), in dermatofibrosarcoma protuberans: a new tumor-associated chromosome rearrangement. Cytogenet Cell Genet. 1996;72(2–3):171–4.

    Article  PubMed  CAS  Google Scholar 

  2. Pedeutour F, Coindre JM, Sozzi G, et al. Supernumerary ring chromosomes containing chromosome 17 sequences. A specific feature of dermatofibrosarcoma protuberans? Cancer Genet Cytogenet. 1994;76(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  3. Bowne WB, Antonescu CR, Leung DH, et al. Dermatofibrosarcoma protuberans: A clinicopathologic analysis of patients treated and followed at a single institution. Cancer. 2000;88(12):2711–20.

    Article  PubMed  CAS  Google Scholar 

  4. Maire G, Martin L, Michalak-Provost S, et al. Fusion of COL1A1 exon 29 with PDGFB exon 2 in a der(22)t(17;22) in a pediatric giant cell fibroblastoma with a pigmented Bednar tumor component. Evidence for age-related chromosomal pattern in dermatofibrosarcoma protuberans and related tumors. Cancer Genet Cytogenet. 2002;134(2):156–61.

    Article  PubMed  CAS  Google Scholar 

  5. Kesserwan C, Sokolic R, Cowen EW, et al. Multicentric dermatofibrosarcoma protuberans in patients with adenosine deaminase-deficient severe combined immune deficiency. J Allergy Clin Immunol. 2012;129(3):762–9.

    Google Scholar 

  6. Rubin BP, Schuetze SM, Eary JF, et al. Molecular targeting of platelet-derived growth factor B by imatinib mesylate in a patient with metastatic dermatofibrosarcoma protuberans. J Clin Oncol. 2002;20(17):3586–91.

    Article  PubMed  CAS  Google Scholar 

  7. McArthur GA, Demetri GD, van Oosterom A, et al. Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: imatinib target exploration consortium study B2225. J Clin Oncol. 2005;23(4):866–73.

    Article  PubMed  CAS  Google Scholar 

  8. Maki RG, Awan RA, Dixon RH, et al. Differential sensitivity to imatinib of 2 patients with metastatic sarcoma arising from dermatofibrosarcoma protuberans. Int J Cancer. 2002;100(6):623–6.

    Article  PubMed  CAS  Google Scholar 

  9. Heinrich MC, Joensuu H, Demetri GD, et al. Phase II, open-label study evaluating the activity of imatinib in treating life-threatening malignancies known to be associated with imatinib-sensitive tyrosine kinases. Clin Cancer Res. 2008;14(9):2717–25.

    Article  PubMed  CAS  Google Scholar 

  10. Doyle LA, Moller E, Dal Cin P, et al. MUC4 is a highly sensitive and specific marker for low-grade fibromyxoid sarcoma. Am J Surg Pathol. 2011;35(5):733–41.

    Article  PubMed  Google Scholar 

  11. Reid R, de Silva MV, Paterson L, et al. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes share a common t(7;16)(q34;p11) translocation. Am J Surg Pathol. 2003;27(9):1229–36.

    Article  PubMed  Google Scholar 

  12. Mertens F, Fletcher CD, Antonescu CR, et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest J Tech Method Pathol. 2005;85(3):408–15.

    Article  CAS  Google Scholar 

  13. Guillou L, Benhattar J, Gengler C, et al. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol. 2007;31(9):1387–402.

    Article  PubMed  Google Scholar 

  14. Bilsky MH, Schefler AC, Sandberg DI, et al. Sclerosing epithelioid fibrosarcomas involving the neuraxis: report of three cases. Neurosurgery. 2000;47(4):956–9. discussion 959–960.

    Article  PubMed  CAS  Google Scholar 

  15. Antonescu CR, Rosenblum MK, Pereira P, et al. Sclerosing epithelioid fibrosarcoma: a study of 16 cases and confirmation of a clinicopathologically distinct tumor. Am J Surg Pathol. 2001;25(6):699–709.

    Article  PubMed  CAS  Google Scholar 

  16. Coffin CM, Hornick JL, Fletcher CD. Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am J Surg Pathol. 2007;31(4):509–20.

    Article  PubMed  Google Scholar 

  17. Butrynski JE, D’Adamo DR, Hornick JL, et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N Engl J Med. 2010;363(18):1727–33.

    Article  PubMed  CAS  Google Scholar 

  18. Sasaki T, Okuda K, Zheng W, et al. The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers. Cancer Res. 2010;70(24):10038–43.

    Article  PubMed  CAS  Google Scholar 

  19. Dagash H, Koh C, Cohen M, et al. Inflammatory myofibroblastic tumor of the pancreas: a case report of 2 pediatric cases–steroids or surgery? J Pediatr Surg. 2009;44(9):1839–41.

    Article  PubMed  Google Scholar 

  20. Rubin BP, Chen CJ, Morgan TW, et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol. 1998;153(5):1451–8.

    Article  PubMed  CAS  Google Scholar 

  21. Knezevich SR, McFadden DE, Tao W, et al. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet. 1998;18(2):184–7.

    Article  PubMed  CAS  Google Scholar 

  22. Orbach D, Rey A, Cecchetto G, et al. Infantile fibrosarcoma: management based on the European experience. J Clin Oncol. 2010;28(2):318–23.

    Article  PubMed  Google Scholar 

  23. Meis-Kindblom JM, Kindblom LG. Acral myxoinflammatory fibroblastic sarcoma: a low-grade tumor of the hands and feet. Am J Surg Pathol. 1998;22(8):911–24.

    Article  PubMed  CAS  Google Scholar 

  24. Montgomery EA, Devaney KO, Giordano TJ, et al. Inflammatory myxohyaline tumor of distal extremities with virocyte or Reed-Sternberg-like cells: a distinctive lesion with features simulating inflammatory conditions, Hodgkin’s disease, and various sarcomas. Mod Pathol. 1998;11(4):384–91.

    PubMed  CAS  Google Scholar 

  25. Lambert I, Debiec-Rychter M, Guelinckx P, et al. Acral myxoinflammatory fibroblastic sarcoma with unique clonal chromosomal changes. Virchows Arch. 2001;438(5):509–12.

    Article  PubMed  CAS  Google Scholar 

  26. Hallor KH, Sciot R, Staaf J, et al. Two genetic pathways, t(1;10) and amplification of 3p11-12, in myxoinflammatory fibroblastic sarcoma, haemosiderotic fibrolipomatous tumour, and morphologically similar lesions. J Pathol. 2009;217(5):716–27.

    Article  PubMed  CAS  Google Scholar 

  27. Wettach GR, Boyd LJ, Lawce HJ, et al. Cytogenetic analysis of a hemosiderotic fibrolipomatous tumor. Cancer Genet Cytogenet. 2008;182(2):140–3.

    Article  PubMed  CAS  Google Scholar 

  28. Antonescu CR, Zhang L, Nielsen GP, et al. Consistent t(1;10) with rearrangements of TGFBR3 and MGEA5 in both myxoinflammatory fibroblastic sarcoma and hemosiderotic fibrolipomatous tumor. Genes Chromosomes Cancer. 2011;50(10):757–64.

    Article  PubMed  CAS  Google Scholar 

  29. Fields RC, Hameed M, Qin L-X, Moraco N, Jia X, Maki RG, Singer S, Brennan MF. Dermatofibrosarcoma protuberans (DFSP): predictors of recurrence and the use of systemic therapy. Ann Surg Oncol. 2011;18:328–36.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brennan, M.F., Antonescu, C.R., Maki, R.G. (2013). Fibrosarcoma and Its Variants. In: Management of Soft Tissue Sarcoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5004-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5004-7_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5003-0

  • Online ISBN: 978-1-4614-5004-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics