Skip to main content

Proteomics in Milk and Milk Processing

  • Chapter
  • First Online:
Proteomics in Foods

Part of the book series: Food Microbiology and Food Safety ((RESDEV,volume 2))

Abstract

Milk proteins provide essential nutrition for growth and represent an expansive repertoire of functional food ingredients. Many proteins are thoroughly digested in the gut to provide vital amino acids, however, others are only partially or minimally broken down and thus able to exert higher-level functionality related to the structures of their digestive products. Defining the milk proteome and how it changes during the course of lactation are key steps towards an improved understanding of milk biology and function, and has the potential to provide novel insights in the areas of dairy and other food sciences. This better understanding may also guide manufacturers in developing foods with improved protein quality and function. Recent progress in proteomics has greatly increased the number of proteins identified in milk. In this chapter, we highlight recent findings in both human and bovine milk proteomes that are novel or whose importance is not yet fully understood. We describe the consequences of these findings on our understanding of the role of milk proteins in biological processes, signaling pathways, and nutrition, and as functional food ingredients. We further describe the use of proteomics in characterizing heat-induced protein modifications during industrial processes that often reduce the nutritional value and function of milk proteins. Finally, we discuss the use of proteomic analysis as a guide in the optimization of industrial processing conditions and selection of milk materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott RD, Curb JD, Rodriguez BL, Sharp DS, Burchfiel CM, Yano K (1996) Effect of dietary calcium and milk consumption on risk of thromboembolic stroke in older middle-aged men. The Honolulu Heart Program. Stroke 27(5):813–818

    Article  CAS  Google Scholar 

  • Acharya AS, Manning JM (1980) Amadori rearrangement of glyceraldehyde-hemoglobin Schiff base adducts. A new procedure for the determination of ketoamine adducts in proteins. J Biol Chem 255(15):7218–7224

    CAS  Google Scholar 

  • Affolter M, Grass L, Vanrobaeys F, Casado B, Kussmann M (2009) Qualitative and quantitative profiling of the bovine milk fat globule membrane proteome. J Proteomics 73(6):1079–1088

    Article  CAS  Google Scholar 

  • Arena S, Renzone G, Novi G, Paffetti A, Bernardini G, Santucci A, Scaloni A (2010) Modern proteomic methodologies for the characterization of lactosylation protein targets in milk. Proteomics 10(19):3414–3434

    Article  CAS  Google Scholar 

  • Belford DA, Rogers ML, Regester GO, Francis GL, Smithers GW, Liepe IJ, Priebe IK, Ballard FJ (1995) Milk-derived growth factors as serum supplements for the growth of fibroblast and epithelial cells. In Vitro Cell Dev Biol Anim 31(10):752–760

    Article  CAS  Google Scholar 

  • Bottcher MF, Jenmalm MC, Garofalo RP, Bjorksten B (2000a) Cytokines in breast milk from allergic and nonallergic mothers. Pediatr Res 47(1):157–162

    Article  CAS  Google Scholar 

  • Bottcher MF, Jenmalm MC, Bjorksten B, Garofalo RP (2000b) Chemoattractant factors in breast milk from allergic and nonallergic mothers. Pediatr Res 47(5):592–597

    Article  CAS  Google Scholar 

  • Bottcher MF, Jenmalm MC, Bjorksten B (2003) Cytokine, chemokine and secretory IgA levels in human milk in relation to atopic disease and IgA production in infants. Pediatr Allergy Immunol 14(1):35–41

    Article  Google Scholar 

  • Bryan DL, Forsyth KD, Gibson RA, Hawkes JS (2006) Interleukin-2 in human milk: a potential modulator of lymphocyte development in the breastfed infant. Cytokine 33(5):289–293

    Article  CAS  Google Scholar 

  • Calhoun DA, Lunoe M, Du Y, Staba SL, Christensen RD (1999) Concentrations of granulocyte colony-stimulating factor in human milk after in vitro simulations of digestion. Pediatr Res 46(6):767–771

    Article  CAS  Google Scholar 

  • Carbonaro M (2004) Proteomics: present and future in food quality evaluation. Trends Food Sci Tech 15:209–216

    Article  CAS  Google Scholar 

  • Carbonaro M (2006) Application of two-dimensional electrophoresis for monitoring gastrointestinal digestion of milk. Amino Acids 31(4):485–488

    Article  CAS  Google Scholar 

  • Casado B, Affolter M, Kussmann M (2009) OMICS-rooted studies of milk proteins, oligosaccharides and lipids. J Proteomics 73(2):196–208

    Article  CAS  Google Scholar 

  • Castell JV, Friedrich G, Kuhn CS, Poppe GE (1997) Intestinal absorption of undegraded proteins in men: presence of bromelain in plasma after oral intake. Am J Physiol Gastr L 273((1 36–1)):G139–G146

    CAS  Google Scholar 

  • Cattaneo S, Masotti F, Pellegrino L (2009) Liquid infant formulas: technological tools for limiting heat damage. J Agric Food Chem 57(22):10689–10694

    Article  CAS  Google Scholar 

  • Cavaletto M, Giuffrida MG, Conti A (2004) The proteomic approach to analysis of human milk fat globule membrane. Clin Chim Acta 347(1–2):41–48

    Article  CAS  Google Scholar 

  • Cavaletto M, Giuffrida MG, Conti A (2008) Milk fat globule membrane components–a proteomic approach. Adv Exp Med Biol 606:129–141

    Article  CAS  Google Scholar 

  • Cebo C, Caillat H, Bouvier F, Martin P (2010) Major proteins of the goat milk fat globule membrane. J Dairy Sci 93(3):868–876

    Article  CAS  Google Scholar 

  • Cebo C, Rebours E, Henry C, Makhzami S, Cosette P, Martin P (2012) Identification of major milk fat globule membrane proteins from pony mare milk highlights the molecular diversity of lactadherin across species. J Dairy Sci 95(3):1085–1098

    Article  CAS  Google Scholar 

  • Charlwood J, Hanrahan S, Tyldesley R, Langridge J, Dwek M, Camilleri P (2002) Use of proteomic methodology for the characterization of human milk fat globular membrane proteins. Anal Biochem 301(2):314–324

    Article  CAS  Google Scholar 

  • Chevalier F, Hirtz C, Sommerer N, Kelly AL (2009) Use of reducing/nonreducing two-dimensional electrophoresis for the study of disulfide-mediated interactions between proteins in raw and heated bovine milk. J Agric Food Chem 57(13):5948–5955

    Article  CAS  Google Scholar 

  • Clare DA, Swaisgood HE (2000) Bioactive milk peptides: a prospectus. J Dairy Sci 83(6):1187–1195

    Article  CAS  Google Scholar 

  • Clare DA, Catignani GL, Swaisgood HE (2003) Biodefense properties of milk: the role of antimicrobial proteins and peptides. Curr Pharm Design 9(16):1239–1255

    Article  CAS  Google Scholar 

  • Cunsolo V, Muccilli V, Saletti R, Foti S (2011a) Review: applications of mass spectrometry techniques in the investigation of milk proteome. Eur J Mass Spectrom (Chichester, Eng) 17(4):305–320

    Article  CAS  Google Scholar 

  • Cunsolo V, Muccilli V, Fasoli E, Saletti R, Righetti PG, Foti S (2011b) Poppea’s bath liquor: the secret proteome of she-donkey’s milk. J Proteomics 74(10):2083–2099

    Article  CAS  Google Scholar 

  • Czerwenka C, Maier I, Pittner F, Lindner W (2006) Investigation of the lactosylation of whey proteins by liquid chromatography-mass spectrometry. J Agric Food Chem 54(23):8874–8882

    Article  CAS  Google Scholar 

  • D’Alessandro A, Scaloni A, Zolla L (2010) Human milk proteins: an interactomics and updated functional overview. J Proteome Res 9(7):3339–3373

    Article  CAS  Google Scholar 

  • D’Amato A, Bachi A, Fasoli E, Boschetti E, Peltre G, Sénéchal H, Righetti PG (2009) In-depth exploration of cow’s whey proteome via combinatorial peptide ligand libraries. J Proteome Res 8(8):3925–3936

    Article  CAS  Google Scholar 

  • Daniels MC, Adair LS (2005) Breast-feeding influences cognitive development in Filipino children. J Nutr 135(11):2589–2595

    CAS  Google Scholar 

  • De Matteis MA, Luini A (2008) Exiting the golgi complex. Nat Rev Mol Cell Biol 9(4):273–284

    Article  CAS  Google Scholar 

  • Desrivieres S, Prinz T, Castro-Palomino Laria N, Meyer M, Boehm G, Bauer U, Schafer J, Neumann T, Shemanko C, Groner B (2003) Comparative proteomic analysis of proliferating and functionally differentiated mammary epithelial cells. Mol Cell Proteomics 2(10):1039–1054

    Article  CAS  Google Scholar 

  • Dewettinck K, Rombaut R, Thienpont N, Le TT, Messens K, Van Camp J (2008) Nutritional and technological aspects of milk fat globule membrane material. Int Dairy J 18(5):436–457

    Article  CAS  Google Scholar 

  • Donnet-Hughes A, Duc N, Serrant P, Vidal K, Schiffrin EJ (2000) Bioactive molecules in milk and their role in health and disease: the role of transforming growth factor-beta. Immunol Cell Biol 78(1):74–79

    Article  CAS  Google Scholar 

  • Fenaille F, Morgan F, Parisod V, Tabet JC, Guy PA (2004) Solid-state glycation of beta-lactoglobulin by lactose and galactose: localization of the modified amino acids using mass spectrometric techniques. J Mass Spectrom 39(1):16–28

    Article  CAS  Google Scholar 

  • Field CJ (2005) The immunological components of human milk and their effect on immune development in infants. J Nutr 135(1):1–4

    CAS  Google Scholar 

  • Fong BY, Norris CS, MacGibbon AKH (2007) Protein and lipid composition of bovine milk-fat-globule membrane. Int Dairy J 17(4):275–288

    Article  CAS  Google Scholar 

  • Fortunato D, Giuffrida MG, Cavaletto M, Garoffo LP, Dellavalle G, Napolitano L, Giunta C, Fabris C, Bertino E, Coscia A, Conti A (2003) Structural proteome of human colostral fat globule membrane proteins. Proteomics 3(6):897–905

    Article  CAS  Google Scholar 

  • Frid AH, Nilsson M, Holst JJ, Bjorck IM (2005) Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects. Am J Clin Nutr 82(1):69–75

    CAS  Google Scholar 

  • Gao X, McMahon RJ, Woo JG, Davidson BS, Morrow AL, Zhang Q (2012) Temporal changes in milk proteomes reveal developing milk functions. J Proteome Res 11:3897–3907

    Article  CAS  Google Scholar 

  • German JB, Dillard CJ, Ward RE (2002) Bioactive components in milk. Curr Opin Clin Nutr 5(6):653–658

    Article  CAS  Google Scholar 

  • Gill HS, Cross ML (2000) Anticancer properties of bovine milk. Br J Nutr 84(Suppl 1):S161–S166

    CAS  Google Scholar 

  • Gobbetti M, Stepaniak L, De Angelis M, Corsetti A, Di Cagno R (2002) Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Crit Rev Food Sci 42(3):223–239

    Article  CAS  Google Scholar 

  • Goldman AS (1993) The immune system of human milk: antimicrobial, antiinflammatory and immunomodulating properties. Pediatr Infect Dis J 12(8):664–671

    Article  CAS  Google Scholar 

  • Hamosh M (2001) Bioactive factors in human milk. Pediatr Clin North Am 48(1):69–86

    Article  CAS  Google Scholar 

  • Hanash SM, Pitteri SJ, Faca VM (2008) Mining the plasma proteome for cancer biomarkers. Nature 452(7187):571–579

    Article  CAS  Google Scholar 

  • Hanson LA, Korotkova M, Lundin S, Haversen L, Silfverdal SA, Mattsby-Baltzer I, Strandvik B, Telemo E (2003) The transfer of immunity from mother to child. Ann N Y Acad Sci 987:199–206

    Article  CAS  Google Scholar 

  • Harmsen HJM, Wildeboer-Veloo ACM, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30(1):61–67

    Article  CAS  Google Scholar 

  • Harris P, Johannessen KM, Smolenski G, Callaghan M, Broadhurst MK, Kim K, Wheeler TT (2010) Characterisation of the anti-microbial activity of bovine milk ribonuclease4 and ribonuclease5 (angiogenin). Int Dairy J 20(6):400–407

    Article  CAS  Google Scholar 

  • Hawkes JS, Bryan DL, Neumann MA, Makrides M, Gibson RA (2001) Transforming growth factor beta in human milk does not change in response to modest intakes of docosahexaenoic acid. Lipids 36(10):1179–1181

    Article  CAS  Google Scholar 

  • Heid HW, Keenan TW (2005) Intracellular origin and secretion of milk fat globules. Eur J Cell Biol 84(2–3):245–258

    Article  CAS  Google Scholar 

  • Heird WC, Schwarz SM, Hansen IH (1984) Colostrum-induced enteric mucosal growth in beagle puppies. Pediatr Res 18(6):512–515

    Article  CAS  Google Scholar 

  • Hering NA, Andres S, Fromm A, van Tol EA, Amasheh M, Mankertz J, Fromm M, Schulzke JD (2011) Transforming growth factor-beta, a whey protein component, strengthens the intestinal barrier by upregulating claudin-4 in HT-29/B6 cells. J Nutr 141(5):783–789

    Article  CAS  Google Scholar 

  • Hettinga K, van Valenberg H, de Vries S, Boeren S, van Hooijdonk T, van Arendonk J, Vervoort J (2011) The host defense proteome of human and bovine milk. PLoS One 6(4):e19433

    Article  CAS  Google Scholar 

  • Holland JW, Gupta R, Deeth HC, Alewood PF (2011) Proteomic analysis of temperature-dependent changes in stored UHT milk. J Agric Food Chem 59(5):1837–1846

    Article  CAS  Google Scholar 

  • Hong SS, Park JH, Kwon SW (2007) Determination of proteins in infant formula by high-performance liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 845(1):69–73

    Article  CAS  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009a) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009b) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13

    Article  CAS  Google Scholar 

  • Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326(5957):1216–1219

    Article  CAS  Google Scholar 

  • Jenness R (1979) The composition of human milk. Semin Perinatol 3(3):225–239

    CAS  Google Scholar 

  • Jones AD, Tier CM, Wilkins JP (1998) Analysis of the Maillard reaction products of beta-lactoglobulin and lactose in skimmed milk powder by capillary electrophoresis and electrospray mass spectrometry. J Chromatogr A 822(1):147–154

    Article  CAS  Google Scholar 

  • Kanwar JR, Kanwar RK (2009) Gut health immunomodulatory and anti-inflammatory functions of gut enzyme digested high protein micro-nutrient dietary supplement-Enprocal. BMC Immunol 10(7):1–19

    Google Scholar 

  • Karhumaa P, Leinonen J, Parkkila S, Kaunisto K, Tapanainen J, Rajaniemi H (2001) The identification of secreted carbonic anhydrase VI as a constitutive glycoprotein of human and rat milk. Proc Natl Acad Sci USA 98(20):11604–11608

    Article  CAS  Google Scholar 

  • Keenan TW (2001) Milk lipid globules and their surrounding membrane: a brief history and perspectives for future research. J Mammary Gland Biol Neoplasia 6(3):365–371

    Article  CAS  Google Scholar 

  • Knip M, Virtanen SM, Seppa K, Ilonen J, Savilahti E, Vaarala O, Reunanen A, Teramo K, Hamalainen AM, Paronen J, Dosch HM, Hakulinen T, Akerblom HK (2010) Dietary intervention in infancy and later signs of beta-cell autoimmunity. N Engl J Med 363(20):1900–1908

    Article  CAS  Google Scholar 

  • Korhonen H, Pihlanto A (2003) Food-derived bioactive peptides–opportunities for designing future foods. Curr Pharm Design 9(16):1297–1308

    Article  CAS  Google Scholar 

  • Korhonen H, Pihlanto A (2007) Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum. Curr Pharm Design 13(8):829–843

    Article  CAS  Google Scholar 

  • Kunz C, Lonnerdal B (1992) Re-evaluation of the whey protein/casein ratio of human milk. Acta Paediatr 81(2):107–112

    Article  CAS  Google Scholar 

  • Le A, Barton LD, Sanders JT, Zhang Q (2011) Exploration of bovine milk proteome in colostral and mature whey using an ion-exchange approach. J Proteome Res 10(2):692–704

    Article  CAS  Google Scholar 

  • Le TT, Deeth HC, Bhandari B, Alewood PF, Holland JW (2012) A proteomic approach to detect lactosylation and other chemical changes in stored milk protein concentrate. Food Chem 132:655–662

    Article  CAS  Google Scholar 

  • Leonil J, Molle D, Fauquant J, Maubois JL, Pearce RJ, Bouhallab S (1997) Characterization by ionization mass spectrometry of lactosyl beta-lactoglobulin conjugates formed during heat treatment of milk and whey and identification of one lactose-binding site. J Dairy Sci 80(10):2270–2281

    Article  CAS  Google Scholar 

  • Liao Y, Alvarado R, Phinney B, Lonnerdal B (2011a) Proteomic characterization of human milk fat globule membrane proteins during a 12 month lactation period. J Proteome Res 10(8):3530–3541

    Article  CAS  Google Scholar 

  • Liao Y, Alvarado R, Phinney B, Lonnerdal B (2011b) Proteomic characterization of human milk whey proteins during a twelve-month lactation period. J Proteome Res 10(4):1746–1754

    Article  CAS  Google Scholar 

  • Lönnerdal B (2003) Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr 77(6):1535s–1536s

    Google Scholar 

  • Lönnerdal B (2004) Human milk proteins: key components for the biological activity of human milk. Adv Exp Med Biol 554:11–25

    Google Scholar 

  • Losito I, Carbonara T, Monaci L, Palmisano F (2007) Evaluation of the thermal history of bovine milk from the lactosylation of whey proteins: an investigation by liquid chromatography-electrospray ionization mass spectrometry. Anal Bioanal Chem 389(7–8):2065–2074

    Article  CAS  Google Scholar 

  • Lu J, Boeren S, de Vries SC, van Valenberg HJ, Vervoort J, Hettinga K (2011) Filter-aided sample preparation with dimethyl labeling to identify and quantify milk fat globule membrane proteins. J Proteomics 75(1):34–43

    Article  CAS  Google Scholar 

  • Luhovyy BL, Akhavan T, Anderson GH (2007) Whey proteins in the regulation of food intake and satiety. J Am Coll Nutr 26(6):704S–712S

    CAS  Google Scholar 

  • Luz Sanz M, Corzo-Martinez M, Rastall RA, Olano A, Moreno FJ (2007) Characterization and in vitro digestibility of bovine beta-lactoglobulin glycated with galactooligosaccharides. J Agric Food Chem 55(19):7916–7925

    Article  CAS  Google Scholar 

  • Mahe S, Roos N, Benamouzig R, Davin L, Luengo C, Gagnon L, Gausserges N, Rautureau J, Tome D (1996) Gastrojejunal kinetics and the digestion of [15N]beta-lactoglobulin and casein in humans: the influence of the nature and quantity of the protein. Am J Clin Nutr 63(4):546–552

    CAS  Google Scholar 

  • Mangé A, Bellet V, Tuaillon E, Van de Perre P, Solassol J (2008) Comprehensive proteomic analysis of the human milk proteome: contribution of protein fractionation. J Chromatogr B 876(2):252–256

    Article  CAS  Google Scholar 

  • Mauron J (1990) Influence of processing on protein quality. J Nutr Sci Vitaminol (Tokyo) 36(Suppl 1):S57–S69

    Article  Google Scholar 

  • Meltretter J, Pischetsrieder M (2008) Application of mass spectrometry for the detection of glycation and oxidation products in milk proteins. Ann N Y Acad Sci 1126:134–140

    Article  CAS  Google Scholar 

  • Meltretter J, Seeber S, Humeny A, Becker CM, Pischetsrieder M (2007) Site-specific formation of Maillard, oxidation, and condensation products from whey proteins during reaction with lactose. J Agric Food Chem 55(15):6096–6103

    Article  CAS  Google Scholar 

  • Meltretter J, Birlouez-Aragon I, Becker CM, Pischetsrieder M (2009) Assessment of heat treatment of dairy products by MALDI-TOF-MS. Mol Nutr Food Res 53(12):1487–1495

    Article  CAS  Google Scholar 

  • Mesmin C, Fenaille F, Becher F, Tabet JC, Ezan E (2011) Identification and characterization of apelin peptides in bovine colostrum and milk by liquid chromatography-mass spectrometry. J Proteome Res 10(11):5222–5231

    Article  CAS  Google Scholar 

  • Monaci L, van Hengel AJ (2007) Effect of heat treatment on the detection of intact bovine beta-lactoglobulins by LC mass spectrometry. J Agric Food Chem 55(8):2985–2992

    Article  CAS  Google Scholar 

  • Morgan F, Leonil J, Molle D, Bouhallab S (1997) Nonenzymatic lactosylation of bovine beta-lactoglobulin under mild heat treatment leads to structural heterogeneity of the glycoforms. Biochem Biophys Res Commun 236(2):413–417

    Article  CAS  Google Scholar 

  • Morrison B, Cutler ML (2010) The contribution of adhesion signaling to lactogenesis. J Cell Commun Signal 4(3):131–139

    Article  Google Scholar 

  • Murphy KP (2012) Janeway’s immunobiology, 8th edn. Garland Science, London, pp 48–71, 527–528

    Google Scholar 

  • Nagpal R, Behare P, Rana R, Kumar A, Kumar M, Arora S, Morotta F, Jain S, Yadav H (2011) Bioactive peptides derived from milk proteins and their health beneficial potentials: an update. Food Funct 2(1):18–27

    Article  CAS  Google Scholar 

  • Ogundele MO (2001) Role and significance of the complement system in mucosal immunity: particular reference to the human breast milk complement. Immunol Cell Biol 79(1):1–10

    Article  CAS  Google Scholar 

  • Pal S, Ellis V (2010) The chronic effects of whey proteins on blood pressure, vascular function, and inflammatory markers in overweight individuals. Obesity (Silver Spring) 18(7):1354–1359

    Article  CAS  Google Scholar 

  • Pal S, Ellis V (2011) Acute effects of whey protein isolate on blood pressure, vascular function and inflammatory markers in overweight postmenopausal women. Br J Nutr 105(10):1512–1519

    Article  CAS  Google Scholar 

  • Palmer DJ, Kelly VC, Smit AM, Kuy S, Knight CG, Cooper GJ (2006) Human colostrum: identification of minor proteins in the aqueous phase by proteomics. Proteomics 6(7):2208–2216

    Article  CAS  Google Scholar 

  • Peterson JA, Scallan CD, Ceriani RL, Hamosh M (2001) Structural and functional aspects of three major glycoproteins of the human milk fat globule membrane. Adv Exp Med Biol 501:179–187

    Article  CAS  Google Scholar 

  • Pihlanto A, Korhonen H (2003) Bioactive peptides and proteins. Adv Food Nutr Res 47:175–276

    Article  CAS  Google Scholar 

  • Pisanu S, Ghisaura S, Pagnozzi D, Biosa G, Tanca A, Roggio T, Uzzau S, Addis MF (2011) The sheep milk fat globule membrane proteome. J Proteomics 74(3):350–358

    Article  CAS  Google Scholar 

  • Reinhardt TA, Lippolis JD (2006) Bovine milk fat globule membrane proteome. J Dairy Res 73(4):406–416

    Article  CAS  Google Scholar 

  • Reinhardt TA, Lippolis JD (2008) Developmental changes in the milk fat globule membrane proteome during the transition from colostrum to milk. J Dairy Sci 91(6):2307–2318

    Article  CAS  Google Scholar 

  • Ricci-Cabello I, Herrera MO, Artacho R (2012) Possible role of milk-derived bioactive peptides in the treatment and prevention of metabolic syndrome. Nutr Rev 70(4):241–255

    Article  Google Scholar 

  • Riccio P (2004) The proteins of the milk fat globule membrane in the balance. Trends Food Sci Tech 15(9):458–461

    Article  CAS  Google Scholar 

  • Rojas R, Apodaca G (2002) Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol 3(12):944–955

    Article  CAS  Google Scholar 

  • Roos N, Mahe S, Benamouzig R, Sick H, Rautureau J, Tome D (1995) 15N-labeled immunoglobulins from bovine colostrum are partially resistant to digestion in human intestine. J Nutr 125(5):1238–1244

    CAS  Google Scholar 

  • Sanderson IR, Walker WA (2000) Development of the gastrointestinal tract. B. C. Decker, Hamilton, Ontario L8N 3K7, pp 83–102, 147–164, 227–260

    Google Scholar 

  • Satake M, Enjoh M, Nakamura Y, Takano T, Kawamura Y, Arai S, Shimizu M (2002) Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers. Biosci Biotechnol Biochem 66(2):378–384

    Article  CAS  Google Scholar 

  • Schack-Nielsen L, Michaelsen KF (2007) Advances in our understanding of the biology of human milk and its effects on the offspring. J Nutr 137(2):503S–510S

    CAS  Google Scholar 

  • Schlimme E, Meisel H (1995) Bioactive peptides derived from milk proteins. Structural, physiological and analytical aspects. Nahrung 39(1):1–20

    Article  CAS  Google Scholar 

  • Seiquer I, Diaz-Alguacil J, Delgado-Andrade C, Lopez-Frias M, Munoz Hoyos A, Galdo G, Navarro MP (2006) Diets rich in Maillard reaction products affect protein digestibility in adolescent males aged 11–14 y. Am J Clin Nutr 83(5):1082–1088

    CAS  Google Scholar 

  • Séverin S, Wenshui X (2005) Milk biologically active components as nutraceuticals: review. Crit Rev Food Sci 45(7–8):645–656

    Article  CAS  Google Scholar 

  • Shimizu M, Tsunogai M, Arai S (1997) Transepithelial transport of oligopeptides in the human intestinal cell, Caco-2. Peptides 18(5):681–687

    Article  CAS  Google Scholar 

  • Siciliano R, Rega B, Amoresano A, Pucci P (2000) Modern mass spectrometric methodologies in monitoring milk quality. Anal Chem 72(2):408–415

    Article  CAS  Google Scholar 

  • Smithers GW (2008) Whey and whey proteins-from ‘gutter-to-gold’. Int Dairy J 18(7):695–704

    Article  CAS  Google Scholar 

  • Smolenski G, Haines S, Kwan FYS, Bond J, Farr V, Davis SR, Stelwagen K, Wheeler TT (2007) Characterisation of host defence proteins in milk using a proteomic approach. J Proteome Res 6(1):207–215

    Article  CAS  Google Scholar 

  • Sorva R, Makinen-Kiljunen S, Juntunen-Backman K (1994) β-Lactoglobulin secretion in human milk varies widely after cow’s milk ingestion in mothers of infants with cow’s milk allergy. J Allergy Clin Immunol 93(4):787–792

    Article  CAS  Google Scholar 

  • Spitsberg VL (2005) Invited review: bovine milk fat globule membrane as a potential nutraceutical. J Dairy Sci 88(7):2289–2294

    Article  CAS  Google Scholar 

  • van Boekel MAJS (1998) Effect of heating on Maillard reactions in milk. Food Chem 62(4):403–414

    Article  Google Scholar 

  • Vanderghem C, Blecker C, Danthine S, Deroanne C, Haubruge E, Guillonneau F, De Pauw E, Francis F (2008) Proteome analysis of the bovine milk fat globule: enhancement of membrane purification. Int Dairy J 18(9):885–893

    Article  CAS  Google Scholar 

  • Walker WA (2010) Mead Johnson Symposium: functional proteins in human milk: role in infant health and development. J Pediatr 156(2 Suppl):S1–S2

    Google Scholar 

  • Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science 296(5570):1046–1049

    Article  CAS  Google Scholar 

  • Wu CC, Howell KE, Neville MC, Yates Iii JR, McManaman JL (2000) Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis 21(16):3470–3482

    Article  CAS  Google Scholar 

  • Zhang Q, Faca V, Hanash S (2011) Mining the plasma proteome for disease applications across seven logs of protein abundance. J Proteome Res 10(1):46–50

    Article  CAS  Google Scholar 

  • Zivkovic AM, German JB, Lebrilla CB, Mills DA (2011) Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci USA 108(Suppl 1):4653–4658

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, Q., Carpenter, C.J. (2013). Proteomics in Milk and Milk Processing. In: Toldrá, F., Nollet, L. (eds) Proteomics in Foods. Food Microbiology and Food Safety, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5626-1_13

Download citation

Publish with us

Policies and ethics