Skip to main content

Segmented Poincaré Plot Analysis and Lagged Segmented Poincaré Plot Analysis

  • Chapter
  • First Online:
Poincaré Plot Methods for Heart Rate Variability Analysis

Abstract

Traditional Poincaré plot analysis (PPA) represents a two-dimensional graphical and quantitative representation of a time series dynamics. However, traditional PPA indices measure mainly linear aspects of the heart rate variability (HRV).

Therefore, we introduced a new method of PPA - the segmented Poincaré plot analysis (SPPA) that retains essential nonlinear characteristics of the HRV and other time series.

Additional insights into the underlying physiological mechanisms have been gained by extending the methodology of SPPA. Thus we developed the lagged SPPA (LSPPA) that investigates time correlations of the BBI.

For the first time we could demonstrate that an HRV index from SPPA was able to contribute to risk stratification in patients suffering from DCM. LSPPA provides a prognostic preview for DCM patients regarding several associated symptoms such as endothelial dysfunctions and increased risk stratification in DCM to 92% accuracy.

SPPA was also applied to BBI time series and blood pressure signals to investigate the coupling between those two time series.

In several studies we could demonstrate that the applications of SPPA and LSPPA lead to much more information about impaired autonomic regulation and have the potential to be applied in much more fields of medical diagnosis and risk stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. B.M. Sayers, Analysis of heart rate variability. Ergonomics 16(1), 17–32 (1973)

    Article  PubMed  CAS  Google Scholar 

  2. Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology, Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93(5), 1043–1065 (1996)

    Google Scholar 

  3. M.A. Woo, W.G. Stevenson, D.K. Moser, H.R. Middlekauff, Complex heart rate variability and serum norepinephrine levels in patients with advanced heart failure. J. Am. Coll. Cardiol. 23(3), 565–569 (1994)

    Article  PubMed  CAS  Google Scholar 

  4. P.W. Kamen, Heart rate variability. Aust. Fam. Physician 25, 1087–1094 (1996)

    PubMed  CAS  Google Scholar 

  5. P.W. Kamen, A.M. Tonkin, Application of the poincar plot to heart rate variability: a new measure of functional status in heart failure. Aust. NZ. J. Med. 25, 18–26 (1995)

    Article  CAS  Google Scholar 

  6. M.A. Woo, W.G. Stevenson, D.K. Moser, R.B. Trelease, R.M. Harper, Patterns of beat-to-beat heart rate variability in advanced heart failure. Am. Heart J. 123(3), 704–710 (1992)

    Article  PubMed  CAS  Google Scholar 

  7. M. Brennan, M. Palaniswami, P. Kamen, Do existing measures of poincare plot geometry reflect nonlinear features of heart rate variability. IEEE Trans. Biomed. Eng. 48, 1342–1347 (2001)

    Article  PubMed  CAS  Google Scholar 

  8. U.R. Acharya, K.P. Joseph, N. Kannathal, C.M. Lim, J.S. Suri, Heart rate variability: a review. Med. Biol. Eng. Comput. 44(12), 1031–1051 (2006)

    Article  Google Scholar 

  9. M. Brennan, M. Palaniswami, P. Kamen, Poincare plot interpretation using a physiological model of hrv based on a network of oscillators. Am. J. Physiol. Heart Circ. Physiol. 283, 1873–1886 (2002)

    Google Scholar 

  10. J.T. Bigger Jr., J.L. Fleiss, R.C. Steinman, L.M. Rolnitzky, W.J. Schneider, P.K. Stein, Rr variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction. Circulation 91(7), 1936–1943 (1995)

    Article  PubMed  Google Scholar 

  11. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, J.D. Farmer, Testing for nonlinearity in time series: the method of surrogate data. Physica 58, 77–94 (1992)

    Google Scholar 

  12. A. Babloyantz, A. Destexhe, Is the normal heart a periodic oscillator? Biol. Cybern. 58(3), 203–211 (1988)

    Article  PubMed  CAS  Google Scholar 

  13. W. Grimm, P. Alter, B. Maisch, Arrhythmia risk stratification with regard to prophylactic implantable defibrillator therapy in patients with dilated cardiomyopathy. results of macas, definite, and scd-heft. Herz 29(3), 348–352 (2004)

    Google Scholar 

  14. A. Voss, R. Schroeder, S. Truebner, M. Goernig, H.R. Figulla, A. Schirdewan, Comparison of nonlinear methods symbolic dynamics, detrended fluctuation, and poincare plot analysis in risk stratification in patients with dilated cardiomyopathy. Chaos 17(1), 0151201 (2007)

    Google Scholar 

  15. A. Voss, C. Fischer, R. Schroeder, H.R. Figulla, M. Goernig, Segmented poincaré plot analysis for risk stratification in patients with dilated cardiomyopathy. Methods Inf. Med. 49(5), 511–515 (2010)

    Article  PubMed  CAS  Google Scholar 

  16. A. Voss, C. Fischer, R. Schroeder, H.R. Figulla, M. Goernig, Lagged segmented poincaré plot analysis for risk stratification in patients with dilated cardiomyopathy. Med. Biol. Eng. Comput. 50, 727–736 (2012)

    Article  PubMed  Google Scholar 

  17. W. Grimm, M. Christ, J. Bach, H.H. Muller, B. Maisch, Noninvasive arrhythmia risk stratification in idiopathic dilated cardiomyopathy: results of the marburg cardiomyopathy study. Circulation 108(23), 2883–2891 (2003)

    Article  PubMed  Google Scholar 

  18. J. Piskorski, P. Guzik, Filtering poincaré plots. Comput. Method. Sci. Technol. 11(1), 39–48 (2005)

    Google Scholar 

  19. R. Moe-Nilssen, J.L. Helbostad, Estimation of gait cycle characteristics by trunk accelerometry. J. Biomech. 37(1), 121–126 (2004)

    Article  PubMed  Google Scholar 

  20. D. Hoyer, U. Leder, H. Hoyer, B. Pompe, M. Sommer, U. Zwiener, Mutual information and phase dependencies: measures of reduced nonlinear cardiorespiratory interactions after myocardial infarction. Med. Eng. Phys. 24(1), 33–43 (2002)

    Article  PubMed  Google Scholar 

  21. S.G. Priori, E. Aliot, C. Blomstrom-Lundqvist, L. Bossaert, G. Breithardt, P. Brugada, A.J. Camm, R. Cappato, S.M. Cobbe, C. Di Mario, B.J. Maron, W.J. McKenna, A.K. Pedersen, U. Ravens, P.J. Schwartz, M. Trusz-Gluza, P. Vardas, H.J. Wellens, D.P. Zipes, Task force on sudden cardiac death of the european society of cardiology. Eur. Heart J. 22(16), 1374–1450 (2001)

    Article  PubMed  CAS  Google Scholar 

  22. P. Schirdewahn, A. Dorszewski, G. Hindricks, R. Kobza, H. Kottkamp, H. Tanner, Plötzlicher herztod und icd-therapie. J. Kardiol. 11, 3–10 (2004)

    Google Scholar 

  23. S.B. Mohan, M. Parker, M. Wehbi, P. Douglass, Idiopathic dilated cardiomyopathy: a common but mystifying cause of heart failure. Cleve. Clin. J. Med. 69(6), 481–487 (2002)

    Article  PubMed  Google Scholar 

  24. N. Wessel, A. Voss, H. Malberg, C. Ziehmann, H.U. Voss, A. Schirdewan, U. Meyerfeldt, J. Kurths, Nonlinear analysis of complex phenomena in cardiological data. Herzschr. Elektrophys. 11, 159–173 (2000)

    Article  Google Scholar 

  25. O. Przibille, A. Liebrich, B. Nowak, S. Rosocha, C.H. Zellerhoff, S. Geil, E. Himmrich, N. Treese, J. Meyer, Prognostic significance of analysis of heart rate variability in patients with dilated cardiomyopathy. Z Kardiol. 87(6), 453–458 (1998)

    Article  PubMed  CAS  Google Scholar 

  26. F. Lombardi, Chaos theory, heart rate variability, and arrhythmic mortality. Circulation 101(1), 8–10 (2000)

    Article  PubMed  CAS  Google Scholar 

  27. H.V. Huikuri, J.S. Perkiomaki, R. Maestri, G.D. Pinna, Clinical impact of evaluation of cardiovascular control by novel methods of heart rate dynamics. Philos. Trans. A Math. Phys. Eng. Sci. 367(1892), 1223–1238 (2009)

    Article  PubMed  Google Scholar 

  28. A.E. Aubert, B. Seps, F. Beckers, Heart rate variability in athletes. Sports Med. 33(12), 889–919 (2003)

    Article  PubMed  Google Scholar 

  29. V.A. Cornelissen, B. Verheyden, A.E. Aubert, R.H. Fagard, Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart-rate variability. J. Hum. Hypertens 24(3), 175–182 (2010)

    Article  PubMed  CAS  Google Scholar 

  30. A. Voss, A. Heitmann, R. Schroeder, A. Peters, S. Perz, Short-term heart rate variability-age dependence in healthy subjects. Physiol. Meas. 33(8), 1289–1311 (2012)

    Article  PubMed  CAS  Google Scholar 

  31. R. Holle, M. Happich, H. Lowel, H.E. Wichmann, Monica Kora Study Group. Kora—a research platform for population based health research. Gesundheitswesen 67(1), S19–S25 (2005)

    Google Scholar 

  32. Report of the national high blood pressure education program working group on high blood pressure in pregnancy. Am. J. Obstet. Gynecol. 183(1), S1–S22 (2000)

    Google Scholar 

  33. R. Faber, M. Baumert, H. Stepan, N. Wessel, A. Voss, T. Walther, Baroreflex sensitivity, heart rate, and blood pressure variability in hypertensive pregnancy disorders. J. Hum. Hypertens 18(10), 707–712 (2004)

    Article  PubMed  CAS  Google Scholar 

  34. H.P. Schobel, T. Fischer, K. Heuszer, H. Geiger, R.E. Schmieder, Preeclampsia – a state of sympathetic overactivity. N. Engl. J. Med. 335(20), 1480–1485 (1996)

    Article  PubMed  CAS  Google Scholar 

  35. A. Seeck, M. Baumert, C. Fischer, A. Khandoker, R. Faber, A. Voss, Advanced poincare plot analysis differentiates between hypertensive pregnancy disorders. Physiol. Meas. 32(10), 1611–1622 (2011)

    Article  PubMed  CAS  Google Scholar 

  36. A. Bernjak, P.B. Clarkson, P.V. McClintock, A. Stefanovska, Low-frequency blood flow oscillations in congestive heart failure and after beta1-blockade treatment. Microvasc. Res. 76, 224–232 (2008)

    Article  PubMed  CAS  Google Scholar 

  37. M. Rossi, A. Carpi, C. Di Maria, F. Franzoni, F. Galetta, G. Santoro, Post-ischaemic peak flow and myogenic flowmotion component are independent variables for skin post-ischaemic reactive hyperaemia in healthy subjects. Microvasc. Res. 74, 9–14 (2007)

    Article  PubMed  CAS  Google Scholar 

  38. I.V. Tikhonova, A.V. Tankanag, N.K. Chemeris, Time-amplitude analysis of skin blood flow oscillations during the post-occlusive reactive hyperemia in human. Microvasc. Res. 80, 58–64 (2010)

    Article  PubMed  Google Scholar 

  39. T.A. Kuusela, T.J. Kaila, M. Kahonen, Fine structure of the low-frequency spectra of heart rate and blood pressure. BMC Physiol. 3, 11 (2003)

    Article  PubMed  Google Scholar 

  40. C.B. Treasure, J.A. Vita, D.A. Cox, R.D. Fish, J.B. Gordon, G.H. Mudge, W.S. Colucci, M.G. Sutton, A.P. Selwyn, R.W. Alexander et al., Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy. Circulation 81(3), 772–779 (1990)

    Article  PubMed  CAS  Google Scholar 

  41. L. Kaiser, R.C. Spickard, N.B. Olivier, Heart failure depresses endothelium-dependent responses in canine femoral artery. Am. J. Physiol. 256(4 Pt 2), H962–H967 (1989)

    PubMed  CAS  Google Scholar 

  42. F.J. Harris, On the use of windows for harmonic analysis with the discrete fourier transform. Proc. IEEE 66(1), 172–204 (1978)

    Article  Google Scholar 

  43. Y. Zhang, Z. Guo, W. Wang, S. He, T. Lee, M. Loew, A comparison of the wavelet and short-time fourier transforms for doppler spectral analysis. Med. Eng. Phys. 25(7), 547–557 (2003)

    Article  PubMed  Google Scholar 

  44. C. Ludwig, Beiträge zur kenntniss des einflusses der respirationsbewegung auf den blutlauf im aortensystem. Arch. Anat. Physiol. 13, 242–302 (1847)

    Google Scholar 

  45. Lt. Col. KK. Tripathi, Respiration and heart rate variability: a review with special reference to its application in aerospace medicine. Indian J. Aero. Med. 48(1), 64–75 (2004)

    Google Scholar 

  46. A. Seeck, W. Rademacher, C. Fischer, J. Haueisen, R. Surber, A. Voss, Prediction of atrial fibrillation recurrence after cardioversion – interaction analysis of cardiac autonomic regulation. Med. Eng. Phys. 35(4), 471–479 (2012)

    Google Scholar 

  47. P.A. Gould, M.D. Esler, D.M. Kaye, Atrial fibrillation is associated with decreased cardiac sympathetic response to isometric exercise in chf in comparison to sinus rhythm. Pacing Clin. Electrophysiol. 31(9), 1125–1129 (2008)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Khandoker, A.H., Karmakar, C., Brennan, M., Voss, A., Palaniswami, M. (2013). Segmented Poincaré Plot Analysis and Lagged Segmented Poincaré Plot Analysis. In: Poincaré Plot Methods for Heart Rate Variability Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7375-6_6

Download citation

Publish with us

Policies and ethics