Skip to main content

Age Differences in Evolutionary Selection Benefits

  • Chapter
Understanding Human Development

Abstract

From a biological perspective, the key to understanding the evolution of the human life history is the recognition that natural selection acts with different force on different ages. Natural selection acts through the differential survival and reproduction of genotypes. Genetic factors that exert their effects early in life have the potential to affect the whole of the organism’s reproduction. Conversely, genes that exert their effects late in life have much reduced impact. This is because in the wild environment most individual organisms die young, due to extrinsic sources of mortality such as predation and starvation. For this reason, most reproduction in wild populations is due to young individuals. Although humans now live much more protected lives, the conditions under which the genetic determinants of our aging processes evolved were not very different from those that exist today for other species. The reduction in the force of natural selection with advancing age tells us that the senescent phase of the life history cannot be under direct genetic control. In other words, aging itself is not programmed. Instead, the evolutionary theories of aging suggest that senescence takes place because (1) natural selection is powerless to prevent the accumulation within the genome of genes having late deleterious effects and because (2) long-term survival requires major ongoing investment in mechanisms of cellular maintenance and repair. The second point is the basis of the disposable soma theory of aging, which attributes senescence to a gradual accumulation of damage and faults in the cells and tissues of the organism. In the context of understanding human development, the evolutionary theories of aging reinforce the recognition of older people as individuals. Biologically, each individual is likely have a different set of late-acting deleterious genes and will accumulate a unique history of somatic damage at the cellular and molecular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abitbol, M. M., Chervenah, F. A., & Ledger, W. J. (1996). Birth and human evolution: Anatomical and obstetrical mechanics in primates. Westport: Bergin & Garvey.

    Google Scholar 

  • Abkowitz, J. L., Catlin, S. N., & Guttorp, P. (1996). Evidence that hematopoiesis may be a stochastic process in vivo. Nature Medicine, 2, 190–197.

    Article  PubMed  Google Scholar 

  • Austad, S. N. (1997). Comparative aging and life histories in mammals. Experimental Gerontology, 32, 23–38.

    Article  PubMed  Google Scholar 

  • Baltes, P. B. (1997). On the incomplete architecture of human ontogeny: Selection, optimization, and compensation as foundation of developmental theory. American Psychologist, 52, 366–380.

    Article  PubMed  Google Scholar 

  • Bell, G. (1984). Evolutionary and nonevolutionary theories of senescence. American Naturalist, 124, 600–603.

    Article  Google Scholar 

  • Charlesworth, B. (1994). Evolution in age-structured populations. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Corder, E. H., et al. (1996). Attenuation of apolipoprotein E epsilon 4 allele gene dose in late age. Lancet, 347, 542.

    Article  PubMed  Google Scholar 

  • Cummins, J. (1999). Evolutionary forces behind human infertility. Nature, 39, 557–558.

    Article  Google Scholar 

  • Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking innateness: A connectionist perspective on development. Cambridge, MA: MIT Press.

    Google Scholar 

  • Finch, C. E., & Kirkwood, T. B. L. (2000). Chance, development and aging. New York: Oxford University Press.

    Google Scholar 

  • Finch, C. E., & Tanzi, R. (1997). The genetics of aging. Science, 278, 407–411.

    Article  PubMed  Google Scholar 

  • Gatz, M., et al. (1997). Heritability for Alzheimer’s disease: The study of dementia in Swedish twins. Journal of Gerontology: Medical Sciences, 52A, Ml17–M125.

    Article  Google Scholar 

  • Gosden, R. G. (1985). Biology of the menopause: The causes and consequences of ovarian aging. London: Academic Press.

    Google Scholar 

  • Grimes, D. A. (1994). The morbidity and mortality of pregnancy: Still risky business. American Journal of Obstetrics and Gynecology, 170, 1489–1494.

    Article  PubMed  Google Scholar 

  • Grove, E. A., Kirkwood, T. B. L., & Price, J. (1992). Neuronal precursor cells in the rat hippocampal formation contribute to more than one cytoarchitectonic area. Neuron, 8, 217–229.

    Article  PubMed  Google Scholar 

  • Hawkes, K., O’Connell, J. F, & Blurton Jones, N. G. (1997). Hazda women’s time allocation, offspring provisioning, and the evolution of long postmenopausal life spans. Current Anthropology, 38, 551–577.

    Article  Google Scholar 

  • Hawkes, K., O’Connell, J. F, Jones, N. G. B., Alvarez, H., & Charnov, E. L. (1998). Grandmothering, menopause, and the evolution of human life histories. Proceedings of the National Academy of Sciences USA, 95, 1336–1339.

    Article  Google Scholar 

  • Hill, K., & Hurtado, A. M. (1991). The evolution of premature reproductive senescence and menopause in human females: An evolution of the “grandmother” hypothesis. Human Nature, 2, 313–350.

    Article  Google Scholar 

  • Hill, K., & Hurtado, A. M. (1996). Ache life history: The ecology and demography of a foraging people. New York: Aldine de Gruyter.

    Google Scholar 

  • King, C. M., Gillespie, E. S., McKenna, P. G., & Barnett, Y. A. (1994). An investigation of mutation as a function of age in humans. Mutation Research, 316, 79–90.

    Article  PubMed  Google Scholar 

  • Kirkwood, T. B. L. (1977). Evolution of aging. Nature, 270, 301–304.

    Article  PubMed  Google Scholar 

  • Kirkwood, T. B. L. (1977). The origins of human ageing. Philosophical Transactions of the Royal Society, London B, 352, 1765–1772.

    Article  Google Scholar 

  • Kirkwood, T. B. L. (1999). Time of our lives: The science of human ageing. London: Weidenfeld & Nicolson.

    Google Scholar 

  • Kirkwood. T. B. L., & Cremer, T. (1982). Cytogerontology since 1881: A reappraisal of August Weismann and a review of modern progress. Human Genetics, 60, 101–121.

    Article  PubMed  Google Scholar 

  • Kirkwood, T. B. L., & Holliday, R. (1986). Ageing as a consequence of natural selection. In K. J. Collins & A. H. Bittles (Eds.), The biology of human ageing (pp. 1–16). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Kirkwood, T. B. L., & Rose, M. R. (1991). Evolution of senescence: Late survival sacrificed for reproduction. Philosophical Transactions of the Royal Society, London, B, 332, 15–24.

    Article  Google Scholar 

  • Lycett, J. E., Dunbar, R. I. M., & Voland, E. (2000). Longevity and the costs of reproduction in a historical human population. Proceedings of the Royal Society London, B, 267, 31–35.

    Article  Google Scholar 

  • Martinez, D. E. (1997). Mortality patterns suggest lack of senescence in hydra. Experimental Gerontology, 33, 217–225.

    Article  Google Scholar 

  • McAdams, H. H., & Arkin, A. (1999). It’s a noisy business! Genetic regulation at the nanomolar scale. Trends in Genetics, 15, 65–69.

    Article  PubMed  Google Scholar 

  • Medawar, P. B. (1952). An unsolved problem of biology. London: Lewis.

    Google Scholar 

  • Meyer, M. R., et al. (1998). APOE genotype predicts when—not whether—one is predisposed to develop Alzheimer disease. Nature Genetics, 19, 321–322.

    Article  PubMed  Google Scholar 

  • O’Connell, J. F., Hawkes, K., & Blurton Jones, N. G. (1999). Grandmothering and the evolution of  Homo erectus. Journal of Human Evolution, 36, 461–485.

    Article  PubMed  Google Scholar 

  • Partridge, L., & Barton, N. H. (1993). Optimality, mutation, and the evolution of ageing. Nature, 362, 305–311.

    Article  PubMed  Google Scholar 

  • Pavelka, M. S. M., & Fedigan, L. M. (1991). Menopause: A comparative life history perspective. Yearbook of Physical Anthropology, 34, 13–38.

    Article  Google Scholar 

  • Peccei, J. S. (1995). The origin and evolution of menopause: The altriciality-lifespan hypothesis. Ethology Sociobiology, 16, 425–449.

    Article  Google Scholar 

  • Plassman, B. L., et al. (1997). Apolipoprotein E4 allele and hippocampal volume in twins with normal cognition. Neurology, 48, 985–989.

    Article  PubMed  Google Scholar 

  • Potten, C. S. (1998). Stem cells in gastrointestinal epithelium: Numbers, characteristics and death. Philosophical Transactions of the Royal Society of London, B, 353, 821–830.

    Article  Google Scholar 

  • Rogers, A. R. (1993). Why menopause? Evolutionary Ecology, 7, 406–420.

    Article  Google Scholar 

  • Rose, M. R. (1991). Evolutionary biology of aging. New York: Oxford University Press.

    Google Scholar 

  • Shanley, D. P., & Kirkwood, T. B. L. (2001). Evolution of the human menopause. BioEssays, 23:282–287.

    Article  PubMed  Google Scholar 

  • Simic, G., Kostovic, I., Winblad, B., & Bogdanovic, N. (1997). Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. Journal of Computational Neurology, 379, 482–494.

    Article  Google Scholar 

  • Smith, J. R., & Whitney, R. G. (1980). Intraclonal variation in proliferative potential of human diploid fibroblasts: Stochastic mechanism for cellular aging. Science, 207, 82–84.

    Article  PubMed  Google Scholar 

  • Vaupel, J. W, Carey, J. R., Christensen, K., Johnson, T. E., Yashin, A. I., Holm, N. V., et al. (1998). Biodemographic trajectories of longevity. Science, 280, 855–860.

    Article  PubMed  Google Scholar 

  • Vijg, J. (1990). DNA sequence changes in aging: How frequent? how important? Aging Clinical and Experimental Research, 2, 105–123.

    Article  Google Scholar 

  • Walsh, C, & Cepko, C. L. (1992). Widespread dispersion of neuronal cones across functional regions of the cerebral cortex. Science, 255, 434–440.

    Article  PubMed  Google Scholar 

  • Weismann, A. (1891). Essays upon heredity and kindred biological problems (2nd ed., Vol. 1). Oxford: Clarendon Press.

    Google Scholar 

  • West, M.J. (1993). Regionally specific loss of neurons in the aging human hippocampus. Neurobiological Aging, 14, 287–293.

    Article  Google Scholar 

  • West, M. J., Slimianka, L., & Gundersen, H. J. G. (1991). Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anatomical Record, 237, 482–497.

    Article  Google Scholar 

  • Westendorp, R. G. J., & Kirkwood, T. B. L. (1998). Human longevity at the cost of reproductive success. Nature, 396, 743–746.

    Article  PubMed  Google Scholar 

  • Westendorp, R. G. J., & Kirkwood, T. B. L. (1999). Longevity: Does family size matter? Nature, 399, 522.

    Google Scholar 

  • Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398–411.

    Article  Google Scholar 

  • Williams, G. C. (1999). The Tithonus error in modem gerontology. Quarterly Review of Biology, 74, 405–415.

    Article  PubMed  Google Scholar 

  • Zwaan, B. J., Bijlsma, R., & Hoekstra, R. F. (1995). Direct selection of life span in Drosophila melanogaster. Evolution, 49, 649–659.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kirkwood, T.B.L. (2003). Age Differences in Evolutionary Selection Benefits. In: Staudinger, U.M., Lindenberger, U. (eds) Understanding Human Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0357-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0357-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7383-0

  • Online ISBN: 978-1-4615-0357-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics