Skip to main content

Biosynthesis and Function of ß 1,6 Branched Mucin-Type Glycans

  • Chapter
The Molecular Immunology of Complex Carbohydrates —2

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 491))

Abstract

The contribution of carbohydrate structure to biomolecular, cellular, and organismal function is well-established, but has not yet received the attention it deserves, perhaps due to the complexity of the structures involved and to a lack of simple experimental methods for relating structure and function. In particular, β1,6 GlcNAc branching plays a key functional role in processes ranging from inflammation and immune system function to tumor cell metastasis. For instance, synthesis of the core 2 β1,6 branched structure in the mucin glycan chain by C2GnT enables the expression of functional structures at the termini of polylactosamine chains, such as blood group antigens and sialyl Lewis x. Also, IGnT can create multiple branches on the polylactosamine chain, which may serve as a mechanism for amplifying the functional potency of cell surface glycoproteins and glycolipids. The family of enzymes which creates β1,6 branched structure in mucin glycans is proving to be quite complex, since multiple isoforms appear to exist for these enzymes, and some of the enzymes are adept at forming more than one type of β1,6 branched structure, as in the case ofC2GnT-M. Furthermore, the enzymes do not appear to be restricted to acting on mucin-type acceptor structures, but are able to act on glycolipid structures as well. Much remains to be learned regarding the specific biological niche filled by each of these enzymes and how their activities complement one another, as well as the manner in which the activities of these enzymes are regulated in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Clausen, H. and Bennett, E.P. (1996) A family of UDP-Ga1NAc:polypeptide N-acetylgalactos aminyltransferases control the initiation of mucin-type 0-linked glycosylation. Glycobiology 6, 635–646.

    Article  PubMed  CAS  Google Scholar 

  2. Elhammer, A.P., Poorman, R.A., Brown, E., Maggiora, L.L., Hoogerheide, J.G. and Kezdy, F.J. (1993) The specificity of UDP-GaINAc:polypeptide N-acetylgalactosaminyltransferase as inferred from a database of in vivo substrates and from the in vitro glycosylation of proteins and peptides. J. Biol. Chem. 268, 10029–10038.

    PubMed  CAS  Google Scholar 

  3. Wang, Y., Agrwal, N., Eckhardt, A.E., Stevens, R.D. and Hill, R.L. (1993) The acceptor specificity of porcine submaxillary UDP-GaINAc:polypeptide N-acetylgalactosaminyltransferase is dependent on the amino acid sequences adjacent to serine and threonine residues. J. Biol. Chem. 268, 22979–22983.

    PubMed  CAS  Google Scholar 

  4. Wandall, H.H., Hassan, H., Mirgorodskaya, E., Kristensen, A.K., Roepstorff, P., Bennett, E.P., Nielsen, P.A., Hollingsworth, M.A., Burchell, J., Taylor-Papasimitriou, J., and Clausen, H. (1997) Substrate specificities of three members of the human UDP- N-acetyl-a-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase Family, GaINAc-T1, -T2, and -T3. J. Biol. Chem. 272, 23503–23514.

    Google Scholar 

  5. Nishimori, I., Johnson, N.R., Sanderson, S.D., Perini, F., Mountjoy, K., Cerny, R.L., Gross, M.L. and Hollingsworth, M.A. (1994) Influence of acceptor substrate primary amino acid sequence on the activity of human UDP-N-acetylgalactosamine: Polypeptide N-acetylgalactosaminyltransferase. Studies with the MUC1 tandem repeat. J. Biol. Chem. 269, 16123–16130.

    PubMed  CAS  Google Scholar 

  6. Brockhausen, I. And Kuhns, W. (1997)Glycoproteins and Human Disease, pp. 5–11. R.G. Landes Co., Georgetown, TX.

    Google Scholar 

  7. Wilkins, P.P., McEver, R.P. and Cummings, R.D. (1996) Structures of the 0-glycans on P-selectin glycoprotein ligand-1 from HL-60 cells. J. Biol. Chem. 271, 18732–18742.

    Article  PubMed  CAS  Google Scholar 

  8. Rege, V.P., Painter, T.J., Watkins, W.M. and Morgan, W.T.J. (1963) Three new trisaccharides obained from human blood group A, B, H and Lea substances: Possible sugar sequences in the carbohydrate chains. Nature 200, 532–534.

    Article  PubMed  CAS  Google Scholar 

  9. Brockhausen, I. and Schachter, H. (1997). Glycosyltransferases involved in N- and 0-glycan biosynthesis, in Glycosciences (H.-J and S. Gabius, Eds.). Chapman and Hall, Weinheim, pp. 79–113.

    Google Scholar 

  10. Van den Steen, P., Rudd, P.M., Dwek, R.A. and Opdenakker, G. (1998). Concepts and principles of 0-linked glycosylation. Crit. Rev. Biochem. Molec. Biol. 33, 151–208.

    Article  Google Scholar 

  11. Strous, G.J. and Dekker, J. (1992). Mucin-type glycoproteins. Crit. Rev. Biochem. Molec. Biol. 27, 57–92.

    Article  CAS  Google Scholar 

  12. Schachter, H. and Brockhausen, I. (1992) The biosynthesis of serine (threonine)-Nacetylgalactosamine-linked carbohydrate moieties in Glycoconjugates: Composition, Structure and Function (H. Allen and E. Kisailus, Eds.). Dekker, New York, pp. 263–332.

    Google Scholar 

  13. Brockhausen, I. (1997) Biosynthesis and functions of 0-glycans and regulation of mucin antigen expression in cancer. Biochem. Soc. Trans. 25, 871–874.

    PubMed  CAS  Google Scholar 

  14. Bierhuizen, M.F.A, Mattei, M.-G. and Fukuda, M. (1993). Expression of the developmental I antigen by a cloned human cDNA encoding a member of a ß-1,6-N-acetylglucosaminyltransferase gene family. Genes and Dev. 7, 468–478.

    Article  PubMed  CAS  Google Scholar 

  15. Bierhuizen, M.F.A and Fukuda, M. (1992) Expression cloning of a cDNA encoding UDPGlcNAc:Galβ1–3GalNAc-R(GlcNAc-to-GalNAc)β1–6 GlcNAc transferase by gene transfer into CHO cells expressing polyoma large tumor antigen. Proc. Natl. Acad. Sci. USA 89, 9326–9330.

    Article  PubMed  CAS  Google Scholar 

  16. Schwientek, T., Yeh, J.-C., Levery, S.B., Keck, B., Merkx, G., van Kessel, A.G., Fukuda, M. and Clausen, H. (2000) Control of 0-glycan branch formation: Molecular cloning and characterization of a novel thymus-associated core 2 β1,6-N-acetylglucosaminyltransferase. J. Biol. Chem. 275, 11106–11113.

    Google Scholar 

  17. Schwientek, T., Nomoto, M., Levery, S.B., Merkx, G., van Kessel, A.G., Bennett, E.P., Hollingsworth, M.A. and Clausen, H. (1999) Control of 0-glycan branch formation. Molecular cloning of human cDNA encoding a novel 13–1.6-N-acetylglucosaminyltransferase forming core 2 and core 4. J. Biol. Chem. 274, 4504–4512.

    Article  PubMed  CAS  Google Scholar 

  18. Yeh, J.-C., Ong, E. and Fukuda, M. (1999) Molecular cloning and expression of a novel β-1,6-Nacetylglucosaminyltransferase that forms core 2, core 4 and I branches. J. Biol. Chem. 274, 3215–3221.

    Google Scholar 

  19. Williams, D. and Schachter, H. (1980) Mucin synthesis. I. Detection in canine submaxillary glands of an N-acetylglucosaminyltransferase which acts on mucin substrates. J. Biol. Chem. 255, 11247–11252.

    Google Scholar 

  20. Williams, D., Longmore, G., Matta, K.L. and Schachter, H. (1980) Mucin synthesis. II. Substrate specificity and product identification studies on canine submaxillary glandUDP-GlcNAc:Galβ1–3GalNAc(GlcNAc-to-GalNAc) β6acetylglucosaminyltransferase. J. Biol. Chem. 255, 11253–11261.

    PubMed  CAS  Google Scholar 

  21. Kuhns, W., Rutz, V., Paulsen, H., Matta, K.L., Baker, M.A., Barney, M., Granovsky, M. and Brockhausen, I. (1993) Processing 0-glycan core 1, Gal1β1–3GalNAca-R. Specificities of core 2, UDP-GlcNAc:Galβ1–3Ga1NAc-R(GlcNAc-to-GalNAc) β6-N-acetylglucosaminyltransferase and CMP -sialic acid: Gal(β1–3GalNAc-Ra 2–3-sialyltransferase. Glycoconj. J. 10, 381–394.

    Article  PubMed  CAS  Google Scholar 

  22. Hindsgaul, O., Kaur, K.J., Srivastava, G., Blaszcyzk-Thurin, M., Crawley, S.C., Heerze, L.D. and Palcic, M.M. (1991) Evaluation of deoxygenated oligosaccharide acceptor analogs as specific inhibitors of glycosyltransferases. J. Biol. Chem. 266, 17858–17862.

    PubMed  CAS  Google Scholar 

  23. Wingert, W.E. and Cheng, P.-W. (1984) Mucin biosynthesis. Characterization of rabbit small intestinal UDP-N-acetylglucosamine:Galactose β -3-N-acetylgalactosaminide (N-acetylglucosamineto-N-acetylgalactosamine) β -6-N-acetylglucosaminyl-transferase. Biochemistry 23, 690–697.

    Article  PubMed  CAS  Google Scholar 

  24. Cheng, P.-W., Wingert, W.E., Little, M.R. and Wei, R. (1985) Mucin biosynthesis. Properties of a bovine tracheal mucin β3–6-N-acetylglucosaminyltransferase. Biochem. J. 227, 405–412.

    PubMed  CAS  Google Scholar 

  25. Sangadala, S., Sivakami, S. and Mendicino, J. (1991) UDP-G1cNAc:Galβ3GalNAc-mucin: (GlcNAc-to-GalNAc) β6-N-acetylglucosaminyltransferase and UDP-GlcNAc:Galβ3(G1cNAc β6) GalNAc-mucin (GlcNAc-to-Gal)(β3-N-acetylglucosaminyltransferase from swine trachea epithelium. Mol. Cell. Biochem. 101, 125–143.

    Article  PubMed  CAS  Google Scholar 

  26. Brockhausen, I., Matta, K.L., On, J. and Schachter, H. (1985) UDP-GlcNAc:GalNAc-R β3-Nacetylglucosaminyltransferase and UDP-GlcNAc: GlcNAcβ1–3GalNAc-R(GlcNAc-to-Ga1NAc) β6- Nacetylglucosaminyltransferase from pig and rat colon mucosa. Biochemistry 24, 1866–1874.

    Article  PubMed  CAS  Google Scholar 

  27. Brockhausen, I., Matta, K.L., On, J., Schachter, H, Koenderman, A.H.L. and van den Eijnden, D.H. (1986) Mucin synthesis. Conversion of R1-β1–3Gal-R2 to R1-β1–3(GlcNAcβ1–6)Gal-R2 and of R1-β1–3Ga1NAc-R2 to R1-–1–3(G1cNAc–1–6)GalNAc-R2 by a –6-N-acetylglucosaminyltransferase in pig gastric mucosa. Eur. J. Biochem. 157, 463–474.

    Article  PubMed  CAS  Google Scholar 

  28. Ropp, P.A., Little, M.R. and Cheng, P.-W. (1991) Mucin biosynthesis. Purification and characterization of a mucin 136N-acetylglucosaminyltransferase. J. Biol. Chem. 266, 23863–23871.

    PubMed  CAS  Google Scholar 

  29. Wiener, A.S., Unger, L.J., Cohen, L. and Feldman, J. (1956) Type-specific cold auto-antibodies as a cause of acquired hemolytic anemia and hemolytic transfusion reactions: Biologic test with bovine red cells. Ann. Intern. Med. 44, 222–240.

    Google Scholar 

  30. Marsh, W.L. (1961) Anti-i: A cold antibody defining the Ii relationship in human red cells. Brit. J. Hemat. 7, 200–209.

    Article  CAS  Google Scholar 

  31. Vicari, G. and Kabat, E.A. (1970). Structures and activities of oligosaccharides produced by alkaline degradation of a blood group substance lacking A, B, H, Lea, and Leb specificities. Biochemistry 9, 3414–3421.

    Article  PubMed  CAS  Google Scholar 

  32. Feizi, T., Kabat, E.A., Vicari, G., Anderson, B. and Marsh, W.L. (1971). Immunochemical studies on blood groups. XLVII. The I antigen complex: Precursors in the A, B, H, Lea, and Leb blood group system-hemagglutination-inhibition studies. J. Exp. Med. 133, 39–52.

    Article  PubMed  CAS  Google Scholar 

  33. Feizi, T., Kabat, E.A., Vicari, G., Anderson, B. and Marsh, W.L. (1971). Immunochemical studies on blood groups. XLIX. The I antigen complex: specificity differences among anti-I sera revealed by quantitative precipitin studies; partial structures of the I determinant specific for one anti-I serum. J. Immunol. 106, 1578–1592.

    PubMed  CAS  Google Scholar 

  34. Watanabe, K., Laine, R.A. and Hakomori, S.-I. (1975). On neutral fucoglycolipids having long, branched carbohydrate chains: H-active and I-active glycosphingolipids of human erythrocyte membranes. Biochemistry 14, 2725–2733.

    Article  PubMed  CAS  Google Scholar 

  35. Feizi, T., Wood, E., Auge, C., David, S. and Veyrieres, A. (1978) Blood group I activities of synthetic oligosaccharides assessed by radioimmunoassay. Immunochem. 15, 733–736.

    Article  CAS  Google Scholar 

  36. Niemann, H., Watanabe, K. and Hakomori, S.-I. (1978). Blood group i and I activities of “lacto-Nnorhexaosylceramide” and its analogues: The structural requirements for i-specificities. Biochem. Biophys. Res. Comm. 81, 1286–1293.

    Article  PubMed  CAS  Google Scholar 

  37. Fukuda, M., Fukuda, M.N. and Hakamori, S.-I. (1979). Developmental change and genetic defect in the carbohydrate structure of Band 3 glycoprotein of human erythrocyte membrane. J. Biol. Chem. 254,3700–3703.

    PubMed  CAS  Google Scholar 

  38. Okada, Y., Kannagi, R., Levery, S.B. and Hakomori, S.-I. (1984) Glycolipid antigens with blood group I and i specificities from human adult and umbilical cord erythrocytes. J. Immunol. 133, 835–842.

    Google Scholar 

  39. Fukuda, M., Dell, A., Oates, J.E. and Fukuda, M.N. (1984) Structure of branched lactosaminoglycan, the carbohydrate moiety of Band 3 isolated from adult human erythrocytes. J. Biol. Chem. 259, 8260–8273.

    Google Scholar 

  40. Van den Eijnden, D.H., Winterwerp, H., Smeeman, P. and Schiphorst, W.E.C.M. (1983). Novikoff ascites tumor cells contain N-acetyllactosaminide β1–3-andβ1–6 N-acetylglucosaminyltransferase activity. J. Biol. Chem. 258, 3435–3437.

    PubMed  Google Scholar 

  41. Basu M. and Basu, S. (1984). Biosynthesis in vitro of Ii core glycosphingolipids from neolactotetraosylceramide by β1–3-andβ1–6-N-acetylglucosaminyltransferases from mouse T-Iymphoma. J. Biol. Chem. 259, 12557–12562.

    PubMed  CAS  Google Scholar 

  42. Zielinski, J and Koscielak, J. (1983) The occurrence of two novel N- acetylglucosaminyltransferase activities in human serum. FEBS Lett. 158, 164–168.

    Article  Google Scholar 

  43. Zielinski, J and Koscielak, J. (1983) Sera of i subjects have the capacity to synthesize the branched GlcNAcβ1,6[GlcNAcβ1,3]Gal structure. FEBS Lett. 163, 114–118.

    Article  Google Scholar 

  44. Piller, F., Cartron, J.-P., Maranduba, A., Veyrieres, A., Leroy, Y. and Fournet, B. (1984). Biosynthesis of blood group I antigens: Identification of a UDP-GlcNAc:GlcNAcβ1-βGal(-R)β1–6(GlcNAc to Gal) N-acetylglucosaminyltransferase in hog gastric mucosa. J. Biol. Chem. 259, 13385–1390.

    PubMed  CAS  Google Scholar 

  45. Helin, J., Pentilla, L., Leppanen, A., Maaheimo, H., Lauri, S., Costello, C.E. and Renkonen, O. (1997) The β1,6-G1cNAc transferase activity present in hog gastric mucosal microsomes catalyses site-specific branch formation on a long polylactosamine backbone. FEBS Lett. 412, 637–642.

    Article  PubMed  CAS  Google Scholar 

  46. Koenderman, A.H.L., Koppen, P.L. and van den Eijnden, D.H. (1987) Biosynthesis of polylactosaminoglycans. Novikoff ascites tumor cells contain two UDP-GlcNAc:β-galactoside β1,6N-acetylglucosaminyltransferase activities. Eur. J. Biochem. 166, 199–208.

    Article  PubMed  CAS  Google Scholar 

  47. Nudelman, E.D., Mandel, U., Levery, S.B., Kaizu, T. and Hakomori, S.-I. (1989) A series of disialogangliosides with binary 2–3 sialosyllactosamine structure, defined by monoclonal antibody NUH2, are oncodevelopmentally regulated antigens. J. Biol. Chem. 264, 18719–18725.

    PubMed  CAS  Google Scholar 

  48. Egge, H., Kordowicz, M., Peter-Katalinic, J. and Hanfland, P. (1985) Immunochemistry of I/i-active oligo-and polyglycosylceramides from rabbit erythrocyte membranes. Characterization of linear, di-, and triantennary neolactoglycosphingolipids. J. Biol. Chem. 260, 4927–4935.

    PubMed  CAS  Google Scholar 

  49. Levery, S.B., Nudelman, E.D., Salyan, M.E.K. and Hakomori, S.-I. (1989) Novel tri-and tetrasialosylpoly-N-acetyllactosaminyl gangliosides of human placenta: Structure determination of pentadeca-and eicosaglycosylceramides by methylation analysis, fast atom bombardment mass spectrometry, and H NMR spectroscopy. Biochemistry 28, 7772–7781.

    Article  PubMed  CAS  Google Scholar 

  50. Hanfland, P., Egge, H., Dabrowski, U., Kuhn, S., Roelcke, D. and Dabrowski, J. (1981) Isolation and characterization of an I-active ceramide decasaccharide from rabbit erythrocyte membranes. Biochemistry 20, 5310–5319.

    Article  PubMed  CAS  Google Scholar 

  51. Watanabe, K., Powell, M. and Hakomori, S.-I. (1978) Isolation and characterization of a novel fucoganglioside of human erythrocyte membrane. J. Biol. Chem. 253, 8962–8967.

    PubMed  CAS  Google Scholar 

  52. Watanabe, K., Powell, M. and Hakomori, S.-I. (1978) Isolation and characterization of gangliosides with a new sialosyl linkage and core structures. II. Gangliosides of human erythrocyte membranes. J. Biol. Chem. 254, 8223–8229.

    Google Scholar 

  53. Leppanen, A., Pentilla, L. Niemala, R., Helin, J., Seppo, A., Lusa, S. and Renkonen, O. (1991) Human serum contains a novel β1–6 N-acetylglucosaminyltransferase activity that is involved in midchain branching of oligo(N-acetyllactosaminoglycans). Biochemistry 30, 9287–9296.

    Article  Google Scholar 

  54. Sakamoto, Y., Taguchi, T., Tano, Y., Ogawa, T., Leppanen, A., Kinnunen, M., Aitio, 0., Parmanne, P., Renkonen, O. and Taniguchi, N. (1998). Purification and characterization of UDP-GlcNAc:Galβ1–4-GlcNAcβ1-βGalβ1–4Glc(NAc)-R(GlcNAc to Gal) acting β1,6-N-acetylglucosaminyltransferase from hog small intestine. J. Biol. Chem. 273, 27625–27632.

    Article  PubMed  CAS  Google Scholar 

  55. Gu, J., Nishikawa, A., Fujii, S., Gasa, S. and Taniguchi, N. (1992). Biosynthesis of blood group I and i antigens in rat tissues: Identification of a novel 31–6-N-acetylglucosaminyltransferase. J. Biol. Chem. 267, 2994–2999.

    PubMed  CAS  Google Scholar 

  56. Leppanen, A., Salminen, H., Zhu, Y., Maaheimo, H., Helin, J., Costello, C.E. and Renkonen, O. (1997) In vitro biosynthesis of a decasaccharide prototype of multiply branched polylactosaminoglycan backbones. Biochemistry 36, 7026–7036.

    Google Scholar 

  57. Mattila, P., Salminen, H., Hirvas, L., Niittymaki, J., Salo, H., Niemela, R., Fukuda, M., Renkonen, O. and Renkonen, R. (1998). The centrally acting β-1,6-N-acetylglucosaminyltransferase (GIcNAc to Gal): Functional expression, purification, and acceptor specificity of a human enzyme involved in midchain branching of linear poly-N-acetyllactosamines. J. Biol. Chem. 273, 27633–27639.

    Article  PubMed  CAS  Google Scholar 

  58. Ujita, M., McAuliffe, J., Suzuki, M., Hindsgaul, O., Clausen, H., Fukuda, M.N. and Fukuda, M. (1999) Regulation of I-branched poly-N-acetyllactosamine synthesis: Concerted actions by i-extension enzyme, I-branching enzyme, and β1,4-galactosyltransferase. J. Biol. Chem. 274, 9296–9304.

    Google Scholar 

  59. Fukuda, M.N., Dell, A., Oates, J.E. and Fukuda, M. (1985). Embryonal lactosaminylglycan: The structure of branched lactosaminoglycans with novel disialosyl (sialyl a2–9 sialyl) terminals isolated from PA1 human embryonic carcinoma cells. J. Biol. Chem. 260, 6623–6631.

    PubMed  CAS  Google Scholar 

  60. Barnett, T. and Clark, G.F. (1992) Polyglycosylceramides with branched N-acetylactosamine sequences are synthesized by the human pancreatic carcinoma cell line Panc-1. J. Biol. Chem. 267, 11760–11768.

    PubMed  CAS  Google Scholar 

  61. Dabrowski, U., Hanfland, P., Egge, H., Kuhn, S. and Dabrowski, J. (1984) Immunochemistry of I/iactive oligo-and polyglycosylceramides from rabbit erythrocyte membranes. Determination of branchng patterns of a ceramide pentadecasaccharide by H nuclear magnetic resonance. J. Biol. Chem. 259, 7648–7651.

    PubMed  CAS  Google Scholar 

  62. Vilkman, A., Niemala, R., Penttila, L., Helin, J., Leppanen, Aseppo, A., Maaheimo, H., Lusa, S. and Renkonen, O. (1992) Elongation of both branches of biantennary backbones of oligo-(Nacetyllactosamino)glycans by human serum 1,3-N-acety1-β-D-glucosaminyltransferase. Carbohydr. Res. 226, 155–174.

    Article  PubMed  CAS  Google Scholar 

  63. Renkonen, O., Leppanen, A., Niemala, R., Vilkman, A., Helin, J., Penttila, L., Maaheimo, H., Seppo, A. and Suopanki, J. (1992) Enzymatic in vitro synthesis of radiolabeled pentadecasaccharides GlcNAc β1,3(Galβ1,4GlcNAcβ1,6)Gal β1,4GlcNAc/Glc and the isomeric Galβ1,4GIcNAc β1,3(GlcNAcβ1,6)Gal β1,4GlcNAc/Glc. Biochem. Cell Biol. 70, 86–89.

    Article  PubMed  CAS  Google Scholar 

  64. Blanken, W.M., Hooghwinkel, G.J. and van den Eijnden, D.H. (1982) Biosynthesis of blood-group I and i substances. Specificity of bovine colostrum β-N-acetyl-D-glucosaminide β 1,4 galactosyltransferase. Eur. J. Biochem. 127, 547–552.

    Article  PubMed  CAS  Google Scholar 

  65. Bierhuizen, M.F., Maemura, K. and Fukuda, M. (1995) Isolation and characterization of a pseudogene related to human core 2 β1–6 N-acetylglucosaminyltransferase. Glycoconj. J. 12, 857–864.

    Google Scholar 

  66. Sekine, M., Nara, K. and Suzuki, A. (1997) Tissue-specific regulation of mouse core 2 β-1,6-Nacetylglucosaminyltransferase. J. Biol. Chem. 272, 27246–27252.

    Article  PubMed  CAS  Google Scholar 

  67. Li, C.-M., Adler, K.B. and Cheng, P.-W. (1998) Mucin biosynthesis: Molecular cloning and expression of bovine lung mucin core 2 N-acetylglucosaminyltransferase cDNA. Am. J. Resp. Cell Mol. Biol. 18, 343–352.

    Google Scholar 

  68. Li, C.-M., Joshee, N., Adler, K.B., and Cheng, P.-W. (1999) Development of monoclonal antibodies against bovine mucin core 2 36 N-acetylglucosaminyltransferase. Glycoconj. J. 16, 555–562.

    Article  PubMed  CAS  Google Scholar 

  69. Nishio, Y., Warren, C.E., Buczek-Thomas, J.A., Rulfs, J., Koya, D., Aiello, L.P., Feener, E.P., Miller, Jr., T.B., Dennis, J.W. and King, G.L. (1995) Identification and characterization of a gene regulating enzymatic glycosylation which is induced by diabetes and hyperglycemia specifically in rat cardiac tissues. J. Clin. Invest. 96, 1759–1767.

    Article  PubMed  CAS  Google Scholar 

  70. Sasaki, K., Kurata-Miura, K., Ujita, M., Angata, K., Nakagawa, S., Sekine, S., Nishi, T. and Fukuda, M. (1997) Expression cloning of cDNA encoding a human β-1,3-N-acetylglucosaminyltransferase that is essential for poly-N-acetyllactosamine synthesis. Proc. Natl. Acad. Sei. USA 94, 14294–14299.

    Article  CAS  Google Scholar 

  71. Bierhuizen, M.F.A, Maemura, K., Kudo, S. and Fukuda, M. (1995). Genomic organization of core 2 and I branching β-1,6-N-acetylglucosaminyltransferases. Implications for evolution of the β-1,6-Nacetylglucosaminyltransferase gene family. Glycobiology 5, 417–425.

    Article  PubMed  CAS  Google Scholar 

  72. Piller, F., Piller, V., Fox, R. and Fukuda, M. (1988) Human T-lymphocyte activation is associated with changes in 0-glycan biosynthesis. J. Biol. Chem. 263, 15146–15150.

    PubMed  CAS  Google Scholar 

  73. Vanderplasschen, A., Markine-Gorlaynoff, N., Lomonte, P., Suzuki, M., Hiraoka, N., Yeh, J.-C., Bureau, F., Willems, L., Thiry, E., Fukuda, M., Pastoret, P.-P (2000) A multipotential β1,6-Nacetylglucosaminyltransferase is encoded by bovine herpesvirus type 4. Proc. Natl. Acad. Sci. USA 97, 5756–5761.

    Article  PubMed  CAS  Google Scholar 

  74. Toki, D., Sarkar, M., Yip, B., Reck, F., Joziasse, D., Fukuda, M., Schachter, H. and Brockhausen, I. (1997) Expression of stable human 0-glycan core 2 β-1,6-N-acetylglucosaminyltransferase in Sf9 insect cells. Biochem. J. 325, 63–69.

    PubMed  CAS  Google Scholar 

  75. Fukuda, M., Carlsson, S.R., Klock, J.C. and Dell, A. (1986) Structures of 0-linked oligosaccharides isolated from normal granulocytes, chronic myelogenous leukemia cells, and acute myelogenous leukemia cells. J. Biol. Chem. 261, 12796–12806.

    PubMed  CAS  Google Scholar 

  76. Maemura, K. and Fukuda, M. (1992) Poly-N-acetyllactosaminyl 0-glycans attached to leukosialin. The presence of sialyl Lex structures in 0-glycans. J Biol. Chem. 267, 24379–24386.

    PubMed  CAS  Google Scholar 

  77. Yousefi, S., Higgins, E., Daoling, Z., Pollex-Kruger, A., Hindsgaul, O. and Dennis, J.W. (1991) Increased UDP-GlcNAc:Galβ1–3Ga1NAc-R(GlcNAc-to-GaINAc)31,6-N-acetylglucosaminyltrans-ferase activity in metastatic murine tumor cell lines. J. Biol. Chem. 266, 1772–1782.

    PubMed  CAS  Google Scholar 

  78. Heffernan, M., Lotan, R., Amos, B., Palcic, M., Takano, R. and Dennis, J.W. (1993) Branching β1,6N-acetylglucosaminyltransferases and polylactosamine expression in mouse F9 teratocarcinoma cells and differentiated counterparts. J. Biol. Chem. 268, 1242–1251.

    PubMed  CAS  Google Scholar 

  79. Easton, R.L., Patankar, M.S., Lattanzio, F.A., Leaven, T.H., Morris, H.R., Clark, G.F. and Dell, A. (2000) Structural analysis of murine zona pellucida glycans. Evidence for the expression of core 2-type 0-glycans and the Sd(a) antigen. J. Biol. Chem. 275, 7731–7742.

    Article  PubMed  CAS  Google Scholar 

  80. Bierhuizen, M.F.A., Maemura, K., and Fukuda, M. (1994) Expression of a differentiation antigen and poly-N-acetyllactosaminyl 0-glycans directed by a cloned core 2 β1,6-N-acetylglucosaminyltransferase. J. Biol. Chem. 269, 4473–4479.

    PubMed  CAS  Google Scholar 

  81. Furukawa, K., Funakoshi, Y., Autero, M., Horejsi, V., Kobata, A. and Gahmberg, C.G. (1998) Structural study of the 0-linked sugar chains of human leukocyte tyrosine phosphatase CD45. Eur. J. Biochem. 251, 288–294.

    Article  PubMed  CAS  Google Scholar 

  82. McEver, R.P., Moore, K.L. and Cummings, R.D. (1995) Leukocyte trafficking mediated by selectincarbohydrate interactions. J. Biol. Chem. 270, 11025–11028.

    Article  PubMed  CAS  Google Scholar 

  83. Varki, A. (1994) Selectin ligands. Proc. Natl. Acad. Sci. USA 91, 7390–7397.

    Article  PubMed  CAS  Google Scholar 

  84. Springer, T.A. (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 76, 301–314.

    Article  PubMed  CAS  Google Scholar 

  85. Lasky, L.A. (1995) Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu. Rev. Biochem. 64, 113–139.

    Google Scholar 

  86. Moore, K.L., Eaton, S.F., Lyons, D.E., Lichenstein, H.S., Cummings, R.D. and McEver, R.P. (1994) The P-selectin glycoprotein ligand from human neutrophils displays sialylated, fucosylated, 0-linked poly-N-acetyllactosamine. J. Biol. Chem. 269, 23318–23327.

    PubMed  CAS  Google Scholar 

  87. Aeed, P.A., Geng, J.G., Asa, D., Raycroft, L., Ma, L. and Elhammer, A.P. (1998) Characterization of the 0-linked oligosaccharide structures on P-selectin glycoprotein ligand-1 (PSGL-1). Glycoconj. J. 15, 975–985.

    Article  PubMed  CAS  Google Scholar 

  88. Li, F., Wilkins, P.P., Crawley, S., Weinstein, J., Cummings, R.D. and McEver, R.P. (1996) Post-translational modifications of recombinant P-selectin glycoprotein ligand-1 required for binding to P-and E-selectin. J. Biol. Chem. 271, 3255–3264.

    Article  PubMed  CAS  Google Scholar 

  89. Kumar, R., Camphausen, R.T., Sullivan, F.X. and Cumming, D.A. (1996) Core 2 β-1,6-Nacetylglucosaminyltransferase enzyme activity is critical for P-selectin glycoprotein ligand-1 binding to P-selectin. Blood 88, 3872–3879.

    PubMed  CAS  Google Scholar 

  90. Hemmerich, S. Leffler, H. and Rosen, S.D. (1995) Structure of the 0-glycans in GlyCAM-1, an endothelial-derived ligand for L-selectin. J. Biol. Chem. 270, 12035–12047.

    Article  PubMed  CAS  Google Scholar 

  91. Nakamura, M., Kudo, T., Narimatsu, H., Furukawa, Y., Kikuchi, J., Asakura, S., Yang, W., Iwase, S., Hatake, K. and Miura, Y. (1998) Single glycosyltransferase, core 2 β-1,6-N-acetylglucosaminyltransferase, regulates cell surface sialyl Lex expression level in human pre-B lymphocytic leukemia cell line KM3 treated with phorbol ester. J. Biol. Chem. 273, 26779–26789.

    Article  PubMed  CAS  Google Scholar 

  92. Mukasa, R., Homma, T., Ohtsuki, T., Hosono, 0., Souta, A., Kitamura, T., Fukuda, M., Watanabe, S. and Morimoto, C. (1999) Core 2-containing 0-glycans on CD43 are preferentially expressed in the memory subset of human CD4 T cells. Int. Immunol. 11, 259–268.

    Article  PubMed  CAS  Google Scholar 

  93. Mukasa, R., Homma, T., Hosono, 0., Yoshino, S., Nishioka, K., Fukuda, M., and Morimoto, C. (1999) Human T lymphocyte populations which bind to P- or E-selectin are enriched with cells expressing core 2 0-glycans. Immunol. Lett. 67, 117–124.

    Article  PubMed  CAS  Google Scholar 

  94. Nakamura, M., Ishida, T., Kikuchi, J., Furukawa, Y. and Matsuda, M. (1999) Simultaneous core 2 β1,6-N-acetylglucosaminyltransferase upregulation and sialyl Le’ expression during activation of human tonsillar B lymphocytes. FEBS Lett. 463, 125–128.

    Article  PubMed  CAS  Google Scholar 

  95. Shimodaira, K., Nakayama, J., Nakamura, N., Hasebe, 0., Katsuyama, T., and Fukuda, M. (1997) Carcinoma-associated expression of core 2 3–1,6-N-acetylglucosaminyltransferase gene in human colorectal cancer: Role of 0-glycans in tumor progression. Cancer Res. 57, 5201–5206.

    PubMed  CAS  Google Scholar 

  96. Ellies, L.G., Tsuboi, S., Petryniak, B., Lowe, J.B., Fukuda, M. and Marth, J.D. (1998) Core 2 oligosaccharide biosynthesis distinguishes between selectin ligands essential for leukocyte homing and inflammation. Immunity 9, 881–890.

    Article  PubMed  CAS  Google Scholar 

  97. Fukuda, M., Yeh, J.-C. and Hiraoka, N. (2000) Two distinct core structures that form L-selectin ligands. The Second International Glycosyltransferases Symposium, Toronto, Ontario, Canada, abstract P9.1

    Google Scholar 

  98. Kimura, A.K. and Wigzell, H. (1978) Cell surface glycoproteins of murine cytotoxic T lymphocytes. T 145, a new cell surface glycoprotein selectively expressed on Ly 1–2+ cytotoxic T lymphocytes. J. Exp. Med. 147, 1418–1434.

    Article  PubMed  CAS  Google Scholar 

  99. Andersson, L.C., Gahmberg, C.G., Kimura, A.K. and Wigzell, H. (1978) Activated human T lymphocytes display new surface glycoproteins. Proc. Natl. Acad. Sci. USA 75, 3455–3458.

    Article  PubMed  CAS  Google Scholar 

  100. Barran, P., Fellinger, W., Warren, C.E., Dennis, J.W. and Ziltener, H.J. (1997) Modification of CD43 and other lymphocyte 0-glycoproteins by core 2 β1,6-N-acetylglucosaminyltransferase. Glycobiology 7, 129–136.

    Article  PubMed  CAS  Google Scholar 

  101. Chui, D., Ong, C.J., Johnson, P., The, H.-S. and Marth, J.D. (1994) Specific CD45 isoforms differentially regulate T cell receptor signaling. EMBO J. 9, 798–807.

    Google Scholar 

  102. Sommer, F., Huber, M., Rollinhoff, M. and Lohoff, M. (1995) CD44 plays a costimulatory role in murine T cell adhesion: Ligation of CD44 selectively costimulates IL-2 production, but not proliferation in TCR-stimulated murine Thl cells. Int. Immunol. 7, 1779–1786.

    Article  PubMed  CAS  Google Scholar 

  103. Sperling, A.I., Green, J.M., Mosley, R.L., Smith, P.L., DiPaolo, R.J., Klein, J.R., Bluestone, J.A. and Thompson, C.B. (1995) CD43 is a murine T cell costimulatory receptor that functions independently of CD28. J. Exp. Med. 182, 139–146.

    Article  PubMed  CAS  Google Scholar 

  104. Baum, E.G., Pang, M., Perillo, N.L., Wu, T., Delegeane, A., Uittenbogaart, C.H., Fukuda, M. and Seilhamer, J.L. (1995) Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 0-glycans on thymocytes and T lymphoblastoid cells. J. Exp. Med. 181, 877–887.

    Article  PubMed  CAS  Google Scholar 

  105. Ellies, E.G., Tao, W.T., Fellinger, W., The, H.-S. and Ziltener, H.J. (1996) The CD43 130-kD peripheral T-cell activation antigen is downregulated in thymic positive selection. Blood 88, 1725–1732.

    Google Scholar 

  106. Tsuboi, S. and Fukuda, M. (1997) Branched 0-linked oligosaccharides ectopically expressed in transgenic mice reduce primary T-cell immune response. EMBO J. 16, 6364–6373.

    Article  PubMed  CAS  Google Scholar 

  107. Tsuboi, S. and Fukuda, M. (1998) Overexpression of branched 0-linked oligosaccharides on T cell surface glycoproteins impairs humoral immune responses in transgenic mice. J. Biol. Chem. 273, 30680–30687.

    Article  PubMed  CAS  Google Scholar 

  108. Granovsky, M., Fode, C., Warren, C.E., Campbell, R.M., Marth, J.D., Pierce, M., Fregrien, N. and Dennis, J.W. (1995) G1cNAc-transferase V and core 2 G1cNAc-transferase expression on the developing mouse embryo. Glycobiology 5, 797–806.

    Article  PubMed  CAS  Google Scholar 

  109. Datti, A. and Dennis, J.W. (1993) Regulation of UDP-GlcNAc:Galβ1–3GalNAc-Rβ1,6-Nacetylglucosaminyltransferase (G1cNAc-to-GaINAc) in Chinese hamster ovary cells. J. Biol. Chem. 268, 5409–5416.

    PubMed  CAS  Google Scholar 

  110. Amano, J. and Oshima, M. (1999) Expression of the H type I blood group antigen during enterocytic differentiation of Caco-2 cells. J. Biol. Chem. 274, 21209–21216.

    Article  PubMed  CAS  Google Scholar 

  111. Amano, J. and Oshima, M. (1999) Induction of glycosyltransferases on Caco-2 cells by sodium butyrate. Glycoconj. J. 16, S91 (abstract 2aP#102).

    Google Scholar 

  112. Kenney, D.M., Cairns, L., Remold-O’donnell, E., Peterson, J., Rosen, F.S. and Parkman, R. (1986) Morphological abnormalities in the lymphocytes of patients with the Wiskott-Aldrich syndrome. Blood 68, 1329–1332.

    PubMed  CAS  Google Scholar 

  113. Perry, G.S., Spector, B.D., Schuman, L.M., Mandel, J.S., Anderson, W.E., McHugh, R.B., Hanson, M.R., Fahlstrom, S.M., Krivit, W. and Kersey, J.H. (1980) The Wiskott-Aldrich syndrome in the United States and Canada (1892–1979). J. Pediatr. 97, 72–78.

    Article  PubMed  Google Scholar 

  114. Rosen, F.S., Cooper, M.D. and Wedgewood, R.J.P. (1983) The primary immunodeficiencies. N. Engl. J. Med. 311, 300–310.

    Article  Google Scholar 

  115. Ochs, H.D., Slichter, S.J., Harker, L.A., van Behrens, W.E., Clark, R.A. and Wedgewood, R.J.P. (1980) The Wiskott-Aldrich syndrome: Studies of lymphocytes, granulocytes, and platelets. Blood 55, 243–252.

    PubMed  CAS  Google Scholar 

  116. Parkman, R., Remold-O’Donnell, E., Kenney, D.M., Perine, S. and Rosen, F.S. (1981) Surface protein abnormalities in lymphocytes and platelets from patients with Wiskott-Aldrich syndrome. Lancet ii, 1387–1389.

    Google Scholar 

  117. Remold-O’Donnell, E., Kenney, D.M., Parkman, R., Cairns, L., Savage, B. and Rosen, F.S. (1984) Characterization of the human lymphocyte surface sialoglycoprotein that is defective in WiskottAldrich syndrome. J. Exp. Med. 159, 1705–1723.

    Article  PubMed  Google Scholar 

  118. Park, J.K., Rosenstein, Y.J., Remold-O’Donnell, E., Bierer, B.E., Rosen, F.S. and Burakoff, S.J. (1991) Enhancement of T-cell activation by the CD43 molecule whose expression is defective in Wiskott-Aldrich syndrome. Nature 350, 706–709.

    Article  PubMed  CAS  Google Scholar 

  119. Manjunth, N., Johnson, R.S., Staunton, D.E., Pasqualini, R. and Ardman, B. (1993) Targeted disruption of CD43 gene enhances T lymphocyte adhesion. J. Immunol. 151, 1528–1534.

    Google Scholar 

  120. Piller, F., Le Deist, F., Weinberg, K.I., Parkman, R. and Fukuda, M. (1991) Altered 0-glycan synthesis in lymphocytes from patients with Wiskott-Aldrich syndrome. J. Exp. Med. 173, 1501–1510.

    Google Scholar 

  121. Higgins, E.A., Siminovitch, K.A., Zhuang, D., Brockhausen, I. and Dennis, J.W. (1991) Aberrant 0- linked oligosaccharide biosynthesis in lymphocytes and platelets from patients with the WiskottAldrich syndrome. J. Biol. Chem. 266, 6280–6290.

    PubMed  CAS  Google Scholar 

  122. Vavasseur, F., Dole, K., Yang, J., Matta, K.L., Myerscough, N., Corfield, A., Paraskeva, C. and Brockhausen, I. (1994) 0-glycan biosynthesis in human colorectal adenoma cells during progression to cancer. Eur. J. Biochem. 222, 415–424.

    Article  PubMed  Google Scholar 

  123. Yang, J.-M., Byrd, J.C., Siddiki, B.B., Chung, Y.-S., Okuno, M., Sowa, M., Kim, Y.S., Matta, K.L. and Brockhausen, I. (1994) Alterations of 0-glycan biosynthesis in human colon cancer tissues. Glycobiology 4, 873–884.

    Google Scholar 

  124. Brockhausen, I., Kuhns, W., Schachter, H., Matta, K.L., Sutherland, D.R. and Baker, M.A. (1991) Biosynthesis of 0-glycans in leukocytes from normal donors and from patients with leukemia: Increase in 0-glycan core 2 UDP-GlcNAc:Galβ3GalNAca-R (GlcNAc to GalNAc) β1,6-Nacetylglucosaminyltransferase in leukemic cells. Cancer Res. 51, 1257–1263.

    PubMed  CAS  Google Scholar 

  125. Hanisch, F.G., Uhlenbruck, G., Peter, K.J., Egge, H., Dabrowski, J. and Dabrowski, U. (1989) Structures of neutral 0-linked polylactosaminoglycans on human skim milk mucins. A novel type of linearly extended poly-N-acetyllactosamine backbone with Galβ1–4GlcNAcβ1,6 repeating units. J. Biol. Chem. 264, 872–883.

    Google Scholar 

  126. Hull, S.R., Bright, A., Carraway, K.L., Abe, M., Hayes, D.F. and Kufe, D.W. (1989) Oligosaccharide differences in the DF3 sialomucin antigen from normal human milk and the BT-20 human breast carcinoma cell line. Cancer Commun. 1, 261–267.

    PubMed  CAS  Google Scholar 

  127. Lloyd, K.O., Burchell, J., Kudryasov, V., Yin, B.W.T. and Taylor-Papadimitriou, J. (1996) Comparison of 0-linked carbohydrate chains in MUC1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells. J. Biol. Chem. 271, 33325–33334.

    Article  PubMed  CAS  Google Scholar 

  128. Brockhausen, I., Yang, J.-M., Burchell, J. Whitehouse, C. and Taylor-Papadimitriou, J. (1995) Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur. J. Biochem. 233, 607–617.

    Google Scholar 

  129. Whitehouse, C., Burchell, J., Gschmeissner, S., Brockhausen, I., Lloyd, K.O. and TaylorPapadimitriou, J. (1997) A transfected sialyltransferase that is elevated in breast cancer and localizes to the medial/trans-golgi apparatus inhibits the development of core 2-based 0-glycans. J. Cell. Biol. 137, 1229–1241.

    Article  PubMed  CAS  Google Scholar 

  130. Beum, P.V., Singh, J., Burdick, M., Hollingsworth, M.A. and Cheng, P.-W. (1999) Expression of core 2 β-1,6-N-acetylglucosaminyltransferase in a human pancreatic cancer cell line results in altered expression of MUC1 tumor-associated epitopes. J. Biol. Chem. 274, 24641–24648.

    Article  PubMed  CAS  Google Scholar 

  131. Burdick, M.D., Harris, A., Reid, C.J., Iwamura, T. and Hollingsworth, M.A. (1997) Oligosaccharides expressed on MUC1 produced by pancreatic and colon tumor cell lines. J. Biol. Chem. 272, 24198–24202.

    Google Scholar 

  132. Lefebvre, J.-C., Giordanengo, V., Limouse, M., Doglio, A., Cucchiarini, M., Monpoux, F., Mariani, R. and Peyron, J.-F. (1994) Altered glycosylation of leukosialin, CD43, in HIV-1-infected cells of the CEM line. J. Exp. Med. 180, 1609–1617.

    Article  PubMed  CAS  Google Scholar 

  133. Orlacchio, A., Sarchielli, P., Gallai, V., Datti, A., Saccardi, C. and Palmerini, C.A. (1997) Activity levels of a β1,6-N-acetylglucosaminyltransferase in lymphomonocytes from multiple sclerosis patients. J. Neurological Sci. 151, 177–183.

    Google Scholar 

  134. Koya, D., Dennis, J.W., Warren, C.E., Takahara, N., Schoen, F.J., Nishio, Y., Nakajima, T., Lipes, M.A. and King, G.L. (1999) Overexpression of core 2 β1,6-N-acetylglycosaminyltransferase enhances cytokine actons and induces hypertrophie myocardium in transgenic mice. FASEB J. 13, 2329–2337.

    PubMed  CAS  Google Scholar 

  135. Panicot, L., Mas, E., Thivolet, C. and Lombardo, D. (1999) Circulating antibodies against an exocrine pancreatic enzyme in type 1 diabetes. Diabetes 48, 2316–2323.

    Article  PubMed  CAS  Google Scholar 

  136. Koscielak, J., Miller-Podraza, H., Krauze, R and Piasek, A. (1976) Isolation and characterization of polyglycosylceramides (megaloglycolipids) with A, H and I blood-group activities. Eur. J. Biochem. 71, 9–18.

    Article  PubMed  CAS  Google Scholar 

  137. Jarnefelt, J., Rush, J., Li, Y.-T. and Laine, R.A. (1978) Erythroglycan, a high molecular weight glycopeptide with the repeating structure [galactosy-1,4–2-deoxy-2-acetamido-glucosyl-1,3] comprising more than one third of the protein-bound carbohydrate of human erythrocyte stroma. J. Biol. Chem. 253, 8006–8009.

    PubMed  CAS  Google Scholar 

  138. Kato, I. and Naiki, M. (1976) Ganglioside and rabbit erythrocyte membrane receptor for staphylococcal alpha-toxin. Infection and Immunity 13, 289–291.

    PubMed  CAS  Google Scholar 

  139. Suzuki, Y., Suzuki, T. and Matsumoto, M. (1983) Isolation and characterization of receptor sialoglycoprotein for hemagglutinating virus of Japan (Sendai virus) from bovine erythrocyte membrane. J. Biochem. 93, 1621–1633.

    Article  PubMed  CAS  Google Scholar 

  140. Loomes, L.M., Uemura, K.-I., Childs, R.A., Paulson, J.A., Rogers, G.N., Scudder, P.R., Michalski, J.-C., Hounsell, E.F., Taylor-robinson, D. and Feizi, T. (1984) Erythrocyte receptors for Mycoplasma pneumoniae are sialylated oligosaccharides of Ii antigen type. Nature 307, 560–563.

    Article  PubMed  CAS  Google Scholar 

  141. Andersson, B., Dahmen, J., Frejd, T., Leffler, H., Magnusson, G., Noori, G. and Eden, C.S. (1983) Identification of an active disaccharide unit of a glycoconjugate receptor for Pneumococci attaching to human pharyngeal epithelial cells. J. Exp. Med. 158, 559–570.

    Article  PubMed  CAS  Google Scholar 

  142. Romans, D.G., Tilley, C.A. and Dorrington, K.J. (1980). Monogamous bivalency of IgG antibodies. I. Deficiency of branched ABHI-Active oligosaccharide chains on red cells of infants causes the weak antiglobulin reactions in hemolytic disease of the newborn due to ABO incompatibility. J. Biol. Chem. 124, 2807–2811.

    CAS  Google Scholar 

  143. Gopalakrishnan, P.V. and Karush, F. (1974). Antibody affinity. VII. Multivalent interaction of antilactoside antibody. J. Immunol. 113, 769–778.

    PubMed  CAS  Google Scholar 

  144. Hornick, C.L. and Karush, F. (1972). Antibody affinity. III. The role of multivalence. Immunochem. 9, 325–340.

    Article  CAS  Google Scholar 

  145. Crothers, D.M. and Metzger, H. (1972). The influence of polyvalency on the binding properties of antibodies. Immunochem. 9, 341–357.

    Article  CAS  Google Scholar 

  146. Fenderson, B.A., Zehavi, U. and Hakomori, S.-I. (1984). A multivalent lacto-N-fucopentaose IIIlysyllysine conjugate decompacts preimplantation mouse embryos, while the free oligosaccharide is ineffective. J. Exp. Med. 160, 1591–1596.

    Article  PubMed  CAS  Google Scholar 

  147. Niemala, R., Penttila, L., Seppo, A., Helin, J., Leppanen, A., Rabina, J., Uusitalo, L., Maaheimo, H., Taskinen, J., Costello, C.E. and Renkonen, O. (1995) Enzyme-assisted synthesis of a bivalent high-affinity dodecasaccharide inhibitor of mouse gamete adhesion. The length of the chains carrying distal a1,3-bonded galactose residues is critical. FEBS Lett. 367, 67–72.

    Article  Google Scholar 

  148. Welpy, J.K., Abbas, S.Z., Scudder, P., Keene, J.L., Broschat, K., Casnocha, S., Gorka, C., Steininger, C., Howard, S.C., Schmuke, J.J., Graneto, M., Rotsaert, J.M., Manger, I.D. and Jacob, G.S. (1994) Multivalent sialyl Lex: Potent inhibitors of E-selectin-mediated cell adhesion; reagent for staining activated endothelial cells. Glycobiology 4, 259–265.

    Article  Google Scholar 

  149. Toppila, S., Lauronen, J., Mattila, P., Turunen, J.P., Penttila, L., Paavonen, T., Renkonen, O. and Renkonen, R. (1997) L-selectin ligands in rat high endothelium: Multivalent sialyl Lewis x glycans are high-affinity inhibitors of lymphocyte adhesion. Eur. J. Immunol. 27, 1360–1365.

    Article  PubMed  CAS  Google Scholar 

  150. Seppo, A., Turunen, J.P., Penttila, L., Keane, A., Renkonen, O. and Renkonen, R. (1996) Synthesis of a tetravalent sialyl Lewis x glycan, a high-affinity inhibitor of L-selectin-mediated lymphocyte binding to endothelium. Glycobiology 6, 65–71.

    Article  PubMed  CAS  Google Scholar 

  151. Maaheimo, H., Renkonen, R., Turunen, J.P., Penttila, L. and Renkonen, O. (1995) Synthesis of a divalent sialyl Lewis x 0-glycan, a potent inhibitor of lymphocyte-endothelium adhesion. Evidence that multivalency enhances the saccharide binding to L-selectin. Eur. J. Biochem. 234, 616–625.

    Article  PubMed  CAS  Google Scholar 

  152. Turunen, J.P., Majuri, M.-L., Seppo, A., Tiisala, S., Paavonen, T., Miyasaka, M., Lemstrom, K., Penttila, L., Renkonen, O. and Renkonen, R. (1995) De novo expression of endothelial sialyl Lewisa and sialyl Lewisx during cardiac transplant rejection: Superior capacity of a tetravalent sialyl Lewisx oligosaccharide in inhibiting L-selectin-dependent lymphocyte adhesion. J. Exp. Med. 182, 1133–1142.

    Article  Google Scholar 

  153. Renkonen, O., Toppila, S., Penttila, L., Salminen, H., Helin, J., Maaheimo, H., Costello, C.E., Turunen, J.P. and Renkonen, R. (1997) Synthesis of a new nanomolar saccharide inhibitor of lymphocyte adhesion: Different polylactosamine backbones present multiple sialyl Lewisx determinants to L-selectin in high-affinity mode. Glycobiology 7, 453–461.

    Article  PubMed  CAS  Google Scholar 

  154. Watanabe, K. and Hakomori, S.-I. (1976) Status of blood group carbohydrate chains in ontogenesis and in oncogenesis. J. Exp. Med. 144, 644–653.

    Article  PubMed  CAS  Google Scholar 

  155. Koscielak, J., Zdebska, E., Wilczynska, Z., Miller-Podraza, H. and Dzierzkowa- Borodej, W. (1979). Immunochemistry of Ii-active glycolipids of erythrocytes. Eur. J. Biochem. 96, 331–337.

    Article  PubMed  CAS  Google Scholar 

  156. Fukuda, M., Dell, A. and Fukuda, M.N. (1984). Structure of fetal lactosaminoglycan: the carbohydrate moiety of Band 3 isolated from human umbilical cord erythrocytes. J. Biol. Chem. 259, 4782–4791.

    PubMed  CAS  Google Scholar 

  157. Fukuda, M.N. and Levery, S.B. (1983) Glycolipids of fetal, newborn, and adult erythrocytes: Glycolipid pattern and structural study of H3-glycolipid from newborn erythrocytes. Biochemistry 22, 5034–5040.

    Article  PubMed  CAS  Google Scholar 

  158. Muramatsu, T., Gachelin, G., Nicolas, J.F. Condamine, H., Jakob, H. and Jacob, F. (1978) Carbohydrate structure and cell differentiation: Unique properties of fucosyl-glycopeptides isolated from embryonal carcinoma cells. Proc. Natl. Acad. Sci. USA 752315–2319.

    Article  PubMed  CAS  Google Scholar 

  159. Kapadia, A., Feizi, T. and Evans, M.J. (1981). Changes in the expression and polarization of blood group I and i antigens in post-implantation embryos and teratocarcinomas of mouse associated with cell differentiation. Exp. Cell. Res. 131, 185–195.

    Article  PubMed  CAS  Google Scholar 

  160. Kannagi, R., Levery, S.B. and Hakomori, S.-I. (1983). Sequential change of carbohydrate antigen associated with differentiation of murine leukemia cells: i-I antigenic conversion and shifting of glycolipid synthesis. Proc. Natl. Acad. Sci. USA 80, 2844–2848.

    Article  PubMed  CAS  Google Scholar 

  161. Fukuda, M., Fukuda, M.N., Papyannopoulou, T. and Hakomori, S.-I. (1980) Membrane differentiation in human erythroid cells:Unique profiles of cell surface glycoproteins expressed in erythroblasts in vitro from three ontogenic stages. Proc. Natl. Acad. Sci. USA. 77, 3474–3478.

    Article  PubMed  CAS  Google Scholar 

  162. Hakomori, S.-I., Koscielak, J., Bloch, K.J. and Jeanloz, R.W. (1967) Immunologic relationship between blood group substances and a fucose-containing glycolipid of human adenocarcinoma. J. Immunol. 98, 31–38.

    PubMed  CAS  Google Scholar 

  163. Davidsohn, I., Ni, L.Y. and Stejskal, R. (1971) Tissue isoantigens A, B, and H in carcinoma of the stomach. Arch. Pathol. 92, 456–464.

    PubMed  CAS  Google Scholar 

  164. Feizi, T., Turberville, C. and Westwood, J.H. (1975). Blood-group precursors and cancer-related antigens. Lancet 2, 391.

    Article  PubMed  CAS  Google Scholar 

  165. Picard, J., Edward, D.W. and Feizi, T. (1978). Changes in the expression of the blood group A, B, H, Lea, and Leb antigens and the blood group precursor associated I (Ma) antigen in glycoprotein-rich extracts of gastric carcinomas. J. Clin. Lab. Immunol. 1, 119–128.

    CAS  Google Scholar 

  166. Picard, J.K. and Feizi, T. (1983) Peanut lectin and anti-Ii antibodies reveal structural differences among human gastrointestinal glycoproteins. Molec. Immunol. 20, 1215–1220.

    Article  CAS  Google Scholar 

  167. Holmes, E.H., Hakomori, S.-I. and Ostrander, G.K. (1987) Sytnesis of type I and 2 lacto series glycolipid antigens in human colonic adenocarcinoma and derived cell lines is due to activation of a normally unexpressed β1–3N-acetylglucosaminyltransferase. J. Biol. Chem. 262, 15649–15658.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beum, P.V., Cheng, PW. (2001). Biosynthesis and Function of ß 1,6 Branched Mucin-Type Glycans. In: Wu, A.M. (eds) The Molecular Immunology of Complex Carbohydrates —2. Advances in Experimental Medicine and Biology, vol 491. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1267-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1267-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5469-7

  • Online ISBN: 978-1-4615-1267-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics