Skip to main content

Implantation and Characterization of Human Breast Carcinomas in SCID Mice

  • Chapter
Methods in Mammary Gland Biology and Breast Cancer Research

Abstract

To establish a better animal model for the study of human breast carcinomas, we investigated the growth and metastatic potential of surgical specimens of human breast carcinomas in SCID mice, using the large abdominal (gonadal) fat pad as an implantation site. Previously, we have shown that 12 (25%) out of 48 xenografts grew and reached a size of 1–2 cm within 2–6 months; these tumors were then sequentially passaged in SCID mice. In addition, we observed that the majority (8 out of 12) of these transplantable tumors became metastatic (e.g., to liver and lung) in the second or third passage. In this chapter we describe the protocol, in detail, for growing human breast carcinomas in the gonadal fat pad (GFP) of SCID mice from receiving and processing of surgical specimens to tumor implantation, passage, and archiving. We have also carefully examined and characterized these human tumor xenografts by histological analysis. Further, we identified the presence of human lymphocytes and human immunoglobulin in SCID mice bearing human breast carcinomas. The merits, potential applications, and pitfalls of this model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DMSO:

dimethyl sulfoxide

EBV:

Epstein—Barr virus

ER:

estrogen receptor

FBS:

fetal bovine serum

GFP:

gonadal fat pad

H&E:

hematoxylin and eosin

IRB:

institutional review board

ISH:

in situ hybridization

PBS:

phosphate-buffered saline

SCID:

severe combined immunodeficient

TPF:

tissue procurement facility

References

  1. R. Clarke (1996) Animal models of breast cancer. In J. R. Harris, M. Morrow, M. E. Lippman, and S. Hellman (eds.), Diseases of the Breast, Lippincott-Raven, Philadelphia, pp. 221–235.

    Google Scholar 

  2. J. Taylor-Papadimitriou, E Berdichervsky, B. D’Souza, and J. Burchell (1993) Human models of breast cancer. Cancer Surveys 16: 59–78.

    PubMed  CAS  Google Scholar 

  3. B. C. Giovanella and J. Fogh (1985). The nude mouse in cancer research. Adv. Cancer Res. 44: 69–120.

    Article  PubMed  CAS  Google Scholar 

  4. S. Ethier (1996). Human breast cell lines as models of growth regulation and disease progression. J. Mammary Gland Biol. Neopl. 1: 111–121.

    Article  CAS  Google Scholar 

  5. B. C. Giovanella, D. M. Vardeman, L. J. Williams et al. (1991). Heterotransplantation of human breast carcinomas in nude mice. Correlation between successful heterotransplants, poor prognosis and amplification of the HER-2/neu oncogene. Inte. J. Cancer 47: 66–71.

    Article  CAS  Google Scholar 

  6. R. A. Phillips, M. A. S. Jewett, and B. L. Gallie (1989). Growth of human tumors in immune-deficient scid mice and nude mice. Curr. Top. Microbiol. Immunol. 152: 259–263.

    Article  PubMed  CAS  Google Scholar 

  7. A. Sabesteny, J. Taylor-Papadimitriou, R. Ceriani et al. (1979). Primary human breast carcinomas transplanted in the nude mouse. J. Natl. Cancer Inst. 63: 1331–1337.

    Google Scholar 

  8. B. Rae-Venter and L. M. Reid (1980). Growth of human breast carcinomas transplanted in nude mice and subsequent establishment in tissue culture. Cancer Res. 40: 95–100.

    PubMed  CAS  Google Scholar 

  9. H. C. Outzen and R. P. Custer (1975). Growth of human normal and neoplastic mammary tissues in the cleared mammary fat pad of the nude mouse. J. Natl. Cancer Inst. 55: 1461–1466.

    PubMed  CAS  Google Scholar 

  10. X. Fu, P. Le, and R. M. Hoffman (1993). A metastatic orthotopic-transplant nude-mouse model of human patient breast cancer. Anticancer Res. 13: 901–904.

    PubMed  CAS  Google Scholar 

  11. R. R. Menta, J. M. Graves, G. D. Hart, A. Shilkaitis, and T. K. Das Gupta (1993). Growth and metastasis of human breast carcinoma with Matrigel in athymic mice. Breast Cancer Res. Treat. 25: 65–71.

    Article  Google Scholar 

  12. A. Cesano, J. A. Hoxie, B. Lange, P C Nowell, J. Bishop, and D. Santoli (1992). The severe combined immunodeficient (SCID) mouse as a model for human myeloid leukemias. Oncogene 7: 827–836.

    PubMed  CAS  Google Scholar 

  13. S. Visonneau, A. Cesano, M. H. Torosian, E. J. Miller, and D. Santoli (1998). Growth characteristics and metastatic properties of human breast cancer xenografts in immunodeficient mice. Am. J. Pathol. 152: 1299–1311.

    PubMed  CAS  Google Scholar 

  14. T. Sakakibara, Y. Xu, H. L. Bumpers, E-A. Chen, R. B. Bankert, M. A. Arredondo, S. B. Edge, and E. A. Repasky (1996). Growth and metastasis of surgical specimens of human breast carcinomas in SCID mice. Cancer J. Sci. Am. 2: 291–300.

    PubMed  CAS  Google Scholar 

  15. E. Perel, M. E. Blackstein, and D. N. Killinger (1982). Aromatase in human breast carcinoma. Cancer Res. (Suppl.) 42: 3369–3372.

    CAS  Google Scholar 

  16. P. A. Beranek, E. J. Folkerd, M. W. Ghilchick, and V. H. T. James (1984). 17Beta-hydroxysteroid dehydrogenase and aromatase activity in breast fat from women with benign and malignant breast tumors. Lin. Endocrinol. 20: 205–212.

    Google Scholar 

  17. E. R. Simpson, J. C. Merrill, A. J. Hollub, S. Graham-Lorence, and C. R. Mendelson (1989). Regulation of estrogen biosynthesis by human adipose cells. Endocrine Rev. 10: 136–148.

    Article  CAS  Google Scholar 

  18. J. Koh, T. Kubota, H. Sasano, M. Hashimoto, Y. Hosoda, and M. Kitajima (1998). Stimulation of human tumor xenograft growth by local estrogen biosynthesis in stromal cells. Anticancer Res. 18 (4A): 2375–2380.

    PubMed  CAS  Google Scholar 

  19. S. S. Williams, T. R. Alosco, B. A. Croy, and R. B. Bankert (1993). The study of human neoplastic disease in severe combined immunodeficient mice. Lab. Anim. Sci. 43: 139–146.

    PubMed  CAS  Google Scholar 

  20. S. S. Williams, E A. Chen, H. Kida, S. Yokata, K. Miya, M. Kato, M. P. Barcos, H. Q. Wang, T. Alsosco, T. Umemoto, B. A. Croy, E. A. Repasky, and R. B. Bankert (1996) Engraftment of human tumor-infiltrating lymphocytes and the production ofanti-tumor antibodies in SCID mice. J. Immunol. 156 (5): 1908–1915.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xu, Y., Edge, S.B., Hurd, T.C., Repasky, E.A., Slocum, H.K. (2000). Implantation and Characterization of Human Breast Carcinomas in SCID Mice. In: Ip, M.M., Asch, B.B. (eds) Methods in Mammary Gland Biology and Breast Cancer Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4295-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4295-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6927-1

  • Online ISBN: 978-1-4615-4295-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics