Skip to main content

Use of Peptide Probes to Study Brain Regulation of Glucose Metabolism

  • Chapter
Fuel Homeostasis and the Nervous System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 291))

  • 130 Accesses

Abstract

Peptides represent the largest class of biologically active ligand that exist within central nervous system (CNS) neurons and their axonal projections. The physiologic role that these peptides play in the regulation of brain cellular functions, including neurotransmission, has not been determined. Most brain peptides display biological actions when administered into the CNS, thus leading to hypotheses regarding their physiologic roles. In addition to characterization of the physiologic roles of these peptides within the CNS, it is evident that these substances may be utilized as neurochemical probes with unique specificities for select neuronal populations to study both cellular and integrated CNS functions. An area of importance to physiologists has been the use of peptides to modify brain neuroendocrine and autonomic nervous system neuro-humoral effector mechanisms that regulate visceral organ function. This chapter will describe some of the CNS peptides that may be used as probes to study neuroendocrine and autonomic control of glucose metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. L. Lee and R. E. Miller, The hepatic vagus nerve and the neural regulation of insulin secretion, Endocrinol. 117:307 (1985).

    Article  CAS  Google Scholar 

  2. A. Niijima, Glucose-sensitive afferent nerve fibers in the hepatic branch of the vagus nerve in the guinea pig, J. Physiol. 332:315 (1982).

    PubMed  CAS  Google Scholar 

  3. O. Yutaka and H. Yoshimatsu, Neural network of glucose monitoring system, J. Auton. Nerv. Syst. 10:359 (1984) .

    Article  Google Scholar 

  4. B. R. Landau, Y. Takaoka, M. A. Abrams, S. M. Genuth, M. Van Houten, B. I. Posner, R. J. White, S. Ohgaku, A. Horvat, and E. Hemmelgarn, Binding of insulin by monkey and pig hypothalamus, Diabetes 32:284 (1983).

    Article  PubMed  CAS  Google Scholar 

  5. B. E. Dunning, J. H. Moltz, and C. P. Fawcett, Actions of neurohypophyseal peptides on pancreatic hormone release, Amer. J. Physiol. 246:E108 (1984).

    PubMed  CAS  Google Scholar 

  6. E. Bobbioni and B. Jeanrenaud, A rat hypothalamic extract enhances insulin secretion in vitro, Endocrinol. 113:1958 (1983).

    Article  CAS  Google Scholar 

  7. L. J. Grimes, C. Mok, and J. M. Martin, Effect of a bovine hypothalamic extract on glucose utilization by rat adipocytes, Amer. J. Physiol. 234:E554 (1978) .

    PubMed  CAS  Google Scholar 

  8. L. A. Idahl and J. M. Martin, Stimulation of insulin release by a ventrolateral hypothalamic factor. J. Endocr. 51:601 (1971).

    Article  PubMed  CAS  Google Scholar 

  9. G. A. Taborsky and D. Porte, Jr., Stress-induced hyperglycemia, in: “The Neurobiology and Neuro-endocrinology of Stress,” M. R. Brown, C. Rivier, and G. Koob, eds., Marcel Dekker, Inc., New York (in press).

    Google Scholar 

  10. J. Pernow, J. Schwieler, T. Kahan, P. Hjemdahl, J. Oberle, B. G. Wallin, and J. M. Lundberg, Influence of sympathetic discharge pattern on norepinephrine and neuropeptide Y release, Amer. J. Physiol. 257: H866 (1989).

    PubMed  CAS  Google Scholar 

  11. J. M. Lundberg, B. Hamberger, M. Schultzberg, T. Hokfelt, P-O Granberg, S. Efendic, L. Terenius, M. Goldstein, and R. Luft, Enkephalin-and somatostatin-like immunoreactivities in human adrenal medulla and pheochromocytoma, Proc. Natl. Acad. Sci. USA 76:4079 (1979).

    Article  PubMed  CAS  Google Scholar 

  12. G Terenghi, J. M. Polak, I. M. Varndell, Y. C. Lee, J. Wharton, and S. R. Bloom, Neurotensin-like immunoreactivity in a subpopulation of noradrenaline-containing cells of the cat adrenal gland, Endocrinol. 112:226 (1983).

    Article  CAS  Google Scholar 

  13. R. Corder, D. F. J. Mason, D. Perrett, P. J. Lowry, V. Clement-Jones, E. A. Linton, G. M. Besser, and L. H. Rees, Simultaneous release of neurotensin, somatostatin, enkephalins and catecholamines from perfused cat adrenal glands, Neuropeptides 3:9 (1982) .

    Article  PubMed  CAS  Google Scholar 

  14. L. W. Swanson and P. E. Sawchenko, Hypothalamic integration: organization of the paraventricular and supraoptic nuclei, Ann. Rev. Neurosci. 6: 269 (1982) .

    Article  Google Scholar 

  15. M. R. Brown, M. Mortrud, R. Crum, and P. Sawchenko, Role of somatostatin in the regulation of vasopressin secretion, Brain Res. 452:212 (1988).

    Article  PubMed  CAS  Google Scholar 

  16. M. R. Brown, R. Crum, and P. Sawchenko, Somatostatin-28 (SS-28) stimulation of vasopressin (AVP) and oxytocin (OT) secretion, Endocrinol. 122(Suppl.): 660 (1988).

    Google Scholar 

  17. C. D. Sladek, Regulation of vasopressin release by neurotransmitters, neuropeptides and osmotic stimuli, Prog. Brain Res. 60:71 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. S. Amir and P. D. Butler, Thyrotropin-releasing hormone blocks neurally-mediated hyperglycemia through central action, Peptides 9:31 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. M. R. Brown, Thyrotropin releasing factor: a putative CNS regulator of autonomic nervous system outflow, Life Sci. 28:1789 (1981).

    Article  PubMed  CAS  Google Scholar 

  20. M. R. Brown, L. A. Fisher, J. Spiess, J. Rivier, C. Rivier, and W. Vale, Corticotropin-releasing factor (CRF): actions on the sympathetic nervous system and metabolism, Endocrinol. 111:928 (1982).

    Article  CAS  Google Scholar 

  21. J. E. Morley and A. S. Levine, Intraventricular cholecystokinin octapeptide produces hyperglycemia in rats,Life Sci. 28:2187 (1981).

    Article  PubMed  CAS  Google Scholar 

  22. A. Iguchi, H. Matsunaga, T. Nomura, M. Gotoh, and N. Sakamoto, Glucoregulatory effects of intrahypothalamic injections of bombsin and other peptides, Endocrinol. 114:2242 (1984).

    Article  CAS  Google Scholar 

  23. M. Brown, Y. Tache, and D. Fisher, Central nervous system action of bombesin: mechanism to induce hyperglycemia, Endocrinol. 105:660 (1979).

    Article  CAS  Google Scholar 

  24. J. M. Overton and L. A. Fisher, Modulations of central nervous system actions of corticotropin-releasing factor by dynorphin-related peptides, Brain Res.488:233 (1989).

    Article  PubMed  CAS  Google Scholar 

  25. N. A. Scott, V. Webb, J. H. Boublik, J. Rivier, and M. R. Brown, The cardiovascular actions of centrally administered neuropeptide Y, Regul. Peptides 25:247 (1989) .

    Article  CAS  Google Scholar 

  26. H. Somiya and T. Tonoue, Neuropeptides as central integrators of autonomic nerve activity: effects of TRH, SRIF, VIP and bombesin on gastric and adrenal nerves, Regul. Peptides 9:47 (1984).

    Article  CAS  Google Scholar 

  27. M. R. Brown, K. Carver, and L.A. Fisher. Bombesin: central nervous system actions to affect the autonomic nervous system, in: “Annals of the New York Academy of Sciences, Vol. 547, Bombesin-like Peptides in Health and Disease,” Y. Tache, P. Melchiorri, and L. Negri, eds., New York Academy of Sciences, New York (1989).

    Google Scholar 

  28. G. R. Van Loon, N. M. Appel, and D. Ho, Endorphin-induced stimulation of central sympathetic outflow: endorphin increases plasma concentrations of epinephrine, norepinephrine, and dopamine in rats, Endocrinol. 109:46 (1981).

    Article  Google Scholar 

  29. M. R. Brown, L. A. Fisher, V. Webb, W. W. Vale, and J. E. Rivier, Corticotropin-releasing factor: a physiologic regulator of adrenal epinephrine secretion, Brain Res. 328:355 (1985).

    Article  PubMed  CAS  Google Scholar 

  30. D. A. Fisher and M. Brown, Somatostatin analog: plasma catecholamine suppression mediated by the central nervous system, Endocrinol. 107:714 (1980).

    Article  CAS  Google Scholar 

  31. M. R. Brown and L. A. Fisher, Brain peptide regulation of adrenal epinephrine secretion, Amer. J. Physiol.247:E41 (1984).

    PubMed  CAS  Google Scholar 

  32. M. R. Brown, J. Rivier, and W. Vale, Somatostatin: central nervous system actions on glucoregulation, Endocrinol. 104:1709 (1979).

    Article  CAS  Google Scholar 

  33. M. R. Brown and L. A. Fisher, Corticotropin releasing factor: effects on the autonomic nervous system and visceral systems, Fed. Proc. 44:243 (1985).

    PubMed  CAS  Google Scholar 

  34. C. Rivier and W. Vale, Effects of corticotropin-releasing factor, neurohypophyseal peptides, and catecholamines on pituitary function, Fed. Proc. 44: 189 (1985).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Brown, M.R. (1991). Use of Peptide Probes to Study Brain Regulation of Glucose Metabolism. In: Vranic, M., Efendic, S., Hollenberg, C.H. (eds) Fuel Homeostasis and the Nervous System. Advances in Experimental Medicine and Biology, vol 291. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5931-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5931-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5933-3

  • Online ISBN: 978-1-4684-5931-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics